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Abstract

In attempting to formulate realistic models of the
development of the human oculomotor control
system, it became clear that evolutionary factors
played a crucial role. Even rather coarse simu-
lations of the biological evolutionary process re-
sulted in adaptable control systems considerably
more efficient than those I had attempted to build
‘by hand’. I this paper I shall describe some of the
aspects of these models that are likely to be useful
for building robot control systems. In particular,
I shall look at the evolution of appropriate innate
starting points for learning/adaptation, patterns
of learning rates that vary across different system
components, individual differences, and learning
rates that vary during the system’s lifetime.

1 Introduction

For several years I have been involved in formulating
increasingly sophisticated models of the development of
human oculomotor control with view to better under-
standing the problems that may occur under normal
conditions, and also as a result of using novel viewing
devices such as virtual reality head mounted displays
(e.g. Bullinaria, Riddell & Rushton, 1999; Bullinaria &
Riddell, 2001). These models were rather successful in
that they could simulate adult human performance rea-
sonably well, and also the developmental progression to-
wards those abilities, yet they remained lacking in that
they still involved assumptions about various innate fac-
tors that were difficult to determine empirically (Bulli-
naria & Riddell, 2000). Particularly important were the
innate starting points of the learning process, the advan-
tages of having different learning rates for distinct com-
ponents of the system, and the relevance of the critical
periods of learning that are observed in humans. Some
preliminary small scale simulations of human like evolu-
tion of these factors (Bullinaria, 2001a,b) suggest that
such an approach will not only result in improved mod-
els of human systems, but could well result in improved
performance for analogous robotic systems.

The idea of using evolutionary techniques for creat-
ing robotic systems is already well established in the

field of Ewolutionary Robotics (e.g. Nolfi & Floreano,
2000). Evolutionary algorithms have also already shown
much promise for generating artificial neural networks
with performance superior to those formulated directly
by human researchers. Factors such as network architec-
ture, learning rules and connection weights have all been
successfully optimised by evolution (e.g. Yao, 1999). In
this paper, however, I would like to concentrate on the
effects of three related factors that are crucial for the
human system, and yet have perhaps not received ad-
equate attention in the field of robotics. First, the so-
called Nature-Nurture Debate and the distinctions be-
tween properties that are innate in each new individual
and those that must be learned from the environment
during an individual’s lifetime. Second, the range of In-
dividual Differences and how these are constrained by
evolution and learning. Third, the advantages and dis-
advantages of the Critical Periods for Learning that are
often observed in human development. I shall argue that
to study these issues properly, it is important that the
evolutionary simulations are more closely aligned with
biological evolution than is commonly the case.

2 The Baldwin Effect

Clearly we are primarily interested in how evolution by
natural selection can improve our system’s (robot’s) abil-
ity to act in and learn from its environment. Inevitably,
that interaction between learning and evolution known
as the Baldwin Effect (Baldwin, 1896; Belew & Mitchell,
1996) will be crucial for understanding the processes in-
volved. For present purposes this interaction occurs in
two stages: (1) if a mutation improves the ability of
the learning process to acquire better properties, then
it will tend to proliferate in the population, and (2) if
the learning process has an associated cost, then its re-
sults will tend to get incorporated into the genotype and
the learned behaviours will become innate. In effect we
will have genetic assimilation, without Lamarckian in-
heritance, of acquired characteristics. However, if the
system really does need to retain the ability to learn, for
example to adapt to unknown or changing environmen-
tal conditions, or to adapt to the system’s own matura-
tion (as we generally have in biological systems), then
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Figure 1: A simplified control model with four learnable weights/parameters: WI, WP, WT, WB.

we will only get partial assimilation. We should still end
up with an efficient learning system, but the appropriate
innate properties will not generally correspond to the fi-
nal learned behaviour. This is where the nature-nurture
debate comes in. Moreover, if natural selection cannot
discriminate between different genotypes (i.e. different
innate properties), we will be left with a range of indi-
vidual differences. I have recently explored these two
issues in more detail elsewhere (Bullinaria, 2001a).

