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Abstract

The vehicle routing problem (VRP) is an important aspect of transportation lo-
gistics with many variants. This paper studies the VRP with backhauls (VRPB)
in which the set of customers is partitioned into two subsets: linehaul customers
requiring a quantity of product to be delivered, and backhaul customers with a
quantity to be picked up. The basic VRPB involves finding a collection of routes
with minimum cost, such that all linehaul and backhaul customers are serviced.
A common variant is the VRP with selective backhauls (VRPSB), where the col-
lection from backhaul customers is optional. For most real world applications,
the number of vehicles, the total travel cost, and the uncollected backhauls are
all important objectives to be minimized, so the VRPB needs to be tackled
as a multi-objective problem. In this paper, a similarity-based selection evo-
lutionary algorithm approach is proposed for finding improved multi-objective
solutions for VRPB, VRPSB, and two further generalizations of them, with fully
multi-objective performance evaluation.

Keywords: Vehicle routing problem, evolutionary computation,
multi-objective optimization, combinatorial optimization.

1. Introduction

The main objective of the vehicle routing problem (VRP) is to obtain the
lowest-cost set of routes to deliver demand to customers from a depot, and some-
times to also collect a quantity of product from customers. Since Dantzig and
Ramser [1] introduced the VRP more than 50 years ago, it has been the subject
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of extensive research and has become one of the most studied combinatorial
optimization problems. As observed by Golden et al. [2, Preface],

“vehicle routing may be the single biggest success story in opera-
tions research. For example, each day 103,500 drivers at UPS follow
computer-generated routes. The drivers visit 7.9 million customers
and handle an average of 15.6 million packages”,

so it is of tremendous practical importance for transportation logistics. In fact,
because of the diversity of operating rules and constraints encountered in real-
world applications, numerous variants of the problem exist, and the VRP should
really be viewed as a whole class of problems [3].

One particularly common variant is the VRP with backhauls (VRPB), which
involves both delivery and collection points [4]. Linehaul customers are sites
with a demand of goods, and deliveries have to be made to them from the depot
or distribution center. Backhaul customers are points from which a quantity of
goods has to be collected and taken to the depot. A practical example of this
is the manufacturing industry, where factories are the linehaul customers, and
raw materials and components are supplied by the backhaul customers.

The general problem consists of designing a set of routes with minimum
cost to service the given linehaul and backhaul customers. Since the VRP was
originally proposed as a generalization of the traveling salesman problem [1], the
cost has primarily been associated with the number of routes (or vehicles) and
the total travel distance (or time), but there are several other potential sources of
cost [5]. In practice, given the constraints, minimization of the travel cost often
results in an increased number of routes, so if both objectives are considered
to be of importance, the VRPB really needs to be tackled as a bi-objective
problem. Moreover, if a revenue is associated with each backhaul customer, and
these are considered optional, that is another objective which needs to be taken
into account, and the VRPB should be tackled as a tri-objective problem. This
last variant is known as VRP with selective backhauls (VRPSB) [6].

Exact methods have been devised to find optimal solutions for relatively
small instances of the VRPB [7, 8], but, since it belongs to the NP-hard class of
problems [9], the computation time required increases considerably for larger in-
stances. For realistically sized problems, one is therefore forced to use heuristic
approaches. There have been many past studies which have solved the VRPB as
a single-objective problem using heuristic and metaheuristic methods, such as
tabu search [10, 11] and ant colony algorithms [12]. However, very few studies
have considered the VRPB and VRPSB as multi-objective problems. One par-
ticularly effective approach, that has not been fully investigated before, involves
using evolutionary algorithms (EAs) which can generate a whole population of
solutions to cover the full range of trade-offs among objectives.

In a preliminary study, a simple evolutionary algorithm for solving standard
benchmark instances of the VRPB and VRPSB variants was introduced with
promising results [13]. This paper now presents an improved evolutionary ap-
proach, involving the optimization of two and three objectives for well-known
instances of the VRPB and two further generalizations of the problem. It builds
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on an earlier application of evolutionary computation techniques to the VRP
with time windows [14], that introduced a novel selection process involving solu-
tion dissimilarity to generate solution sets with better coverage of the full range
of trade-off possibilities. However, application to the VRPB is not straight-
forward, because it requires the formulation of supplementary problem-specific
evolutionary operators, and a careful multi-objective evaluation of the solutions
generated. Comparisons with existing single-objective algorithms are first pro-
vided, and then fully multi-objective performance metrics are used to explore
the properties of the current benchmark instances, and demonstrate the advan-
tages of the VRPB-specific similarity-based selection processes over the general
purpose crowding mechanism of the widely used NSGA-II [15] and over the
decomposition approach of the successful MOEA/D [16]. Moreover, the multi-
objective performance is further analyzed by studying the performance of the
algorithm when different objectives are considered for optimization.

The remainder of this paper is organized as follows: The next section de-
scribes formally the main VRPB variants, and Section 3 surveys the principal
previous studies of them. Section 4 reviews the key concepts of multi-objective
optimization, and describes the multi-objective performance metric used later.
The proposed approach for solving the VRPB as a multi-objective problem, and
its extension for solving VRPSB, are described in Section 5. Then, Section 6
presents results from the proposed algorithm for a range of benchmark prob-
lem instances, and provides comparisons with previously published algorithms.
Finally, some conclusions are provided in Section 7.

2. VRP with Backhauls

The basic version of the VRP is the capacitated VRP (CVRP), which con-
siders a set V = {0, . . . , N} of N + 1 vertices, where the subset V ′ = V \ {0} =
{1, . . . , N} are the customers. Each customer i ∈ V ′ is geographically located
at coordinates (xi, yi) and has a demand of goods di > 0 to be delivered. The
special vertex 0, located at (x0, y0), with d0 = 0, is the depot from which the
customers are serviced. There is a homogeneous fleet of K vehicles available
to deliver demand to customers, departing from and arriving at the depot, and
having capacity Q ≥ max {di : i = 1, . . . , N}. The travel from vertex i to vertex
j has an associated cost cij , and the core problem consists of finding a set of
routes which minimizes the total travel cost.

The VRP with backhauls (VRPB) is an extension of the CVRP, where the
customers are grouped into linehaul customers, which have a demand of goods,
and backhaul customers, from which a quantity of goods has to be collected.
Thus, an instance of the VRPB can be formally defined as a set V = {0, . . . , NL,
NL + 1, . . . , NL + NB} of N + 1 vertices, representing the depot and N =
NL +NB customers [7]. The customers are represented by the vertices in subset
V ′ = V \ {0} = {1, . . . , NL, NL + 1, . . . , NL + NB}, and each customer i ∈ V ′
is geographically located at coordinates (xi, yi). The subset VL = {1, . . . , NL}
corresponds to linehaul customers, where each customer i ∈ VL has a demand
of goods di > 0 to be delivered. The subset VB = {NL + 1, . . . , NL + NB}
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represents the backhaul customers, where each customer i ∈ VB has a supply
si > 0 to be collected. A homogeneous fleet of K vehicles is available to deliver
and collect goods to and from customers, departing from and arriving at the
depot, and having capacity Q ≥ max{max{di : i ∈ VL},max{si : i ∈ VB}}.

The main objective is to find a set of K routes which minimize the total
travel cost, subject to the following conditions [17]:

i) each vehicle services exactly one route,
ii) each customer is visited exactly once by one vehicle,

iii) a route is not allowed to consist entirely of backhaul customers,
iv) backhaul customers in a route can only be served after all linehaul cus-

tomers, and
v) for each route, the total load associated with linehaul or backhaul customers

cannot exceed the vehicle capacity Q.
The fourth constraint corresponds to the fact that most vehicles are rear-loaded
and rearrangement of vehicle loads at delivery points is generally deemed infea-
sible [18], and also accommodates the fact that linehaul customers frequently
prefer early deliveries, while backhaul customers prefer late collections [19].

Some interesting practical generalizations of the VRPB involve relaxing the
third and fourth constraints. One of them is known as the VRP with mixed back-
hauls (VRPMB), which allows backhaul customers to be serviced at any point
within a route. That is, linehaul and backhaul customers can be mixed freely
within a route, and routes can consist only of backhaul customers. Another
variation is the VRP with simultaneous deliveries and pickups (VRPSDP), in
which customers simultaneously demand goods from and supply goods to the
depot. In this case, both delivery and pickup should occur at customers, and
they should be performed simultaneously so that each customer is only visited
once by a vehicle, and unloading is obviously done before loading.

There are further generalizations of these problems, where all the linehaul
customers must be visited, but picking up from backhaul customers is optional.
These are the VRP with selective backhauls (VRPSB) [6], and the VRP with
mixed and selective backhauls (VRPMSB). In these problems, each backhaul
customer i ∈ VB has an associated profit pi > 0, and consequently

P =
∑

i ∈ VB

pi (1)

is the total possible profit. The VRPSB and VRPMSB can simply involve de-
termining a set of vehicle routes with minimum net cost (i.e., routing cost minus
collected profit), given that visiting backhaul customers is optional. However,
since customer satisfaction is important for service providers, it is often use-
ful to optimize the routing cost and profit collection objectives separately, and
consider the trade-off. The remaining SB combination, VRPSDP with selec-
tive backhauls, is easier, since all backhaul customers are automatically visited
because they are also linehaul customers.

If, for any of the VRPB variants described above, the cardinality of the set
of routes is not pre-specified to equal the number of available vehicles K, min-
imizing the number of routes (and hence number of drivers) can be treated as
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yet another optimizable objective. Thus, if all the objectives are considered im-
portant, these problems will need to be considered as multi-objective, and there
will be three objective functions to minimize simultaneously: (i) the number of
routes/vehicles, (ii) the travel cost, and (iii) the uncollected revenue.

For each of VRPB, VRPMB, VRPSDP, VRPSB and VRPMSB, the aim is
to find lowest-cost sets of routes R = {r1, . . . , rk}, such that each route begins
and ends at the depot, and the further constraints of the given problem are
satisfied. To proceed, a formal specification of the costs is needed.

Let rj = 〈u(1, j), . . . , u(Nj , j)〉 specify the sequence of Nj customers serviced
in the j-th route, where u(i, j) is the i-th customer to be visited in the j-th route,
and u(0, j) = u(Nj + 1, j) = 0 is the depot. Then Vj = {u(1, j), . . . , u(Nj , j)} is
the set of customers in the j-th route. The travel cost cab between customers a
and bmight be the distance (or associated fuel cost), or travel time (or associated
driver cost), or some combination. The following analysis is not affected by
exactly how the travel cost is defined for particular problem instances. The
total travel cost Cj for the j-th route is simply the sum

Cj =

Nj∑
i = 0

cu(i,j)u(i+1,j) , (2)

and the profit Pj from collected loads in the j-th route will be

Pj =

Nj∑
i = 1

pu(i,j) , (3)

where pu(i,j) = 0 if u(i, j) ∈ VL.
The three objective functions that this study will aim to optimize are the

number of routes or vehicles used

f1(R) = |R| = k , (4)

the total travel cost

f2(R) =

k∑
j=1

Cj , (5)

and the total uncollected profit

f3(R) = P −
k∑

j=1

Pj , (6)

subject to the constraints explained earlier.

3. Previous studies

A number of existing approaches for solving VRPB, VRPMB and VRPSDP
variants have already been published, and Parragh [20] provides an excellent
survey of them. The key studies and recent advances will be reviewed here.
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Most previous approaches have involved heuristic methods. For example,
Toth and Vigo [21] presented a cluster-first-route-second heuristic for solving
the VRPB, which uses a clustering method and may also be used for solving
problems with an asymmetric cost. Their approach exploited the information
of the normally infeasible VRPB solutions associated with a lower bound, using
a Lagrangian relaxation based bound that they had developed previously. The
final set of feasible routes was built using a modified Traveling Salesman Problem
heuristic, with inter-route and intra-route arc exchanges.

More recently, Ropke and Pisinger [19] surveyed models of the backhaul
constraints, and introduced a unified model that is capable of handling the
VRPB, VRPMB and VRPSDP. Their model can be seen as a general problem,
which can be solved through an improved version of the large neighborhood
search heuristic previously proposed by them. Their results were comparable
to, or improved upon, those found by earlier heuristics for these variants of the
problem, and they are still responsible for almost all best-known solutions for
the VRPMB benchmark instances.

Metaheuristic approaches have also been used for solving VRPB problems.
For example, Osman and Wassan [22] proposed two route-construction heuris-
tics to generate initial solutions quickly, which were then improved by a reactive
tabu search metaheuristic. The reactive concept was used in a new way to se-
lect different neighborhood structures for the intensification and diversification
phases of the search. Brandão [23] presented a tabu search algorithm that, start-
ing from pseudo-lower bounds, was able to match almost all the best published
solutions and also found many new best solutions, for a large set of benchmark
problems. Gajpal and Abad [24] proposed a multi-ant colony system for solving
the VRPB that used a new construction rule as well as two multi-route local
search schemes.

For the VRPMB, Salhi and Nagy [25] proposed an extension of the load based
insertion procedure of Golden et al. [26] that considered clusters of backhaul
customers, instead of single backhaul customers. For the first time, the multi-
depot case was also tackled. This extension was accommodated by the notion of
borderline customers, i.e. customers situated approximately half-way between
two depots. The procedure divided the set of linehaul customers into borderline
and non-borderline. First, the non-borderline customers are assigned to their
nearest depot and the corresponding VRP is solved, and then the borderline
customers are inserted one-by-one into the routes.

Nagy and Salhi [27] elaborated on an integrated construction-improvement
heuristic for both the VRPMB and VRPSDP. Their procedure starts from a
weakly feasible VRPMB solution, i.e. one that does not violate the maximum
route length, nor have the total load picked up or delivered exceed the vehi-
cle’s capacity. Strong feasibility is then attained when the load constraint is
respected at every arc. First, the weakly feasible solution is improved by local
search procedures, and then the improved solution is made strongly feasible and
improved further while retaining strong feasibility.

Crispim and Brandão [28] also tackled VRPMB and VRPSDP, and presented
a hybrid algorithm involving both tabu search and the variable neighborhood
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search metaheuristics. The search here is first carried out in one of the neigh-
borhood structures using moves which are not tabu during a certain time, and
then the neighborhood structure is changed consecutively until the stop cri-
terion is reached. This combined use of two metaheuristics was an attempt
to obtain more diversification in the search, and hence wider coverage of the
solution space. Dethloff [29] proposed an extension of the cheapest insertion
heuristic for solving the VRPSDP that not only relies on the measure of travel
cost, but also on residual capacity and radial surcharge. That method was also
used to solve the VRPMB. Montané and Galvão [30] discussed another tabu
search algorithm for solving the VRPSDP. They combined the four construc-
tion methods used by Gendreau et al. [31] with a tour partitioning heuristic
and an adapted sweep algorithm to generate an initial solution, resulting in
eight different methods. Four different neighborhoods were implemented: a re-
location, an interchange, a crossover, and a combined neighborhood. At every
iteration, the best feasible non-tabu solution of the neighborhood was chosen,
and the 2-opt operator used to improve the solution found. Bianchessi and
Righini [32] compared a tabu search algorithm to different construction and
improvement heuristics. A combination of various arc-exchange (involving two
or three routes) and node-exchange (relocate, exchange) neighborhoods were
tested. The tabu search algorithm used two tabu lists, one for arc-based and
one for node-based neighborhoods.

More recently, Assis et al. [33] proposed a multi-objective iterated local
search approach for solving the VRPSDP, with simultaneous minimization of
routing cost and uncollected profit, and used multi-objective performance met-
rics to compare their results with other approaches. Jun and Kim [34] intro-
duced a heuristic algorithm for both VRPMB and VRPSDP that consisted of
a route construction procedure, a route improvement procedure, and a solu-
tion perturbation procedure. A sweep-based route construction method was
developed to generate initial solutions. Then a series of inter- and intra-route
improvement algorithms were applied in the route improvement procedure. The
perturbation procedure operates, by removing and reinserting routes and cus-
tomers from solutions, to escape from local optima. Goskal et al. [35] presented
a heuristic approach based on particle swarm optimization, in which a local
search is performed by a variable neighborhood descent algorithm. It imple-
ments an annealing-like strategy to preserve the swarm diversity. Finally, Sub-
ramanian et al. [36] proposed a branch-cut-and-price approach for the VRPMB
and VRPSDP. The algorithm was tested on well-known benchmark instances
and some lower bounds were improved.

With the exception of the recent study of Assis et al. [33], all the ap-
proaches reviewed above have solved the VRPB, VRPMB and VRPSDP as
single-objective problems that only minimized the total travel cost, i.e. f2(R)
in equation (5). In fact, there appear to be no other previous studies treating
the solution of these problems as multi-objective. Furthermore, the selective
backhauls versions appear to have never before been the subject of systematic
study. This led Garcia, in a preliminary report [13], to rectify these omissions by
proposing a multi-objective evolutionary algorithm for solving the VRPB and
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VRPSB, involving the minimization of the number of routes, the routing cost
and the uncollected profit. This paper will extend and complete the preliminary
work of Garcia [13].

4. Multi-objective optimization

To proceed, a more formal problem specification is required. Using standard
notation and terminology [37], any multi-objective optimization problem can,
without loss of generality, be defined as the minimization problem

minimize f(x) = (f1(x), . . . , fF (x)) (7)

subject to the constraints

gi(x) ≤ 0 ∀ i = 1, . . . , p , (8)

hj(x) = 0 ∀ j = 1, . . . , q , (9)

where x ∈ X is a solution to the problem, X is the solution space, and fi :
X → R, for i = 1, . . . , F , are F objective functions. The constraint functions
gi, hj : X → R in (8) and (9) restrict x to a feasible region X ′ ⊆ X .

A solution x ∈ X is said to cover the solution y ∈ X , written as x � y, if
fi(x) ≤ fi(y), ∀ i ∈ {1, . . . , F}. Solution x dominates solution y, written as
x ≺ y, if and only if x � y and ∃ j ∈ {1, . . . , F} : fj(x) < fj(y). Consequently,
a solution x ∈ S ⊆ X is non-dominated with respect to S if there is no solution
y ∈ S such that y ≺ x. A solution x ∈ X is said to be Pareto optimal if it
is non-dominated with respect to X , and the Pareto optimal set is defined as
Ps = {x ∈ X | x is Pareto optimal}. Finally, the Pareto front is defined as
Pf = {f(x) ∈ RF | x ∈ Ps}. The aim of the optimization process is to find the
best representation of the Pareto front for the given problem instance.

4.1. Multi-objective performance metrics

In contrast to single-objective problems, where one can straightforwardly
compare the best solutions from the various approaches studied, multi-objective
problems require comparison of whole sets of solutions. This is because the
task of approximating the Pareto optimal set not only involves minimizing the
distance of the generated non-dominated solutions to the Pareto optimal set, but
also maximizing the diversity of the achieved Pareto set approximation, so that
similar solutions in the resulting set are avoided and a good representation of the
trade-offs between objectives is obtained [38]. For this reason, the definition and
use of appropriate multi-objective performance metrics or indicators is crucial.

Numerous performance indicators have already been proposed in the liter-
ature [39, 40, 41]. However, many of them are not Pareto compliant, which
means that it cannot be concluded that one optimizer is better than another
based only on them. One of the indicators that is Pareto compliant is the hy-
pervolume metric H(A, z) [42], which measures the size of the objective space
defined by the approximation set A of solutions and a suitable reference point
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z. The idea is that a greater hypervolume indicates that the approximation set
offers a closer approximation to the true Pareto front.

Formally, for a two-dimensional objective space f(x) =
(
f1(x), f2(x)

)
, each

solution xi ∈ A delimits a rectangle defined by its coordinates
(
f1(xi), f2(xi)

)
and the reference point z = (z1, z2), and the size of the union of all such rectan-
gles delimited by the solutions is used as the measure. This idea can be extended
to any number of dimensions F to give the general hypervolume metric:

H(A, z) = λ

( ⋃
xi ∈ A

{
[f1(xi), z1]× · · · × [fF (xi), zF ]

})
, (10)

where λ(·) is the standard Lebesgue measure [43].
For maximization problems, it is common to take z to be the origin, while for

minimization problems, z is set to equal or exceed the maximal values of each
objective. Either way, when using this metric to compare the performance of
two or more algorithms, the one providing solutions with the largest delimited
hypervolume is regarded to be the best.

5. Multi-objective evolutionary algorithm for solving VRPBs

This paper deals with several different variants of the VRPB, so the proposed
similarity-based selection multi-objective evolutionary algorithm (SSMOEA)
approach is explained in two stages: first the algorithm for solving the basic
VRPB is described, and then the various adaptations required for each of the
specific variations.

5.1. SSMOEA for solving VRPB

As with all EA approaches, the basic idea is to maintain a population of
individual problem solutions, and evolve them by natural selection of the fittest.
The proposed SSMOEA builds on an earlier approach for solving the multi-
objective VRP with time windows (VRPTW) [14]. The following defines the
whole approach, with particular reference to the differences from the VRPTW
study that relate to the absence of time windows and introduction of backhauls.

5.1.1. Solution representation

The VRPB solutions are simply lists of routes, which are themselves lists of
customers, so each solution can be represented directly as a list of lists. A given
route is encoded as a list of customer identifiers in the order they are serviced,
and the solutions are encoded as lists of routes.

5.1.2. Random initial population

As usual with EAs, the process of solution evolution starts with an initial
population [44] of randomly generated feasible solutions.

First, a random permutation of the backhaul customer identifiers is gener-
ated. Then, K routes are created serving exactly one backhaul customer each,
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and the remaining backhaul customers are assigned sequentially to the routes.
When the next backhaul customer cannot be assigned to a given route due to
the capacity constraint, it and the remaining backhaul customers are assigned
to the next route, and so on. If, after assigning backhaul customers to the K-th
route, there are still unassigned backhaul customers, further routes are created.

Then, a random permutation of the linehaul customer identifiers is gener-
ated. One linehaul customer is allocated to each of the previously generated
routes, and the remaining linehaul customers are assigned to the existing routes
using the same procedure as for the backhaul customers.

5.1.3. Solution fitness measure

As always with EAs, during the evolution, a measure of fitness for each
individual solution is required to drive the natural selection process. For single-
objective problems, the single objective function can be used to assign a fitness
to each individual. For multi-objective problems, however, there is no single
objective function that can be used as the fitness, and a whole set of solutions
is required to represent the trade-offs among the objectives.

The individuals are fitness ranked in the multi-objective case here by using
the non-dominance sorting criterion [45], whereby the population is divided into
non-dominated fronts, and the depth of each front determines the fitness of the
individuals in it. This follows the specific algorithm of Deb et al. [15], which is
used in their NSGA-II algorithm.

5.1.4. Solution similarity measure

For multi-objective problems, it is important that the solutions in the final
evolutionary population represent the full Pareto front, and not just a small
portion of it. In fact, population diversity is important for EAs more generally,
to avoid premature convergence and balance of the trade-off between exploration
and exploitation of the search space [44].

A method is therefore required for evaluating solution spread, and using it
to boost diversity generally requires the development of representation-specific
tools. To accomplish this for the VRPB representation, a similarity measure was
designed based on Jaccard’s similarity coefficient, which computes the similarity
of two sets as the ratio of the cardinalities of the intersection and the union of
those sets [46]. Formally, the similarity of two sets A and B is

J(A,B) =
|A ∩B|
|A ∪B|

, (11)

which is 1 if both sets contain the same elements, and 0 if their intersection is
empty.

The easiest way to implement this measure for the VRPB is to consider each
solution R as the union of its set of segments or arcs (u(i, j), u(i+ 1, j)), so

R =

k⋃
j=1

Nj⋃
i = 0

{(u(i, j), u(i+ 1, j))} , (12)
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and the similarity of two solutions is the ratio of the number of arcs common
to both solutions and the total number of arcs used by them. Thus, if yabR = 1
when arc (a, b) is traversed by any vehicle in solution R, and 0 otherwise, the
similarity sRQ between solutions R and Q is

sRQ =
∑

a,b ∈ V

yabR · yabQ
/ ∑

a,b ∈ V

sign (yabR + yabQ) . (13)

In this, arcs (a, b) and (b, a) are considered to be different, even if their cost is
the same.