3 Variable Plasticity

The third issue I wish to explore is how evolution might
lead to more efficient systems by allowing the emergence
of variable plasticities (i.e. non-constant learning rates).
It is well known that human neural plasticity varies con-
siderably with age, and that there are often critical pe-
riods during which learning must take place if the given
task is to be mastered successfully (Greenough, Black
& Wallace, 1987; Julesz & Kovacs, 1995). The idea of
variable neural plasticity is also quite common in the
field of artificial neural networks where modellers have
found it beneficial to vary their network learning rates
during the course of training (Jacobs, 1988). For exam-
ple, near the end of training it may be useful to decrease
the learning rates to minimise the weight variations seen
after each sample in online training, or to increase them
to speed the saturation of sigmoids as the errors become
small. Alternatively, if the performance of a task de-
pends crucially on some lower level of processing, it may
be sensible to delay the learning of that task until the
lower level processes have fully developed. It is not clear
to what extent factors such as these have been responsi-
ble for the evolution of the patterns of plasticity found
in humans, or if it has been more a matter of minimizing
the physical overheads of the plasticity.

4 The Control Model

In this paper I shall present the results of a series of ex-
plicit simulations of the evolution of some simple adapt-
able control systems. The overall aim will be to see which
learning strategies evolve naturally, and to explore how

different strategies evolve under different circumstances.
These can be expected to inform the issues discussed
above, and will hopefully enable us to formulate better
adaptable controllers for our robotic systems.

The control system that will form the basis of the
current investigation is shown in Figure 1. It is actu-
ally a simplified version of the part of the oculomotor
control system that focuses and rotates the human eye
(Schor et al., 1992), though similar systems can be ap-
plied quite generally (Levine, 1996). The input is a nat-
ural sequence of target responses and the feedback loop
allows the determination of an error signal. This sig-
nal then feeds into a standard integral controller (with
gain/weight W) and a standard proportional controller
(with gain/weight W P), the outputs of which are added
to a constant bias signal (of strength/weight W B) and a
leaky integrator tonic signal (of gain/weight WT'), and
fed into the (leaky integrator) plant to produce the re-
sponse. The bias provides an appropriate general resting
state, while the tonic allows short time-scale adaptation
of the resting state during periods of constant demand.
In the human eye focusing system, for example, we would
have blur being processed to generate signals for the cil-
iary muscles in the eye appropriate for the distance of
the visual target (Schor et al., 1992). The system can
equally well be regarded as a traditional control system
(Levine, 1996), or as a dynamical network of leaky inte-
grator neurons (Bullinaria & Riddell, 2001).

Simulating the evolution of this system will involve
working with a large number of copies of the model,
each with their own four adjustable parameters/weights
W(t) = {WI(t),WP(t), WT(t), WB(t)} where t is the
time/age of the individual model measured in simulated
years. These parameters are learned by a simple on-line
gradient descent algorithm that minimizes a cost func-
tion consisting of response error and smoothness (regu-
larization) components, which would be readily available
to the system, for representative sequences of response
targets (Bullinaria & Riddell, 2001). Corresponding to
the learnable weights, then, each instantiation of the
model will have four variable learning rates/plasticities
P(t) = {PI(t),PP(t),PT(t),PB(t)}. The model will
also have various other parameters (the time constants



77 and 77, plant characteristics, feedback time delay, and
so on) which we take to be the same for all instanti-
ations, with values appropriate for human oculomotor
control (Schor et al., 1992). Such a system that has
evolved/learned a good set of weights will produce ap-
propriate damped responses to arbitrary discontinuous
output requirements, and smooth pursuit of arbitrary
continuous output changes (Bullinaria & Riddell, 2001).