As suggested by its name, the proposed SSMOEA also requires a measure
of how similar a given solution is to the rest of the population. If P is the
population of solutions, and |P | = M is the population size, the similarity SR
of solution R ∈ P with the rest of the solutions in P can be computed as simply
the average similarity of R with every other solution Q ∈ P , that is

SR =
1

M − 1

∑
Q ∈ P\{R}

sRQ . (14)

Finally,

D(P) = 1− 1

M

∑
R ∈ P

SR , (15)

provides a measure of the diversity of the population of solutions P that will be
used later to evaluate how well the algorithms really are maintaining diversity.

5.1.5. Selection of parents

During any evolutionary process, individual solutions need to be selected
from the population to be the parents that undergo recombination to create off-
spring to populate the next generation. A stochastic function is required such
that the fittest individuals are most likely to be selected, but low-fitness indi-
viduals should also be given a small chance, so the algorithm is not too greedy.
A standard binary tournament method [47] is used that randomly chooses two
individuals from the population and selects the best to be a parent.

The SSMOEA proposed here has a crucial difference to most other EAs in
that parent selection is not only based on their fitness, but also on the above
similarity measure. The first of the two parents of each offspring is chosen on
the basis of highest fitness, as usual, but the second is chosen on the basis of
lowest similarity, with the aim of maintaining a high population diversity.

5.1.6. Recombination process

Recombination is the EA process of generating offspring from the selected
parents, preferably in a way that combines and maintains the desirable features
from both parents. The VRPB recombination operator here is designed to
randomly select and preserve routes from both parents. First, a random number
of routes are copied from the first parent into the offspring. Then all the routes
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from the second parent which are not in conflict with customers already copied
from the first, are copied into the offspring. Finally, any unassigned customers
are allocated, in the order they appear in the second parent, to the route where
the lowest travel cost is achieved. If there are any remaining customers that
cannot be inserted into the existing routes without violating a constraint, a new
route is created.

5.1.7. Mutation operators

As is common in EAs, each new offspring also has a further stochastic change
or mutation. For the VRPB, the proposed SSMOEA generates these with three
operators that use three basic functions. The functions are:

selectRoute Stochastically selects a route according to the ratio of the travel
cost to the number of customers, such that routes with a larger travel cost
and fewer customers are more likely to be selected.

selectCustomer Stochastically selects one customer from a specific route ac-
cording to the average length of its inbound and outbound arcs, such that
customers with longer associated travel costs are more likely to be chosen.
For the first and last customers in a route, only the outbound and inbound
arcs, respectively, are taken into account.

insertCustomers Attempts to insert, one at a time, a set of customers into a
specific route, where the lowest travel cost is obtained. When no route is
specified, all existing routes are tested.

and these are used by the mutation operators as follows:

Reposition Moves a customer within a route. First selectCustomer chooses
one customer from the route, and then insertCustomers reinserts it into
the same route somewhere else.

Reallocation Takes a number of customers from a given route and allocates
them to another. First, selectCustomer chooses two customers from the
route, which are removed from the route along with all the customers in
between them. Then, insertCustomers attempts to reallocate them into
any of the existing routes, including the one they were removed from.

Exchange Swaps sequences of customers between two routes chosen with func-
tion selectRoute. First, selectCustomer chooses two customers from
each route, which are removed from their route along with all the cus-
tomers in between them. Then insertCustomers attempts to reallocate
them into the other route. If one or more customers cannot be inserted
into the other route, the original routes are preserved.

All offspring are subject to mutation. First, selectRoute chooses two routes.
If they are the same, Reallocation is applied, otherwise, Exchange is applied.
Then selectRoute chooses another route, and Reposition is applied.
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5.1.8. Solution repair process

It is possible that offspring resulting from the recombination and mutation
processes do not satisfy the relevant VPRB constraints. In particular, they may
include routes serving backhaul customers only. If such non-feasible solutions
exist, they must be submitted to a repair process. The proposed SSMOEA
begins this process by identifying the non-feasible routes. Then, one linehaul
customer is randomly chosen and removed from a feasible route, taking care
that the route remains feasible, and inserted into one of the non-feasible routes.
This process is repeated for every non-feasible route.

5.1.9. Selection for survival

For each new generation throughout evolution, individuals must be selected
from the parents and offspring to survive [44]. The obvious choices are: the off-
spring population, a random selection from the combined parent and offspring
populations, or the best individuals from the combined population. The first
two approaches allow too many good-quality individuals to be lost, so the third
approach is adopted for the proposed SSMOEA. The offspring and parent pop-
ulations are combined and the solutions with the highest fitness, i.e. falling in
the outermost non-dominated fronts, are taken to survive and form the next
generation. If the population size is exceeded by taking the whole of the last
selected front, the least similar solutions on that front are chosen.

5.1.10. Iteration and termination

The evolutionary processes of parent selection, offspring generation and sur-
vival selection are repeated for a fixed maximum number of generations, or until
the the evolution has stabilized, as indicated by the diversity of solutions in the
Pareto approximation not changing for a certain number of generations.

5.2. Adaptation for solving VRPMB and VRPSDP

For both the VRPMB and VRPSDP, the limitation of serving all the linehaul
customers in a route first, before the backhaul customers, is relaxed so that any
customer can be visited at any point within a route. Also, for the VRPMB,
routes are allowed to consist of only backhaul customers. The SSMOEA was
designed so that the only stage in the basic version above that needs adapting
to accommodate these variations is the generation of the initial population.

5.2.1. Revised random initial population

The initial solutions here can be created by the following simplified process:
A random permutation of all customers, linehaul and backhaul, is generated.
The first customer in the permutation is taken to be the first location visited
on the first route. Then, if the capacity is not exceeded, the next customer
is placed on the current route after the previous customer. Otherwise, a new
route is created with this customer as the first location on it to be visited. This
process is repeated until all customers have been assigned to a route.
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5.3. Adaptation for solving VRPSB and VRPMSB

For the selective backhaul variants, VRPSB and VRPMSB, the uncollected
profit, i.e. f3(R) in equation (6), is minimized too. This means solutions are
needed with different collected profits, and hence variety in the number of back-
haul customers. To accomplish this, the SSMOEA procedures for generating
the initial solutions and mutations need modification.

5.3.1. Revised random initial population

The original initial population generation process above only needs a slight
modification. Instead of starting with a random permutation of all NB back-
haul customers, a random integer nB ∈ [0, NB ] is chosen, and that number of
backhaul customers is randomly selected and permuted.

5.3.2. Revised mutation process

In addition to the three mutation operators of the basic VRPB, one further
operator is required:

Modify nB Randomly chooses whether to insert or remove a backhaul cus-
tomer, except when nB = 0 or nB = NB , in which case a backhaul
customer is added or removed, respectively. If a backhaul customer is to
be removed, one route is randomly selected with selectRoute and one
backhaul customer on it is chosen at random and removed. If a backhaul
customer is to be inserted, one of the backhaul customers which are not
present in the solution is randomly chosen, and insertCustomers is used
to insert that customer into the route where the lowest cost is obtained.

The overall mutation process is then modified to become: First, selectRoute
chooses two routes. If they are the same, Reallocation is applied and followed by
Modify nB , otherwise, Exchange is applied. Then selectRoute chooses another
route, and Reposition is applied.

6. Experimental study

This study has three main purposes. First, to determine whether the pro-
posed SSMOEA is still able to find best-known solutions for popular benchmark
problem instances, even though it is set up to find whole Pareto approxima-
tions. To this end, SSMOEA was set to minimize simultaneously the number
of routes and the total travel cost for VRPB, VRPMB and VRPSDP, with the
results compared to existing approaches designed to optimize only the travel
cost. Second, which is one of the main contributions of this study, to carry
out a fully multi-objective performance evaluation of SSMOEA, for all problem
variants, i.e. VRPB, VRPMB, VRPSDP, VRPSB and VRPMSB. That will in-
clude a comparison with the popular crowding mechanism of NSGA-II [15] and
with the successful decomposition method of MOEA/D [16], to determine the
advantage of introducing the similarity-based selection procedures. Third, to
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evaluate the ability of the proposed SSMOEA to find the same non-dominated
solutions when it is set to optimize different objectives.

To enable reliable comparisons, three publicly available benchmark problem
sets were used: that of Goetschalckx and Jacobs-Blecha [18], providing 62 VRPB
instances of sizes N = 25 to 150, and the two sets of Salhi and Nagy [25],
providing 36 VRPMB and 24 VRPSDP instances, with N = 50 to 150.

Given the complexity of the problem and the extremely large search space,
the free parameters of SSMOEA were set to values that proved to work well
in preliminary testing: The population size was set to equal the instance size.
The number of generations of evolution was set to 50 times the product of the
population size and the number of objectives to optimize, unless there was no
change in the non-dominated solutions’ diversity for 5% of the maximum number
of generations. The SSMOEA, and the corresponding NSGA-II crowding version
and the MOEA/D decomposition approach, were each run 30 times for each
problem instance to provide reliable statistics.

6.1. Single-objective performance comparison with previous approaches

The initial aim was to compare the performance of the proposed SSMOEA
with existing single-objective approaches. To accomplish this, SSMOEA was set
to minimize the number of routes, objective f1(R) in equation (4), and the total
travel cost, objective f2(R) in equation (5), simultaneously. That is, VRPB,
VRPMB, and VRPSDP were considered bi-objective problems, but for each
benchmark instance, only the SSMOEA solution with the required number of
routes K and the lowest cost was used. Then, the average best costs from 30
repetitions were determined, and the percentage gaps between the best results
from SSMOEA and the best-known results were calculated.

6.1.1. VRPB

Table 1 presents the details of the VRPB results. The first five columns show
the properties of the benchmark instances, and the next two columns show the
best-known result for each instance and the study that first obtained it. The
following five columns show the results with K routes from SSMOEA: the first
two show the best result and the percentage gap between this and the best-
known result, and the next three show the average of the best results from each
of the 30 repetitions, its corresponding standard deviation, and the percentage
gap between the average best result and the best-known. The last two columns
show the best results found by SSMOEA with k < K routes.

SSMOEA was able to find the best-known solution for 25 out of the 62 in-
stances, and the results for 28 of the remaining 37 instances are no more than
1.00% above the best-known. In fact, the average percentage gap between the
best results from SSMOEA and the best-known results is only 0.41%. The aver-
age gap between the average best result found by SSMOEA and the best-known
result is 2.67%. Interestingly, SSMOEA was also able to find solutions with a
smaller number of routes k than the established K routes for 17 instances, and
11 of these solutions (shown in bold) also have a lower cost than the best-known,
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Table 1: Best-known results compared to the results from SSMOEA on the Goetschalckx and
Jacbos-Blecha [18] VRPB instances.

Instance Best-known Lowest cost with K routes Lowest cost

Id. N NL NB K Cost Ref Cost % Avg. Std. % k Cost

A1 25 20 5 8 229884.00 [21] 229885.64 0.00 230422.42 733.99 0.23
A2 25 20 5 5 180117.00 [21] 180119.21 0.00 181164.47 1118.00 0.58
A3 25 20 5 4 163403.00 [21] 163405.36 0.00 165549.60 1996.65 1.31 3 155796.39
A4 25 20 5 3 155795.00 [21] 155796.39 0.00 158639.59 5308.95 1.83
B1 30 20 10 7 239077.00 [21] 239080.18 0.00 239243.87 622.96 0.07
B2 30 20 10 5 198045.00 [21] 198047.77 0.00 199600.55 2418.91 0.79
B3 30 20 10 3 169368.00 [21] 169372.30 0.00 169845.07 1491.33 0.28
C1 40 20 20 7 249448.00 [7] 250556.79 0.44 254587.26 2859.69 2.06
C2 40 20 20 5 215019.00 [21] 215020.24 0.00 220591.68 3581.98 2.59
C3 40 20 20 5 199344.00 [21] 199345.96 0.00 204674.21 5737.68 2.67 4 195366.62
C4 40 20 20 4 195365.00 [21] 195366.62 0.00 203846.89 5810.58 4.34
D1 38 30 8 12 322530.00 [7] 322530.11 0.00 323714.91 1110.04 0.37 11 317491.63
D2 38 30 8 11 316708.86 [22] 317288.58 0.18 319602.50 2598.89 0.91
D3 38 30 8 7 239478.63 [22] 239478.59 0.00 241091.31 2382.84 0.67
D4 38 30 8 5 205831.94 [22] 205881.53 0.02 208833.94 1811.70 1.46
E1 45 30 15 7 238879.58 [22] 238879.60 0.00 241544.10 2635.13 1.12
E2 45 30 15 4 212262.00 [21] 212263.12 0.00 213662.03 2142.18 0.66
E3 45 30 15 4 206658.00 [21] 206659.18 0.00 211052.77 4249.76 2.13
F1 60 30 30 6 263173.00 [7] 268193.23 1.91 271062.65 2530.42 3.00
F2 60 30 30 7 265213.00 [7] 265214.19 0.00 273930.41 4122.29 3.29
F3 60 30 30 5 241120.00 [7] 241969.78 0.35 250572.37 5754.30 3.92
F4 60 30 30 4 233861.00 [7] 235175.21 0.56 241078.77 4154.94 3.09
G1 57 45 12 10 306305.00 [8] 306305.42 0.00 313806.69 5332.18 2.45
G2 57 45 12 6 245440.99 [22] 245441.03 0.00 249214.99 6414.08 1.54
G3 57 45 12 5 229507.00 [7] 229697.55 0.08 233846.50 3970.12 1.89
G4 57 45 12 6 232521.00 [8] 232521.29 0.00 238241.10 4032.76 2.46 5 229507.52
G5 57 45 12 5 221730.00 [7] 221730.39 0.00 227333.34 6077.97 2.53 4 218716.62
G6 57 45 12 4 213457.00 [7] 213457.49 0.00 219365.55 3504.00 2.77
H1 68 45 23 6 268933.00 [7] 268980.80 0.02 272804.92 2505.07 1.44
H2 68 45 23 5 253365.00 [7] 253365.53 0.00 261565.69 5028.50 3.24
H3 68 45 23 4 247449.00 [7] 247449.07 0.00 256087.49 5875.90 3.49
H4 68 45 23 5 250220.77 [22] 250220.80 0.00 258795.38 4443.74 3.43 4 247449.07
H5 68 45 23 4 246121.00 [7] 246604.32 0.20 257070.31 5816.62 4.45
H6 68 45 23 5 249135.00 [7] 249279.91 0.06 259414.63 5436.02 4.13 4 246121.34
I1 90 45 45 10 350245.28 [19] 350245.24 0.00 358762.69 5277.90 2.43 9 347832.69
I2 90 45 45 7 309943.00 [8] 311368.48 0.46 318375.42 4240.89 2.72
I3 90 45 45 5 294507.00 [23] 294833.95 0.11 302436.56 6968.95 2.69
I4 90 45 45 6 295988.00 [21] 297473.92 0.50 306645.51 5356.49 3.60 5 294833.95
I5 90 45 45 7 301226.00 [8] 306418.60 1.72 314014.49 4755.12 4.25 5 294868.25
J1 94 75 19 10 335006.00 [8] 336265.06 0.38 343608.26 3608.21 2.57
J2 94 75 19 8 310417.00 [23] 310793.38 0.12 315184.57 2869.49 1.54
J3 94 75 19 6 279219.00 [23] 282773.06 1.27 290717.52 4637.06 4.12
J4 94 75 19 7 296533.00 [23] 297946.48 0.48 302132.35 3088.05 1.89
K1 113 75 38 10 394071.16 [24] 394477.83 0.10 401983.32 3588.90 2.01
K2 113 75 38 8 362130.00 [23] 363138.26 0.28 372859.89 5067.51 2.96
K3 113 75 38 9 365693.00 [8] 367659.48 0.54 378115.72 5772.03 3.40 8 364086.69
K4 113 75 38 7 348949.39 [19] 353570.90 1.32 359881.06 4504.36 3.13
L1 150 75 75 10 417896.72 [24] 426281.88 2.01 438645.11 6544.68 4.96
L2 150 75 75 8 401228.00 [23] 401964.98 0.18 412245.15 8122.79 2.75
L3 150 75 75 9 402677.72 [19] 404890.29 0.55 415921.23 6545.08 3.29 8 403678.84
L4 150 75 75 7 384636.33 [19] 386586.77 0.51 401274.79 7748.27 4.33
L5 150 75 75 8 387564.55 [19] 390650.65 0.80 409633.80 12249.50 5.69 7 387722.43
M1 125 100 25 11 398593.00 [23] 401403.60 0.71 409881.66 4859.34 2.83 10 399200.80
M2 125 100 25 10 396916.97 [24] 398735.18 0.46 407392.11 5176.06 2.64
M3 125 100 25 9 375695.41 [24] 377903.87 0.59 384735.92 3672.35 2.41
M4 125 100 25 7 348140.16 [24] 348698.63 0.16 357860.86 5231.01 2.79
N1 150 100 50 11 408100.62 [24] 412109.46 0.98 424331.60 6096.19 3.98 10 411677.88
N2 150 100 50 10 408065.44 [24] 414899.30 1.67 425156.91 6159.91 4.19
N3 150 100 50 9 394337.86 [19] 396827.05 0.63 410438.49 5145.72 4.08
N4 150 100 50 10 394788.37 [24] 400874.44 1.54 410938.56 5871.72 4.09 9 400609.02
N5 150 100 50 7 373476.30 [19] 379504.97 1.61 390531.64 7183.68 4.57
N6 150 100 50 8 373758.65 [19] 381530.98 2.08 389583.94 4587.00 4.23 7 381062.82

Average 0.41 2.67
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Table 2: Best-known results compared to the results from SSMOEA on the Salhi and Nagy
[25] VRPMB instances.

Instance Best-known Lowest cost found by MOEA

Id. N NL NB k Cost Ref. k Cost % Avg. Std. %

CMT1H 50 25 25 3 462 [34] 3 468 1.30 481.42 10.53 4.20
CMT1Q 50 38 12 4 490 [34] 4 490 0.00 504.64 10.53 2.99
CMT1T 50 45 5 5 520 [19] 5 520 0.00 525.53 6.53 1.06
CMT2H 75 38 37 6 661 [34] 6 668 1.06 684.64 12.61 3.58
CMT2Q 75 57 18 8 733 [19] 8 734 0.14 751.52 7.32 2.53
CMT2T 75 68 7 9 783 [19] 9 793 1.28 806.62 10.50 3.02
CMT3H 100 50 50 5 701 [19] 5 717 2.28 734.14 11.36 4.73
CMT3Q 100 75 25 6 747 [19] 6 751 0.54 777.84 11.33 4.13
CMT3T 100 90 10 7 798 [19] 7 806 1.00 827.82 11.31 3.74
CMT4H 150 75 75 7 829 [19] 7 838 1.09 865.00 18.31 4.34
CMT4Q 150 113 37 9 915 [34] 9 921 0.66 945.52 14.76 3.34
CMT4T 150 135 15 11 996 [34] 11 993 -0.30 1018.81 13.67 2.29
CMT6H 50 25 25 6 555 [27] 6 555 0.00 568.40 13.10 2.41
CMT6Q 50 38 12 6 555 [19] 6 555 0.00 565.87 10.02 1.96
CMT6T 50 45 5 6 555 [19] 6 555 0.00 571.17 15.98 2.91
CMT7H 75 38 37 11 900 [19] 11 902 0.22 924.42 15.90 2.71
CMT7Q 75 57 18 11 901 [34] 11 905 0.44 925.02 14.30 2.67
CMT7T 75 68 7 11 903 [19] 11 907 0.44 928.33 14.36 2.81
CMT8H 100 50 50 9 866 [34] 9 865 -0.12 883.08 19.12 1.97
CMT8Q 100 75 25 9 866 [34] 9 865 -0.12 880.32 15.36 1.65
CMT8T 100 90 10 9 866 [34] 9 866 0.00 889.72 14.56 2.74
CMT9H 150 75 75 14 1159 [25] 14 1167 0.69 1195.97 16.19 3.19
CMT9Q 150 113 37 14 1162 [19] 14 1168 0.52 1192.46 15.75 2.62
CMT9T 150 135 15 14 1164 [25] 14 1164 0.00 1196.64 20.34 2.80
CMT11H 120 60 60 4 818 [19] 4 818 0.00 836.87 14.44 2.31
CMT11Q 120 90 30 6 939 [19] 6 941 0.21 950.13 9.94 1.19
CMT11T 120 108 12 7 999 [34] 7 1001 0.20 1015.51 25.63 1.65
CMT12H 100 50 50 5 629 [19] 5 630 0.16 664.60 13.93 5.66
CMT12Q 100 75 25 7 729 [19] 8 740 1.51 764.13 12.02 4.82
CMT12T 100 90 10 9 788 [34] 9 790 0.25 807.77 5.41 2.51
CMT13H 120 60 60 11 1540 [19] 11 1546 0.39 1564.16 10.50 1.57
CMT13Q 120 90 30 11 1543 [19] 11 1546 0.19 1561.22 11.51 1.18
CMT13T 120 108 12 11 1544 [19] 11 1545 0.06 1564.59 15.31 1.33
CMT14H 100 50 50 10 822 [34] 10 822 0.00 840.81 13.61 2.29
CMT14Q 100 75 25 10 822 [34] 10 822 0.00 843.91 17.10 2.67
CMT14T 100 90 10 10 827 [34] 10 828 0.12 851.94 12.92 3.02

Average 0.40 2.79

which means they dominate the best-known. The remaining six solutions do not
have a lower cost than the best-known, but they still have a smaller number of
routes, so they are not dominated by the best-known if both objectives are
considered equally important.

6.1.2. VRPMB

Table 2 presents the details of the VRPMB results. The first four columns
show the properties of each benchmark instance, and the next three columns give
the number of routes and cost of the best-known solution, and the study where
it was first presented. Here, the number of routes is not fixed by the problem
instance, but given by the solution with the lowest cost. The following three
columns show the number of routes and cost of the best result from SSMOEA
and the percentage gap between this and the best-known result. The final three
columns show the average of the best result obtained by SSMOEA from each
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Table 3: Best-known results compared to the results from SSMOEA on the Salhi and Nagy
[25] VRPSDP instances.

Instance Best-known Lowest cost found by MOEA

Id. N k Cost Ref. k Cost % Avg. Std. %

CMT1X 50 3 466.77 [48] 3 466.75 0.00 485.34 9.13 3.98
CMT1Y 50 3 458.96 [49] 3 472.36 2.92 487.20 7.86 6.15
CMT2X 75 6 668.77 [49] 6 695.69 4.03 713.62 8.21 6.71
CMT2Y 75 6 663.25 [49] 7 695.04 4.79 711.52 8.65 7.28
CMT3X 100 5 715.32 [34] 5 724.80 1.33 745.67 11.91 4.24
CMT3Y 100 5 719.00 [30] 5 728.24 1.29 742.32 10.24 3.24
CMT4X 150 7 852.46 [48] 7 870.75 2.15 899.14 16.32 5.48
CMT4Y 150 7 847.58 [34] 7 868.20 2.43 895.13 12.01 5.61
CMT6X 50 6 555.43 [34] 6 556.63 0.22 570.95 14.97 2.79
CMT6Y 50 6 555.43 [34] 6 555.39 -0.01 571.75 13.05 2.94
CMT7X 75 11 901.00 [19] 11 901.21 0.02 925.44 19.88 2.71
CMT7Y 75 11 901.10 [34] 11 901.21 0.01 923.21 16.84 2.45
CMT8X 100 9 865.50 [34] 9 867.65 0.25 889.32 16.98 2.75
CMT8Y 100 9 865.50 [34] 9 867.65 0.25 887.55 16.08 2.55
CMT9X 150 14 1161.37 [34] 14 1164.61 0.28 1187.66 14.02 2.26
CMT9Y 150 14 1161.37 [34] 14 1163.99 0.23 1191.07 17.2 2.56
CMT11X 120 4 833.92 [48] 4 837.30 0.41 873.76 26.77 4.78
CMT11Y 120 4 830.39 [49] 4 836.59 0.75 872.52 23.33 5.07
CMT12X 100 6 644.70 [49] 6 675.90 4.84 687.39 7.11 6.62
CMT12Y 100 6 659.52 [49] 6 663.80 0.65 686.86 11.43 4.15
CMT13X 120 11 1549.79 [34] 11 1546.30 -0.23 1559.75 13.13 0.64
CMT13Y 120 11 1544.37 [34] 11 1545.69 0.09 1565.78 15.77 1.39
CMT14X 100 10 821.75 [50] 10 821.80 0.01 845.09 19.01 2.84
CMT14Y 100 10 821.75 [34] 10 821.80 0.01 844.99 17.35 2.83

Average 1.11 3.83

of the 30 repetitions, its corresponding standard deviation, and the percentage
gap between the average best result and the best-known.