For the purposes of this paper, I shall assume that
all the learning rates in a given model vary with age
in the same manner, and that this variation depends
only on the genotype (innate parameters) of the indi-
vidual, and not on the environment that the individual
finds itself in. Naturally, it will be important to relax
this condition in the future, but this means that we can
write P(t) = s(¢).P(0), where P(0) are the four initial
learning rates, and s(t) is a simple age dependent scal-
ing factor. Clearly, if there is no plasticity variation we
will have s(t) = 1 for all ¢. A convenient parameteri-
zation is to simply take s(t) to be piecewise linear with
parameters S = {s(t) : t = 1,...,N}. This extends
my earlier study (Bullinaria, 2001b) where I took s(¢)
to be an exponential function determined by only two
evolvable parameters. The part of the model’s geno-
type that varies between individuals thus represents the
8+ N parameters {W(0), P(0),S}. There is clearly noth-
ing in this approach, apart from the inevitable increased
computational requirements, to prevent straightforward
extensions to more complex control systems with more
parameters.

5 Evolving the Model

Simulating the evolutionary process for our model in-
volves taking a whole population of individual instan-
tiations and allowing them to learn, procreate and die
in a manner approximating these processes in real (bi-
ological) systems. The genotype of each new individual
will depend only on the genotypes of its two parents
and random mutation. Then during their life each in-
dividual will learn from their environment how best to
adjust their weights to perform most effectively. Eventu-
ally, perhaps after producing a number of children, each
individual dies. Obviously, in nature, or for complete
physical robots, the ability of an individual to survive
or reproduce will depend on a number of factors that
are related in a complicated manner to that individual’s
performance on a range of related and unrelated tasks.
For the purposes of our simplified model, however, I shall
assume all other factors to be equal and consider it to be
a sufficiently good approximation to take a simple linear
relation between our single task fitness function and the
survival or procreation fitness. In fact, any monotonic re-
lation should result in similar evolutionary trends, but it
is very easy to lose weak effects in the noise of the rather
coarse simulations forced upon us by current computa-

tional resource limitations.

Given that, initially at least, we are aiming to replicate
effects that arise in biological evolution, it is appropriate
to follow a more natural approach to procreation, mu-
tation and survival than has been used in many evolu-
tionary simulations in the past (e.g. in Belew & Mitchell,
1996). If, as is often done, we were to train each mem-
ber of the whole population for a fixed time and pick
the fittest to breed and form the next generation, there
would be no incentive for individuals to learn as quickly
as possible, and efficient learners would not evolve. In-
stead, as in most biological systems, our populations
contain competing learning individuals of all ages, each
with the potential for dying or procreation at each stage.
During each simulated year, every individual learns from
their own experience with a new randomly generated
common environment (i.e. set of training/testing data)
and has their fitness measured. Random pairs of indi-
viduals are then forced to compete, with the least fit
dying (i.e. being removed from the population). Addi-
tionally, a random subset of the oldest individuals die of
old age. The dead are replaced by children, each having
one parent who is the fittest of a randomly chosen pair
from the remaining population, who randomly chooses
their mate from the rest of whole population. Each child
inherits characteristics from both parents such that each
innate free parameter is chosen at random somewhere
between the values of its parents, with sufficient noise
(or mutation) that there is a reasonable possibility of
the parameter falling outside the range spanned by the
parents.

Note that even when a good set of innate weights have
evolved, the control system will still benefit from being
plastic since that will allow each individual to fine tune
its performance after a noisy procreation process and/or
being born into an unpredictable environment. Many
biological systems also need plasticity to compensate for
changes (e.g. growing size) that naturally take place dur-
ing their own maturation period, and robots will need to
compensate for plant drift (e.g. gear wear). For the cur-
rent study, such changes were simulated by introducing
a simple output scale factor that varies linearly from 0.5
to 1.0 over the first ten years of life for each individual.
(It turns out that the precise details of this variation are
not crucial.) In humans this maturation might corre-
spond to changes in inter-pupilliary distance for the eye
rotation system, or changes in arm length for reaching
or pointing. The important consequence is that the ap-
propriate innate/newborn weights will not be the same
as the final adult values. The pattern of plasticities that
evolve will allow the system to learn most efficiently how
to optimize its weights throughout its life.