For three instances, SSMOEA found a new best-known solution (shown in
bold), and for ten instances it found solutions that equal the existing best-
known. For another 16 instances, the average gap between the best-know re-
sults and the one found by SSMOEA is less than 1.00%. On average, the best
solutions found by SSMOEA were only 0.40% worse than the best-known. It
can also be seen that the average gap between the average best result found by
SSMOEA and the best-known result is 2.79%.

6.1.3. VRPSDP

Table 3 presents the details of the VRPSDP results, using the same column
headings as Table 2. In this case, SSMOEA was able to find solutions that
improved upon the current best-known for one instance (shown in bold), and
solutions that were equal (within rounding differences) to the best-known for six
instances. Results for another nine of the remaining 17 instances are no more
than 1.00% above the best-known. On average, the percentage gap between
the best solutions found by SSMOEA and the best-known was only 1.11%, and
the average gap between the average best result found by SSMOEA and the
best-known result is 3.83%.
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6.1.4. Summary of single-objective results

The purpose of this section was to establish that the individual solutions
found by the proposed fully multi-objective algorithm (SSMOEA) are not too
much worse than the special-purpose single objective approaches presented pre-
viously, despite the disadvantage of working to spread the solutions across the
whole Pareto front. For the basic VRPB, the SSMOEA results were on average
only 0.41% worse than the best-known, and for many problem instances the
best-known results were equaled. Moreover, SSMOEA was able to find solu-
tions that dominate the best-known for 11 instances and have a smaller number
of routes for another 6 instances. For the VRPMB, the results were on average
only 0.40% worse than the previous best-known, three new best-known solu-
tion were found, and for ten problem instances the existing best-known results
were equaled. Finally, for the VRPSDP, the results were on average only 1.11%
worse than the previous best-known, one new best-known solution was found,
and for six problem instances the existing best-known results were equaled. The
conclusion is that, while SSMOEA does not always produce the best possible
single-objective solutions, it is not far off, and sometimes it manages to produce
better solutions than the previous single-objective approaches.

6.2. Multi-objective performance comparison with NSGA-II and MOEA/D

One of the main contributions of this paper is the study of fully multi-
objective solutions of the VRPB variants, involving the minimization of two or
three objective functions. As noted above, the performances of multi-objective
optimizers cannot be reliably compared using the kind of simple averages em-
ployed in the previous section. For that reason, the results will now be analyzed
using the hypervolume performance metric described in Section 4.1. Since no
previous studies have presented multi-objective results, the non-dominated so-
lutions from SSMOEA are compared with those obtained using the crowding
mechanism of the widely-used optimizer NSGA-II [15] and the decomposition
approach of MOEA/D [16] that have proved successful on numerous other multi-
objective problems. The differences in the results are then be explored further
using the population diversity measure described in Section 5.1.4. For the sake
of brevity, only a summary of the multi-objective performances over categories
are presented, rather than full solution listings for each problem instance1.

6.2.1. Baseline optimizers

An advantage of selecting NSGA-II for comparing performances is that it can
be set up with many similarities to the proposed SSMOEA, allowing a clear test
of their novel features. So, to make the comparisons as clear as possible, NSGA-
II was implemented using exactly the same solution representation, selection
and crossover and mutation operators that were designed for SSMOEA. The
key difference is the way in which the parent and survival selection is performed
to enhance diversity. NSGA-II follows the standard EA approach of choosing

1Detailed results are available on request from the first author.
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both parents according to highest fitness. Instead, SSMOEA chooses one parent
on the basis of highest fitness, but the other one according to lowest solution
similarity. For determining survival, SSMOEA takes solution similarity into
account, while NSGA-II employs a crowding distance measure that does not
involve any problem specific routing information at all.

MOEA/D was selected because it is one of the current best multi-objective
optimizers and has been shown to offer improved performance on two problems
closely related to the VRP [51, 52]. It works by explicitly decomposing the
multi-objective problem defined in (7), with F objective functions fi, into M
scalar optimization sub-problems j of the form

minimize φ(x|λj) =

F∑
i=1

λjifi(x) , (16)

where x is a problem solution, φ(x|λj) is the objective function of sub-problem
j, and λj = (λj1, . . . , λ

j
F ) is the corresponding weight vector with positive com-

ponents that sum to 1. Then, the optimal solution to each scalar problem (16)
is a Pareto optimal solution of the full problem (7), and using a uniform dis-
tribution of M weight vectors {λj} gives a set of M different Pareto optimal
solutions. MOEA/D minimizes all M objective functions simultaneously in a
single run by maintaining a population composed of the best solution found so
far for each subproblem [16]. It also maintains an archive of the non-dominated
solutions of the original multi-objective problem found during the search.

Although MOEA/D has little similarity to the operation of SSMOEA, it can
be implemented with the same solution representation, crossover and mutation
operators. It follows the same sequence of stages as any evolutionary algorithm,
except that, after reproduction, the offspring is submitted to an improvement
heuristic instead of the mutation stage. If the resulting offspring dominates any
solutions in the archive, those solutions are removed from it. If no solution in
the archive dominates the offspring, it is added to the archive. Further details
can be found in the original publication of Zhang and Li [16].

In order to render the comparisons as fair as possible, the parameter values
for NSGA-II were set equal to those of SSMOEA. For MOEA/D, totally fair
comparisons were more difficult. In particular: requiring a reasonable spread of
M weight vectors and corresponding sub-problems sometimes means allowing a
bigger population size for MOEA/D than SSMOEA and NSGA-II; then, because
MOEA/D maintains a solution archive, it has another advantage over SSMOEA
and NSGA-II [51]; and, finally, the usual local search procedure of MOEA/D
has to be replaced by the same mutation stage as SSMOEA and NSGA-II, to
avoid another unfair advantage [52].

6.2.2. Minimization of the number of routes and travel cost

Tables 1, 2 and 3 have already presented the best results for SSMOEA bi-
objective optimization, taking into account the lowest travel cost only. Now the
bi-objective performance needs to be studied, i.e. the full Pareto approximation
resulting from minimizing both the travel cost and number of routes.
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Table 4: Significant differences of the hypervolume H and diversity D metrics applied to the
non-dominated sets found by SSMOEA (SS), NSGA-II (NS) and MOEAD/D (MD) while
solving the bi-objective (number of routes and travel cost) VRPB, VRPMB, and VRPSDP.

Category Hypervolume (H) Diversity (D)

Id. #I SS>NS SS<NS SS>MD SS<MD SS>NS SS<NS SS>MD SS<MD

VRPB

A 4 0 0 3 0 0 0 0 1
B 3 0 0 3 0 0 0 0 0
C 4 0 0 2 0 0 1 0 0
D 4 0 0 2 0 0 0 4 0
E 3 2 0 2 0 0 0 3 0
F 4 0 0 1 0 0 0 0 0
G 6 0 0 1 0 0 0 6 0
H 6 0 0 1 0 0 0 5 0
I 5 0 0 1 0 1 0 5 0
J 4 2 0 0 0 0 0 4 0
K 4 1 0 1 0 0 0 0 0
L 5 0 0 0 2 1 0 5 0
M 4 0 0 0 1 0 0 4 0
N 6 0 0 0 3 1 0 1 1

VRPMB

H 12 2 0 5 3 4 0 4 3
Q 12 3 0 3 2 3 0 5 4
T 12 1 0 3 2 1 0 3 3

VRPSDP

X 12 4 0 7 3 1 0 5 3
Y 12 2 0 7 3 2 0 5 3

As noted in Section 4.1, to compute the hypervolumes covered by the non-
dominated sets, an appropriate reference point is required that has maximal
objective function values. For each VRPB instance, there will be a suitable
reference solution (that will not necessarily be a real feasible solution) formed
by N routes, with one customer allocated to each route. That solution clearly
has the maximal number of routes N , and a maximal travel cost Cmax which is
twice the cost from the depot to every customer. Thus, the reference point is
z = (N,Cmax), and the greater the hypervolume defined by that point and the
Pareto approximation set, the better the solution.

For each problem instance and SSMOEA, NSGA-II or MOEA/D repetition,
the non-dominated solution set was taken and the covered hypervolume com-
puted. Then, a t-test (two-sample, two-tailed, unequal variance) was applied to
the two pairs of vectors of 30 hypervolume values, from SSMOEA and NSGA-II,
and SSMOEA and MOEA/D, respectively, to determine whether the difference
in average hypervolume was statistically significant at the 95% confidence level.
For each Pareto approximation, the diversity of the non-dominated solutions
was also computed, using equation (15), and a t-test used (in the same way
as for the hypervolume) to determine whether any diversity differences were
significant.

The hypervolume H and diversity D results for the basic VRPB, VRPMB,
and VRPSDP, grouped by instance category, are shown in Table 4. The first two
columns show the instance category identifier and number of instances within
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the category. The remaining eight columns are divided into two groups: the
first four columns correspond to the hypervolume metric and the last four to
the diversity metric. In the case of the hypervolume, the first two columns, titled
SS>NS and SS<NS, represent the number of instances for which solutions from
SSMOEA (SS) delimit a significantly larger hypervolume than solutions from
NSGA-II (NS), and viceversa. The following two columns represent the same
comparison between SSMOEA and MOEA/D (MD). The last four columns show
corresponding statistical significance numbers for the diversity metric.

In the case of the VRPB, the difference in hypervolume covered by the
non-dominated solutions from SSMOEA and NSGA-II is significant in only five
instances, which all have SSMOEA better than NSGA-II. The hypervolumes for
the remaining 57 instances have no statistically significant differences. There
are 23 significant differences between the hypervolumes covered by SSMOEA
and MOEA/D, with SSMOEA better in 17 instances, and MOEA/D better in
6. For the remaining 39 instances, there are no significant differences. Regard-
ing population diversity, there is a significant difference between the solutions
found by SSMOEA and NSGA-II in four instances, in three of which SSMOEA
is higher, and one for which NSGA-II is higher. Again there are more signifi-
cant differences between SSMOEA and MOEA/D, with SSMOEA having higher
diversity in 37 instances, and MOEA/D higher in only 2.

For the VRPMB, the SSMOEA solution hypervolumes are significantly larger
than those for NSGA-II in 6 instances, while NSGA-II solutions have no sig-
nificantly larger hypervolumes. In the remaining 30 instances, there are no
significant hypervolume differences. Again there are more significant hypervol-
ume differences between SSMOEA and MOEA/D, with SSMOEA better in 11
instances and MOEA/D better in 7. With respect to solution diversity, the
SSMOEA solutions are significantly more diverse than those from NSGA-II in
8 instances, and the remaining instances exhibit no significant differences. So-
lutions from SSMOEA are significantly more diverse that those from MOEA/D
in 12 instances, while solutions from MOEA/D are significantly more diverse
that those from SSMOEA in 10 instances.

For the VRPSDP, the hypervolumes for SSMOEA solutions are significantly
larger than those from NSGA-II in 6 instances, and the remaining 18 instances
exhibit no significant differences. Hypervolumes from SSMOEA are significantly
better than those from MOEA/D in 14 instances, and MOEA/D is significantly
better than SSMOEA in 6. Regarding solution diversity, SSMOEA gives signifi-
cantly more diversity than NSGA-II for 3 instances, and there are no significant
differences for the remaining 21 instances. SSMOEA solution diversity is sig-
nificantly higher than that from MOEA/D in 10 instances, while MOEA/D
solution diversity is significantly higher in 6 instances.

Three more important performance indicators, other than hypervolume and
diversity, are the average Pareto approximation sizes, numbers of generations,
and execution times. These are presented in Table 5, with the first column show-
ing the instance category, and three sub-columns corresponding to SSMOEA
(SS), NSGA-II (NS) and MOEA/D (MD) for each indicator.
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Table 5: Averages of the Pareto approximation sizes, the number of generations, and the
execution times of SSMOEA (SS), NSGA-II (NS) and MOEA/D (MD) while solving the
bi-objective (number of routes and travel cost) VRPB, VRPMB, and VRPSDP.

Cat. Pareto approx. size Number of generations Execution time (s)

Id. SS NS MD SS NS MD SS NS MD

VRPB

A 1.28 1.26 1.45 350.83 362.92 2500.00 0.81 0.80 4.70
B 1.20 1.19 1.31 362.22 379.44 3000.00 1.33 1.37 8.57
C 1.45 1.47 1.36 489.17 503.33 4000.00 3.93 3.93 23.30
D 1.48 1.50 1.48 733.34 675.42 3800.00 5.13 4.53 18.23
E 1.04 1.01 1.01 767.78 796.67 4500.00 7.74 8.90 32.85
F 1.46 1.52 1.55 852.92 897.92 6000.00 23.24 22.78 102.51
G 1.19 1.13 1.31 1197.22 1221.11 5700.00 23.12 22.92 77.16
H 1.22 1.25 1.34 1392.78 1376.39 6800.00 47.22 46.90 160.12
I 1.09 1.05 1.15 1498.33 1576.67 9000.00 123.98 158.93 534.22
J 1.03 1.05 1.11 3388.75 3365.84 9400.00 271.26 256.37 548.59
K 1.02 1.00 1.14 3660.42 3710.83 11300.00 544.89 526.78 1192.94
L 1.39 1.37 1.45 4005.67 4141.33 15000.00 1945.26 1811.58 4131.17
M 1.03 1.04 1.34 5123.75 5186.67 12500.00 997.98 1118.04 1840.45
N 1.01 1.02 1.08 5884.72 6071.95 15000.00 2265.13 2420.08 4044.08

VRPMB

H 1.01 1.01 1.32 2056.39 1653.75 9916.67 487.19 404.75 1654.23
Q 1.02 1.01 1.37 2246.11 1813.75 9916.67 526.45 413.02 1481.95
T 1.07 1.07 1.46 2498.75 1987.78 9916.67 550.21 424.67 1457.67

VRPSDP

X 1.22 1.26 1.92 2416.67 2010.56 9916.67 580.47 476.09 1709.74
Y 1.23 1.26 1.84 2455.97 2037.08 9916.67 596.35 487.36 1773.63

One aspect of the VRPB variants that was not clear from the earlier single-
objective studies is the extent to which they really are multi-objective problems.
In other words, are the multiple objectives really in conflict, or could a single
solution simultaneously optimize all the objectives? Table 5 shows that the
average number of solutions per instance is not much more than one for all three
algorithms, suggesting that the two objectives are actually rarely in conflict.
This is far fewer solutions than for other VRP benchmarks, such as those for
VRPTW [14], and may explain why there is relatively little difference between
SSMOEA, NSGA-II, and MOEA/D on these problems. This is probably because
the instances were really designed for the single objective problem.

Table 5 also shows that SSMOEA runs for slightly fewer generations than
NSGA-II in 11 out of the 14 categories, but the average execution time was
shorter in only 5 categories. On average, both SSMOEA and NSGA-II executed
similar numbers of generations in the same time. Surprisingly, MOEA/D always
ran for the maximum number of generations, even though that was set to many
times that needed by the other algorithms, leading to longer execution times.

In the cases of the VRPMB and VRPSDP, the size of the Pareto approxi-
mations is again very small, with rarely more than one solution found for each
problem instance. In these cases, SSMOEA runs for approximately 25% more
generations than NSGA-II, with similarly longer execution times. This is to
be expected given SSMOEA’s more sophisticated diversity preservation proce-
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dures. Again, MOEA/D ran for the maximum number of generations, giving
the longest execution times.

Overall then, for optimizing the number of routes and travel cost for the
VRPB, VRPMB and VRPSDP, the proposed SSMOEA offers only a slight im-
provement over NSGA-II and MOEA/D, with the vast majority of benchmark
instances showing no significant difference between the hypervolumes and diver-
sities of the non-dominated solutions found by them. The obvious conjecture is
that this similar performance is due to the benchmark instances being designed
for the single-objective problems, and consequently, as suggested by Table 5,
very few of them have conflicting objectives. There is a clear need for better
benchmark instances, with more conflicts between the objectives, to test the
differences more conclusively.

6.2.3. Minimization of the travel cost and uncollected profit

The performance of the algorithms on minimizing a different pair of objec-
tives, namely travel cost and uncollected profit, is now analyzed for the VRPSB
and VRPMSB. This is interesting because, to minimize the uncollected profit,
more backhaul customers have to be visited, which will increase the travel cost.
And to minimize the travel cost, fewer backhaul customer can be serviced, which
will increase the uncollected profit. This should provide the conflict in objectives
needed to demonstrate the advantages of the proposed SSMOEA.

Since the benchmark instances used in the previous studies have not included
profit information for the backhaul customers, this needed to be introduced.
For simplicity, each backhaul customer supply si was taken to provide the same
profit pi. Then, for each problem instance, there will be a maximal profit
Pmax =

∑
i∈VB pi that could be collected. Hence, the natural reference point

for computing the hypervolume performance metric is z = (Cmax, Pmax).
For each run of each algorithm, the non-dominated set was recorded and the

hypervolume and diversity computed. Then, for each problem instance, those
performance measures were submitted to a t-test as previously. The results for
the VRPSB and VRPMSB are presented in Table 6, which has the same struc-
ture as Table 4. Here, the VRPSDP was not considered because all customers
must be visited which results in zero uncollected demand for all cases.

For the VRPSB, the difference in hypervolume covered by the non-dominated
solutions from SSMOEA and NSGA-II is significant in 36 of the 62 instances,
with the SSMOEA solutions defining a larger hypervolume than NSGA-II in all
those cases. Moreover, solutions from SSMOEA delimit a significantly larger
hypervolume than those from MOEA/D in all 62 instances. Regarding popula-
tion diversity, there is a significant difference between SSMOEA and NSGA-II
in all but three of the instances, with the solution diversity higher for SSMOEA
in all those cases. Moreover, solutions from SSMOEA are significantly more
diverse than those from MOEA/D in all 62 instances. As intended, the higher
SSMOEA diversities are correlated with the higher hypervolumes.

For the VRPMSB, the hypervolumes defined by the SSMOEA solutions are
significantly larger than those of the NSGA-II solutions in 21 of the 36 instances,
and significantly larger than those of the MOEA/D solutions in 25 instances,
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Table 6: Significant differences of the hypervolume H and diversity D metrics applied to
the non-dominated sets found by SSMOEA (SS), NSGA-II (NS) and MOEA/D (MD) while
solving the bi-objective (travel cost and uncollected profit) VRPSB and VRPMSB.

Category Hypervolume (H) Diversity (D)

Id. #I SS>NS SS<NS SS>MD SS<MD SS>NS SS<NS SS>MD SS<MD

VRPSB

A 4 0 0 4 0 3 0 4 0
B 3 0 0 3 0 1 0 3 0
C 4 4 0 4 0 4 0 4 0
D 4 0 0 4 0 4 0 4 0
E 3 3 0 3 0 3 0 3 0
F 4 4 0 4 0 4 0 4 0
G 6 1 0 6 0 6 0 6 0
H 6 6 0 6 0 6 0 6 0
I 5 5 0 5 0 5 0 5 0
J 4 0 0 4 0 4 0 4 0
K 4 4 0 4 0 4 0 4 0
L 5 5 0 5 0 5 0 5 0
M 4 0 0 4 0 4 0 4 0
N 6 4 0 6 0 6 0 6 0

VRPMSB

H 12 11 0 9 1 12 0 12 0
Q 12 5 0 8 0 12 0 12 0
T 12 5 0 8 0 11 0 12 0

while solutions from NSGA-II have no significantly larger hypervolumes, and
solutions from MOEA/D have a significantly larger hypervolume in only one
instance. Regarding solution diversity, SSMOEA solutions are significantly more
diverse than those from NSGA-II for all but one instance, and significantly more
diverse than those from MOEA/D for all 36 instances.

Table 7 presents the corresponding Pareto approximation sizes, numbers of
generations and execution times, with the same format as that of Table 5.

For the VRPSB, the sizes of the Pareto approximations for SSMOEA and
NSGA-II are similar, while those for MOEA/D are much smaller. However, all
these sizes are much larger than when minimizing the number of routes and
travel cost, with the non-dominated sets here containing from 8 to 150 solutions
on average. The downside of the improved SSMOEA performance is that it runs
on average for approximately 13% and 83% more generations than NSGA-II and
MOEA/D, with nearly 39% and 300% longer execution times. Here, MOEA/D
requires fewer generations than SSMOEA and NSGA-II.

The sizes of the non-dominated sets for the VRPMSB are all large, and
similar for all three approaches. Here, SSMOEA requires, on average, about
28% and 73% more generations than NSGA-II and MOEA/D, and its execution
times are approximately 37% and 157% longer.

To help visualize how the above results relate to the distribution of non-
dominated solutions in the objective space, Figure 1 shows the Pareto approxi-
mations from one typical run of SSMOEA, NSGA-II and MOEA/D while solving
the bi-objective problems VRPSB instance F1 and VRPMSB instance 7Q. In
both cases, it can be seen how the non-dominated solutions from SSMOEA are
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Table 7: Averages of the Pareto approximation sizes, the number of generations, and the
execution times of SSMOEA (SS), NSGA-II (NS) and MOEA/D (MD) while solving the
bi-objective (travel cost and uncollected profit) VRPSB and VRPMSB.

Cat. Pareto approx. size Number of generations Execution time (s)

Id. SS NS MD SS NS MD SS NS MD

VRPSB

A 10.99 10.85 8.12 651.67 677.08 452.92 2.34 2.36 0.99
B 26.91 26.56 12.99 1010.55 866.11 731.67 6.53 5.87 2.41
C 40.00 39.75 24.22 3333.75 1916.25 1684.17 51.21 26.41 11.92
D 19.39 19.42 11.22 1592.92 1623.75 958.75 14.93 13.61 6.25
E 44.69 44.36 19.88 3083.89 2192.78 1548.33 106.16 38.42 15.44
F 59.98 59.95 32.80 4965.00 4681.25 2745.00 246.78 217.58 56.27
G 42.26 42.72 14.42 3279.17 2914.72 1585.00 109.09 85.56 29.32
H 67.96 67.85 24.48 6189.17 4720.28 2743.89 425.13 289.84 71.14
I 89.99 87.77 57.52 8868.00 9022.67 5762.00 1637.65 1122.47 482.04
J 53.91 57.32 18.86 8343.75 7427.50 3509.17 1050.30 821.11 264.94
K 112.85 110.98 33.21 11048.75 11017.92 6548.34 3693.46 2620.77 808.90
L 149.77 147.85 70.53 15000.00 15000.00 10152.67 12547.58 9196.34 4064.85
M 97.18 100.78 27.77 12208.33 12308.33 5182.08 4510.26 4763.83 955.19
N 149.38 147.67 44.79 14894.72 14949.17 8964.17 10921.84 8903.66 3177.56

VRPMSB

H 93.19 86.37 109.06 9843.61 9426.94 8417.92 5401.78 4079.55 4122.87
Q 71.89 67.96 53.93 9538.75 8004.86 5623.64 4434.93 3638.27 1379.00
T 23.64 23.34 19.62 9096.67 5666.53 3944.86 3625.51 2332.19 1139.31

more uniformly distributed and cover a wider objective space than the Pareto
approximations from NSGA-II and MOEA/D.

6.2.4. Minimization of the number of routes, travel cost and uncollected profit

The three algorithms were also tested on the tri-objective VRPSB and
VRPMSB, minimizing the number of routes, total travel cost, and uncollected
profit. In this case, the reference point for computing the hypervolume perfor-
mance metric is z = (N,Cmax, Pmax). As before, the non-dominated set was
recorded for each run of each algorithm, with the hypervolumes and diversities
computed and subjected to t-tests. The results for the VRPSB and VRPMSB
are presented in Table 8, with the same format as Table 4.

For the VRPSB, the solutions produced by SSMOEA delimit hypervolumes
that are significantly better than NSGA-II for 38 problem instances and bet-
ter than MOEA/D for all 62 instances, while NSGA-II solutions have better
hypervolume in only one instance. Regarding solution diversity, SSMOEA so-
lutions have significantly higher diversity than those from NSGA-II in 60 of the
62 instances, and in 61 instances compared with solutions from MOEA/D.

For the VRPMSB, the hypervolume covered by SSMOEA solutions is sig-
nificantly better than that covered by the NSGA-II solutions in 18 instances,
and better than that covered by the MOEA/D solutions in 34 instances. Both
NSGA-II and MOEA/D are better in none. Furthermore, the solution diversity
from SSMOEA is significantly better than that from NSGA-II in 33 of the 36
instances, and better than that from MOEA/D in 31 instances. NSGA-II is
better in none and MOEA/D is better in three instances.
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Figure 1: Pareto approximations from one run of SSMOEA, NSGA-II, and MOEA/D for the
bi-objective problems: (a) VRPSB instance F1, and (b) VRPMSB instance 7Q.