Ultimately, the simulations might benefit from more
realistic encodings of the parameters, concepts such as
recessive and dominant genes, learning and procreation



costs, different inheritance and mutation details, differ-
ent survival and procreation criteria, more restrictive
mate selection regimes, offspring protection, different
learning algorithms and fitness functions, and so on, but
for the purposes of this paper, our simplified approach
proved adequate. An important consideration, however,
was that limited computational resources will generally
only permit rather coarse approximations of biological
evolutionary processes, and it was important to fix the
the various simulation parameters appropriately. For
example, if all the individuals were able to learn how
to perform the given task perfectly by the end of their
first year, and we only tested their performance once
per year, then the advantage of those that learn in two
months over those that take ten is lost and the simulated
evolution would not be very effective. Since the individ-
uals were allowed to evolve their own learning rates, this
had to be controlled by limiting the amount of training
data each individual experienced in each year. Choos-
ing a fixed population size of only 100 was a trade-off
between maintaining genetic diversity and running the
simulations reasonably quickly. The death rates were set
in order to produce reasonable age distributions. This
meant around 10 deaths per year due to competition,
and another 4 individuals over the age of 30 dying each
year due to old age. The procreation and mutation pa-
rameters were chosen to speed the evolution as much
as possible without introducing too much noise into the
process. Coding such a system in C typically resulted in
around 1,000 simulated years per CPU hour on an aver-
age UNIX workstation. These details were kept constant
across all the simulations I shall now present.

6 Simulation Results

Simulation results for a typical run of the basic system
described above are shown in Figure 2. First we see
that, although all the initial weights W(0) and learning
rates P(0) were started with random values from the
range [0, 20], the population means quickly evolve to
take on appropriate values. This demonstrates explic-
itly how genetic assimilation of learned behaviour (i.e.
learned parameter values) will occur automatically, with-
out Lamarckian inheritance, to reduce the inherent costs
of learning (e.g. periods of poor performance). An im-
portant point to notice is the large variation in learning
rates that emerge for the different components. Using a
single learning rate for the whole system, as is common
in neural network modelling, would clearly not be a good
strategy in this type of system. The evolved parameters
will result in good values for the weights throughout the
individuals’ lives. All the weights will need an initial fine
tuning to remove the noise introduced by the procreation
process, then some weights (WI and W P) need to ad-
just during the maturation period, while others (WT and
W B) need little further change. The plots of W P(t) and

WT(t) for a typical evolved population show this quite
clearly. We can see that even for individuals of the same
age, there is still a degree of variability in the parame-
ter values. The next graph shows this variability more
clearly by plotting the standard deviations across the
evolved population of the parameter values at each age,
normalised by the corresponding adult values. These
ranges of individual differences vary with age and ulti-
mately depend on the sensitivity of the fitness function
with respect to the corresponding parameters. This is
discussed further in Bullinaria (2001a). Finally, we see
how the plasticity scale factor s(t) varies with age t. In
particular, we see that the plasticity falls drastically be-
tween birth and the end of the maturation period, thus
confirming that critical periods for learning will arise as
a natural consequence of the evolutionary process.

The results from the basic system naturally lead to
the question of what happens if an individual needs to
be able to learn or adapt later in life, after the standard
learning period is over. There is a traditional saying that
“old dogs cannot learn new tricks”, but it seems unlikely
that evolution would allow the plasticities to decay away
to small values in situations where late life adaptation
is regularly required. To introduce such a requirement,
the basic model was modified so that there was a sudden
step in the output scale factor from 1.0 to 0.75 at the age
of 20. (Again it turns out that the precise details of this
variation are not crucial.) There is no need to specify
whether this variation corresponds to an internal factor
(e.g. compensation for system damage or deterioration)
or an external factor (e.g. adaptation to changes in the
operating environment), as they will have the same ef-
fect. Obviously, the need for real late life adaptation
will rarely be so predictable, but the consequences for
our model will be similar, and the simplification makes
it easier to interpret the results.