Table 8: Significant differences of the hypervolume H and diversity D metrics for the non-
dominated sets found by SSMOEA (SS), NSGA-II (NS) and MOEA/D (MD) while solving
the tri-objective (number of routes, travel cost and uncollected profit) VRPSB and VRPMSB.

Category Hypervolume (H) Diversity (D)

Id. #I SS>NS SS<NS SS>MD SS<MD SS>NS SS<NS SS>MD SS<MD

VRPSB

A 4 1 0 4 0 2 0 4 0
B 3 1 0 3 0 3 0 2 0
C 4 4 0 4 0 4 0 4 0
D 4 2 0 4 0 4 0 4 0
E 3 2 0 3 0 3 0 3 0
F 4 4 0 4 0 4 0 4 0
G 6 2 0 6 0 6 0 6 0
H 6 6 0 6 0 6 0 6 0
I 5 5 0 5 0 5 0 5 0
J 4 0 0 4 0 4 0 4 0
K 4 4 0 4 0 4 0 4 0
L 5 4 0 5 0 5 0 5 0
M 4 0 1 4 0 4 0 4 0
N 6 3 0 6 0 6 0 6 0

VRPMSB

H 12 9 0 12 0 12 0 12 0
Q 12 5 0 10 0 12 0 12 0
T 12 4 0 12 0 9 0 7 3

Table 9 presents the corresponding Pareto approximation sizes, numbers of
generations and execution times, in the same format as Table 5.

For the VRPSB, the sizes of the Pareto approximations from SSMOEA and
NSGA-II are again large and similar, while those from MOEA/D are slightly
smaller. The number of generations SSMOEA and NSGA-II run, on average,
have a more variable behavior. For some categories, SSMOEA runs for as
many as 21% more generations than NSGA-II, e.g. categories B and J, while for
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Table 9: Averages of the Pareto approximation sizes, the number of generations, and the
execution times of SSMOEA (SS), NSGA-II (NS) and MOEA/D (MD) while solving the
tri-objective (number of routes, travel cost and uncollected profit) VRPSB and VRPMSB.

Cat. Pareto approx. size Number of generations Execution time (s)

Id. SS NS MD SS NS MD SS NS MD

VRPSB

A 14.01 13.13 10.88 1578.75 1516.25 942.92 6.35 5.03 2.66
B 28.13 27.94 16.31 2042.78 1864.44 1410.00 14.56 9.50 6.75
C 39.98 39.27 35.33 5794.17 5567.92 3502.50 87.58 63.22 35.38
D 27.96 22.82 16.62 2703.34 2542.09 1965.00 43.16 21.53 17.19
E 44.78 44.00 28.34 4688.33 6117.22 3665.00 87.25 98.31 39.16
F 59.98 59.69 40.84 7911.67 9050.00 4840.83 411.58 319.70 125.48
G 45.05 43.52 19.97 5265.28 5149.17 3428.61 175.64 155.19 84.85
H 67.94 67.74 33.50 9239.17 10178.06 6013.06 748.21 611.22 214.57
I 89.97 88.95 62.60 13470.67 13500.00 8906.33 2453.90 2242.27 716.27
J 63.58 58.64 33.34 11624.58 9619.17 8150.83 1560.06 1088.47 748.49
K 112.91 112.42 44.05 16303.34 16965.84 11797.09 4391.49 4015.06 1699.17
L 149.75 148.46 86.85 22455.00 22500.00 18336.00 19744.19 14548.04 7253.42
M 102.57 104.71 43.24 17781.67 17187.08 12734.17 6172.67 5145.01 2879.71
N 149.44 148.87 53.67 22316.67 22500.00 15320.28 16035.08 13223.83 5824.61

VRPMSB

H 96.11 95.98 81.11 14518.33 14070.70 10394.17 7944.01 6608.98 4891.42
Q 75.62 73.76 40.29 13945.97 12520.14 6883.75 7012.49 5749.64 3141.77
T 23.91 23.63 15.88 13367.22 8632.36 4097.78 5626.32 3554.35 1403.67

others, NSGA-II requires as many as 23% more generations than SSMOEA, e.g.
categories E and F. Considering the average over all categories, both algorithms
require similar numbers of generations, but SSMOEA’s average execution time
is about 30% longer than NSGA-II. MOEA/D again runs for fewer generations
with shorter execution times than both SSMOEA and NSGA-II.

Regarding the VRPMSB, the average sizes of the Pareto approximations
found by SSMOEA, NSGA-II, and MOEA/D are again large and similar. The
number of generations performed by SSMOEA is, on average, 23% higher than
that of NSGA-II and 123% higher than MOEA/D, which correspond to increases
of approximately 33% and 162% in the execution times.

To visualize how the non-dominated solutions are distributed in the objec-
tive space here, Figure 2 shows the Pareto approximations from a typical run
of SSMOEA, NSGA-II, and MOEA/D for the tri-objective VRPSB instance F1
and VRPMSB instance 7Q. In the case of the VRPSB instance F1, although
the MOEA/D Pareto approximation spans a wider range for the number of
routes, they correspond to a higher travel cost and uncollected profit than the
SSMOEA solutions. Meanwhile, the non-dominated solutions from NSGA-II
cover a smaller range on the uncollected profit objective than those from SS-
MOEA, and they are located on only one value of the number of routes objective.
A similar pattern of results is seen for the VRPMSB instance 7Q.

6.2.5. Discovering extreme solutions

A common problem with multi-objective optimizers is that they find a lot
of compromise solutions, but can miss the extreme solutions that fully optimize
one objective at the expense of the other. Since the minimum uncollected profit
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Figure 2: Pareto approximations from one run of SSMOEA, NSGA-II, and MOEA/D for the
tri-objective problems: (a) VRPSB instance F1, and (b) VRPMSB instance 7Q.

is known to be zero, corresponding to the case when all backhaul customers
are visited, it is possible to check the extent to which those solutions are being
found by SSMOEA, NSGA-II, and MOEA/D. Table 10 presents the percentage
of the 30 repetitions, averaged over instance category, that each algorithm was
able to find at least one solution with zero uncollected profit. This shows that
SSMOEA is much better than NSGA-II at finding the solutions which service
all the backhaul customers, since the averages are closer to 100% and the stan-
dard deviations are very low. MOEA/D presents a very similar performance to
SSMOEA, with a slightly better performance overall.

6.2.6. Summary of multi-objective performance

When SSMOEA, NSGA-II and MOEA/D were set to minimize the number
of routes and travel cost, all three approaches performed similarly. There was a
slight advantage of SSMOEA over NSGA-II and MOEA/D for a few benchmark
instances, but for the vast majority of instances there was no significant differ-
ence in the hypervolume or diversity metrics. This is probably because there
were few conflicts between objectives that required a multi-objective approach.
When the algorithms were set to minimize the travel cost and uncollected profit,
there were many conflicts, and SSMOEA solutions delimited significantly larger
hypervolumes than those found by NSGA-II and MOEA/D in more than half of
the problem instances, for both VRPSB and VRPMSB, and it was also consider-
ably more likely than NSGA-II to find the extreme solutions with no uncollected
profit. This situation was repeated when the algorithms were set to minimize all
three objectives simultaneously. Overall then, it has been demonstrated that,
in cases with conflicting objectives, the proposed diversity enhancing SSMOEA
really can provide significantly better multi-objective VRPB solutions than com-
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Table 10: Percentage of zero-uncollected-profit solutions found in SSMOEA (SS), NSGA-
II (NS) and MOEA/D (MD) Pareto approximations for the bi-objective and tri-objective
VRPSB and VRPMSB.

Category Bi-objective problem Tri-objective problem

Id. SS NS MD SS NS MD

VRPSB

A 100.00 100.00 100.00 100.00 100.00 100.00
B 98.89 100.00 100.00 100.00 75.56 100.00
C 100.00 0.00 100.00 100.00 2.50 100.00
D 100.00 100.00 100.00 100.00 100.00 100.00
E 100.00 3.33 100.00 100.00 32.22 100.00
F 96.67 0.00 99.17 100.00 1.67 100.00
G 100.00 100.00 100.00 100.00 98.89 100.00
H 100.00 0.00 100.00 100.00 11.11 100.00
I 100.00 0.00 100.00 100.00 0.00 100.00
J 100.00 100.00 100.00 100.00 98.33 100.00
K 98.33 0.00 100.00 97.50 3.33 100.00
L 99.33 0.00 100.00 100.00 12.67 100.00
M 100.00 95.83 100.00 100.00 98.33 100.00
N 100.00 1.11 100.00 100.00 27.22 100.00

Average 99.57 40.32 99.95 99.84 45.59 100.00
Std. Dev. 1.28 48.93 0.42 0.94 44.27 0.00

VRPMSB

H 100.00 74.72 99.72 100.00 72.22 100.00
Q 100.00 99.72 99.72 100.00 99.29 100.00
T 100.00 100.00 100.00 92.31 94.15 100.00

Average 100.00 91.48 99.81 97.44 88.55 100.00
Std. Dev. 0.00 14.51 0.16 4.44 14.37 0.00

peting approaches, though that does involve increased execution times of the
order of 30% with respect to NSGA-II, and 200% with respect to MOEA/D.

6.3. Performance analysis for different optimization settings

Another important contribution of this paper is analyzing how well the non-
dominated sets generated by SSMOEA for the tri-objective problem provide
solutions that form good non-dominated sets for the bi-objective sub-problems
too. To this end, for each tri-objective instance and repetition, the hypervol-
ume was determined for only the objectives of the relevant bi-objective prob-
lem, and t-tests applied in the usual way. Also, for each instance, the overall
Pareto approximations from all 30 repetitions was obtained and analyzed to see
whether they covered or dominated each other. To avoid confusion, the acronym
SSMOEARC is used when SSMOEA is minimizing the number of routes and
travel cost, SSMOEACP when it is minimizing the travel cost and uncollected
profit, and SSMOEARCP when it is minimizing all three objectives.

6.3.1. VRPB and bi-objective VRPSB versus tri-objective VRPSB

From the Pareto approximations found by SSMOEARCP, two non-dominated
sets were extracted for each VRPB instance and repetition: one considering the
number of routes and travel cost, and the other considering the travel cost
and uncollected profit. Then, the hypervolume metric was computed for each
of these non-dominated sets and compared with those found by SSMOEARC
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Table 11: Performance of SSMOEA while solving the VRPB, VRPMB, and bi-objective and
tri-objective VRPSB and VRPMSB.

Category Number of routes and travel cost Travel cost and uncollected profit

Id. #I H H(%) � (%) ≺ (%) H H(%) � (%) ≺ (%)

VRPB VRPSB

A 4 0 0.00 100.00 0.00 1 25.00 98.21 8.12
B 3 0 0.00 100.00 0.00 1 33.33 100.00 1.33
C 4 1 25.00 87.50 0.00 3 75.00 69.30 33.22
D 4 1 25.00 62.50 37.50 3 75.00 100.00 8.22
E 3 0 0.00 33.33 0.00 3 100.00 85.16 61.39
F 4 1 25.00 87.50 37.50 4 100.00 72.76 34.31
G 6 1 16.67 75.00 25.00 6 100.00 97.49 47.27
H 6 0 0.00 16.67 16.67 6 100.00 90.82 80.53
I 5 2 40.00 40.00 40.00 5 100.00 82.39 79.75
J 4 0 0.00 25.00 25.00 4 100.00 86.01 84.76
K 4 0 0.00 25.00 25.00 4 100.00 79.31 79.09
L 5 1 20.00 40.00 40.00 5 100.00 80.49 80.49
M 4 0 0.00 0.00 0.00 4 100.00 64.35 64.35
N 6 0 0.00 16.67 16.67 6 100.00 88.49 88.49

Average 10.83 50.65 18.81 86.31 85.34 53.67

VRPMB VRPMSB

H 12 12 100.00 66.67 58.33 4 33.33 65.59 44.82
Q 12 12 100.00 91.67 58.33 6 50.00 81.46 47.83
T 12 11 91.67 83.33 66.67 3 25.00 72.63 33.76

Average 97.22 80.56 61.11 36.11 73.23 42.14

and SSMOEACP. Furthermore, from the overall Pareto approximation found
by SSMOEARCP for each instance from the 30 repetitions, two overall non-
dominated sets were extracted: one considering the number of routes and travel
cost and the other considering the travel cost and uncollected profit.

The results are presented in Table 11 which has the following structure: The
first two columns show the benchmark category and the number of instances in
each category. The remaining eight columns are divided into two groups, the
first four showing the comparison of the non-dominated sets which consider the
number of routes and travel cost, and the last four showing the comparison of
the non-dominated sets which consider the travel cost and uncollected profit.
The first two columns in each group show the number of instances in each
category for which SSMOEARCP found solutions that delimit a significantly
larger hypervolume than those found by SSMOEARC and SSMOEACP, respec-
tively, and the corresponding percentage. The third column is the percentage of
the overall non-dominated set found by SSMOEARC and SSMOEACP, respec-
tively, that is covered (�) by the extracted overall non-dominated set found by
SSMOEARCP. The last column is the percentage of the overall non-dominated
set found by SSMOEARC and SSMOEACP, respectively, that is dominated (≺)
by the extracted overall non-dominated set found by SSMOEARCP.

In the case of minimizing the number of routes and travel cost, the non-
dominated sets found by SSMOEARCP delimit a significantly larger hypervol-
ume for 7 of the 62 VRPB instances, and there is no significant difference
for the remaining 55 instances. Crucially, the hypervolume defined by non-
dominated sets found by SSMOEARC is not significantly larger for any problem

31



instance. This means SSMOEARCP is always able to find solutions that define
the same, or larger, hypervolume than that delimited by the solutions from
SSMOEARC. Regarding the overall Pareto approximations, the non-dominated
solutions found by SSMOEARCP cover, on average, approximately 51% of those
found by SSMOEARC, and dominate nearly 19% of them.

For the case when the travel cost and uncollected profit are minimized, the
Pareto approximations found by SSMOEARCP define a significantly larger hy-
pervolume than those found by SSMOEACP in 55 of the 62 instances, and for
the remaining 7 instances there is no significant difference. This implies that
SSMOEARCP is always capable of finding non-dominated solutions that de-
limit an equal or significantly larger hypervolume than that defined by the non-
dominated solutions from SSMOEACP. In this case, the overall non-dominated
solutions found by SSMOEARCP cover nearly 85% of those found by SSMOEACP,
and dominate approximately 54% of them.

6.3.2. VRPMB and bi-objective VRPMSB versus tri-objective VRPMSB

For the VRPMSB, exactly the same analysis procedure is followed as for
the VRPSB previously, with the results again shown in Table 11. For the case
of minimizing the number of routes and travel cost, the Pareto approximations
from SSMOEARCP define a significantly larger hypervolume than those from
SSMOEARC in 35 of the 36 problem instances. The overall non-dominated sets
from SSMOEARCP cover roughly 80% of those from SSMOEARC, on average,
and dominate about 61% of them.

Regarding the minimization of travel cost and uncollected profit, the Pareto
approximations from SSMOEARCP delimit a significantly larger hypervolume
than those from SSMOEACP for 13 of the 36 problem instances, and for the
remaining 23 instances there is no significant difference. The overall non-
dominated solutions from SSMOEARCP cover nearly 73% of those found by
SSMOEACP, and dominate about 42% of them.

6.3.3. Summary of sub-problem performance analysis

The performance analysis here was designed to determine whether the pro-
posed SSMOEA is still able to find as many non-dominated solutions when it
is set to more challenging optimization settings. In fact, it has been demon-
strated that, when SSMOEA is set to minimize all three objectives (number of
routes, travel cost and uncollected profit), it is capable of finding non-dominated
solutions that delimit an equal or larger hypervolume to those defined by the
solutions found when it is set to minimize only two objectives. Furthermore,
the overall Pareto approximations found when it is set to minimize all three
objectives cover at least 50%, and dominate no less than 40%, of those found
when it is set to minimize only two objectives.

7. Conclusions

This paper has proposed a new similarity-based selection multi-objective
evolutionary algorithm (SSMOEA) for finding multi-objective solutions for the
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principal variants of the VRPB, and analyzed its performance. A general solu-
tion representation and set of evolutionary operators were designed for the basic
VRPB, and modified initial solution generation and mutation procedures were
created for solving several real-world VRPB variants, specifically the VRPMB,
VRPSDP, VRPSB and VRPMSB. A crucial feature of SSMOEA is a novel solu-
tion similarity metric that biases the parent and survival selection processes to
increase solution diversity, and that was compared with the widely-used NSGA-
II [15] approach which, instead, uses a routing independent crowding distance
for that purpose. The SSMOEA performance was also compared with another
successful multi-objective optimizer, MOEA/D [16], which uses a rather differ-
ent problem decomposition approach.

Three different objective settings of SSMOEA were tested on 62 widely-
studied VRPB benchmark instances, 36 VRPMB benchmark instances, and 24
VRPSDP benchmark instances: one for minimizing the two objective functions
number of routes and travel cost of VRPB, VRPMB and VRPSDP; another
for minimizing the two objectives travel cost and uncollected profit of VRPSB
and VRPMSB; and the third for minimizing all three objectives of VRPSB and
VRPMSB. Throughout, a Pareto compliant hypervolume metric was applied to
the non-dominated solutions to provide a reliable multi-objective performance
indicator, and a solution diversity measure was formulated to facilitate analysis
of the algorithms’ operation.

Since the basic VRPB, VRPMB and VRPSDP have traditionally concen-
trated on minimizing only the total travel cost for a fixed number of vehicles,
they have previously only been studied extensively as single objective prob-
lems, so the best solutions from SSMOEA were first compared with the single-
objective results from previous approaches. It was demonstrated that, although
the SSMOEA solutions are not always as good as the best-known, as one might
expect given that it is actually solving a much harder problem, they are not
much worse, and SSMOEA is still capable of equaling or improving upon some
best-known solutions found by the earlier single-objective approaches.

The performance of SSMOEA was then compared with that of the NSGA-
II crowding approach and the MOEA/D decomposition approach for the bi-
objective VRPB, VRPMB and VRPSDP. A series of t-tests on the hypervolume
and diversity values from 30 runs of each showed that, overall, there was no
significant difference between the three algorithms. The conclusion was that,
given the same solution representation and evolutionary operators, SSMOEA,
NSGA-II, and MOEA/D perform equally well on these bi-objective problems.
The bi-objective solutions from SSMOEA, NSGA-II and MOEA/D also revealed
that the benchmark instances for these problems actually have very few conflicts
between the two objectives (travel cost and number of routes), meaning that a
more challenging bi-objective benchmark was needed to fully test the proposed
SSMOEA approach.

This led to a study of the bi-objective (travel cost and uncollected profit)
VRPSB and VRPMSB, which have much larger Pareto approximation sizes.
Analysis of the hypervolumes for the VRPSB showed significant improvements
by SSMOEA over NSGA-II in 36 out of 62 problem instances, and by SSMOEA
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over MOEA/D in all 62 instances. Regarding VRPMSB, there were significant
improvements by SSMOEA over NSGA-II in 21 out of 36 problem instances,
and by SSMOEA over MOEA/D in all 36 instances. Moreover, the solution
diversities of the non-dominated sets found by SSMOEA for the VRPSB were
significantly higher than those of NSGA-II for 59 of the 62 instances, and sig-
nificantly higher than those of MOEA/D for all 62 instances. In the case of the
VRPMSB, SSMOEA showed significant improvements in diversity over NSGA-
II in 35 of the 36 instances, and over MOEA/D in all 36 instances.

For the tri-objective optimization, it was demonstrated that SSMOEA gives
solutions with significantly better hypervolume than NSGA-II for 38 of the 62
VRPSB instances, and for 18 of the 36 VRPMSB instances. Moreover, solutions
from SSMOEA have significantly better hypervolume than those from MOEA/D
for all 62 VRPSB instances, and for 34 of the 36 VRPMSB instances. Then, it
was shown that the non-dominated SSMOEA solutions are significantly more
diverse than those from NSGA-II for 60 of the 62 VRPSB and 33 of the 36
VRPMSB instances, and significantly more diverse than those from MOEA/D
for 61 of the 62 VRPSB and 34 of the 36 VRPMSB instances. Thus, for over half
of the benchmark instances, SSMOEA performs significantly better than NSGA-
II with regard to the hypervolume and diversity metrics, and for the remaining
instances their performance is similar. Moreover, for the vast majority of the
benchmark instances, SSMOEA performs significantly better than MOEA/D
regarding hypervolume and solution diversity. It was also shown that SSMOEA
and MOEA/D are much more likely than NSGA-II to find the extreme solutions
where one objective is fully optimized at the expense of the other.

Analyzing the non-dominated solutions from SSMOEA when it is set to
simultaneously minimize all three objectives (travel cost, number of routes, and
uncollected profit), showed that it is able to achieve solutions that define an
equal, or in many cases significantly larger, hypervolume than delimited by
the solutions found when only two objectives are minimized. This indicates
that the solutions contained in the Pareto approximations from the bi-objective
optimization are enclosed in the outcome of the tri-objective optimization, which
suggests a certain robustness of the proposed approach.

In conclusion, then, suitable VRPB representations and operators have been
developed for the proposed SSMOEA, and these have been demonstrated to
generate good Pareto approximations for a range of multi-objective VRPB vari-
ants, without seriously compromising individual solution performance compared
with earlier single-objective approaches. Moreover, the proposed novel diversity-
enhancing similarity-based selection procedures have been shown to provide per-
formance enhancements over the widely used general purpose crowding approach
of NSGA-II and decomposition approach of MOEA/D. Finally, the tri-objective
optimization setting has proved reliable for finding a diverse Pareto approxima-
tion which spans all three objectives.

There probably remains further scope for better optimization of the evo-
lutionary parameters (such as the population size and termination criterion)
for specific VRPB variants. There is also potential for reducing the longer ex-
ecution times of SSMOEA. Moreover, there are other possibilities for taking
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advantage of the solution similarity and diversity information, for example, in
using SSMOEA on stochastic variants of the VRP. Already, though, the pro-
posed SSMOEA shows much promise for any applications where the VRPB
needs to be treated as a multi-objective problem.
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nauer, H.-P. Schwefel (Eds.), 5th International Conference on Parallel Prob-
lem Solving from Nature V, Vol. 1498 of LNCS, Springer, 1998, pp. 292–304.

[43] J. Franks, A (Terse) Introduction to Lebesgue Integration, AMS, 2009.

[44] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,
Springer, 2003.

[45] D. E. Goldberg, Genetic algorithms in search, optimization and machine
learning, Addison-Wesley, 1989.

[46] A. Garcia-Najera, J. A. Bullinaria, Bi-objective optimization for the vehi-
cle routing problem with time windows: Using route similarity to enhance
performance, in: M. Ehrgott, C. Fonseca, X. Gandibleux, J. K. Hao, M. Se-
vaux (Eds.), 5th International Conference on Evolutionary Multi-Criterion
Optimization, Vol. 5467 of LNCS, Springer, 2009, pp. 275–289.

[47] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used
in genetic algorithms, in: G. J. E. Rawlins (Ed.), First Workshop on Foun-
dations of Genetic Algorithms, Morgan Kaufmann, 1991, pp. 69–93.

[48] A. Subramanian, L. M. A. Drummond, C. Bentes, L. S. Ochi, R. Farias, A
parallel heuristic for the vehicle routing problem with simultaneous pickup
and delivery, Comput. Oper. Res. 37 (11) (2010) 1899–1911.

[49] N. A. Wassan, A. H. Wassan, G. Nagy, A reactive tabu search algorithm
for the vehicle routing problem with simultaneous pickups and deliveries,
J. Comb. Optim. 15 (4) (2008) 368–386.

[50] B. Çatay, A new saving-based ant algorithm for the vehicle routing problem
with simultaneous pickup and delivery, Expert Syst. Appl. 37 (10) (2010)
6809–6817.

[51] W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-
II on the multi-objective travelling salesman problem, in: Multi-Objective
Memetic Algorithms, Springer, 2009, pp. 309–324.

[52] Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for
multiobjective capacitated arc routing problem, IEEE T. Evol. Computat.
15 (2) (2011) 151–165.

38