Figure 3 shows how this changes the simulation results
from those of the basic model in Figure 2. The most ob-
vious difference is in the plot of W P(t) where we see the
required step change at age 20 has been learned success-
fully and quickly. We also see a corresponding blip in the
individual differences due to variations in the adaptation
process. The plot of s(t) shows the initial fall as before,
but then a peak to give the increased plasticity required
at the age of 20. This gives us confidence that our evolu-
tionary simulations really are picking up the requirement
for plasticity, and not some confounding factor.

A final situation to consider, that often arises in bio-
logical development, is when one level of processing relies
on signals from another sub-system. If the sub-system
supplying those signals is not fully developed, it might
be sensible to wait until it is before beginning to learn
how to use its signals. For example, the adult human
eye rotation (vergence) system uses an image disparity
signal, and humans have to wait until 12-16 weeks of age
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Figure 2: Evolution and learning in a typical simulation of the basic system. Appropriate initial weights and learning rates

evolve quite quickly, and these result in good weights at each age. The remaining ranges of individual differences vary between

the four weights depending on how crucial each is to the fitness, and on how quickly they are optimized by the learning.
Individuals in the evolved population have plasticities that fall rapidly between birth and the end of their maturation period.
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before this signal relatively suddenly becomes available.
To simulate such an effect in our basic model, the error
signal was replaced by low level noise for each individual
until they reached three years of age.

Figure 4 shows how this affects the standard results
of Figure 2. The changes here are rather clear. First,
the initial /innate weights WI, WP and WT all drop to
very low values, leaving the system with an appropriate
constant output driven by the bias W B, and no interfer-
ence from the noisy input signal. Naturally, the initial
learning rates are also all very low, because learning from
noise is not a good strategy, but they quickly rise to co-
incide with the onset of the input signal at the age of
three. By the age of nine, the system has caught up
with the performance levels of Figure 2. Once again our
biological style evolutionary approach leads to sensible
patterns of initial parameters and plasticity variations.

There are two competing effects that determine what
is an appropriate plasticity. In order to survive in com-
petition with fitter adults and/or a hostile environment,
a newborn needs to adapt as quickly as possible to its
environment. It also needs to adapt efficiently to its
own maturation. Large plasticities will be beneficial for
both. In adults, however, large plasticities can lead to
an unstable learning system, in which unusual/extreme
experiences can potentially result in a large shift of the
systems’ parameters with a serious reduction in overall
fitness. Lower learning rates in this situation will allow
smoother optimal parameter estimation and more con-
sistently good responses in a varied environment. The
above simulations demonstrate explicitly how a process
of evolution by natural selection can result in a popula-
tion of individual systems that deal with these conflicting
requirements by having plasticities that vary appropri-
ately with age under normal maturation, when late life
adaptation is required, and when there is a dependence
on the prior development of other sub-systems.

7 Conclusions

We have seen how allowing populations of simple adapt-
able control systems to evolve by natural selection pro-
duces individuals that perform and adapt efficiently un-
der a range of conditions. Along the way have been
identified various advantages of following the processes
of biological evolution more closely than is commonly the
case. A Baldwin (1896) type interaction between learn-
ing and evolution results in the emergence of appropriate
initial/innate values for each parameter/weight in the
system, along with appropriate (different) learning rates
for each parameter. We also observe a natural propen-
sity for the evolution of leaning rates (plasticities) that
vary sensibly with age, quite independently of any phys-
ical overheads of the plasticity. This is consistent with
the well known “critical periods” of human brain de-
velopment (Julesz & Kovacs, 1995). It is reasonable to

expect that such an evolutionary approach will prove a
profitable strategy for obtaining improved performance
in systems for larger scale applications requiring adapt-
able controllers — such as robots.
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