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Abstract

The evolution of Artificial Neural Net-
works (ANNs) using the EPNet algorithm
has given good results in previous publi-
cations. However, the input feature selec-
tion problem has never been fully consid-
ered before, because the inputs were fixed
and only the architectures evolved. Thus,
in this work is presented an empirical
study to determine statistically whether
it is better (or not) to evolve the inputs
for the EPNet algorithm. To test this,
a prediction task was used with 21 Time
Series from different dynamics and fields.
The results obtained show that the evo-
lution of inputs does improve the perfor-
mance of the algorithm in some cases, but
leads to worse performance in others.

1 Introduction

In previous studies with the EPNet algorithm
[11, 12] the user set manually the required num-
ber of inputs and then evolved the ANN archi-
tectures. In this sense, no input feature selection
technique has been used in the EPNet algorithm.
Instead, existing domain knowledge was used to
chose appropriate inputs before the evolution of
the ANNs began, i.e. the input units were fixed
throughout the evolution.

Elsewhere, feature selection techniques have
proved useful because there is always the pos-
sibility of presenting redundant or irrelevant in-
puts to the ANNs, e.g. the information given
by them could already be presented in other in-
put units, or they could simply not contribute
to solving the problem. Thus, if the information
is redundant, it will add nothing to solving the
task, and if it is irrelevant, it will not improve
the results [3]. Moreover, if input feature selec-
tion is not used, it is possible that unnecessary
inputs will result in bigger ANNSs requiring more
time in the training process, or introduce unnec-
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essary noise into the ANN which will typically
result in poorer ANN output performance.

Existing feature selection techniques fall into
two general categories [3]:
dures and Fwvaluation function procedures. In
both methods, several different variations are
used to determine what are the most appropri-
ate inputs to the model.

In this work it was decided to not use an
FEvaluation functions method to determine ap-
propriate inputs, because this procedure adds
an extra stage in the solution of the task, i.e.
first an appropriate number of inputs has to be
determined, and only then is the main proce-
dure applied to solve the problem [5, 8, 9, 14].
This approach has previously been applied to
forecasting [5, 8] and to classification [9, 14].

Consequently, the approach adopted in this
work belongs to the Generational procedures,
because it evolves the ANNs’ inputs with an
Evolutionary Algorithm (EA) [2, 7] to allow the
automatic adaptation of the inputs at the same
time as the rest of the architecture evolves.

Since the EPNet algorithm is based on the
Evolutionary Programming approach, it only
uses mutations to perform the evolution. There-
fore, it avoids the well-known evolutionary
ANN permutation problem that can arise with
crossover operators [11]. Thus, by applying a
feature selection technique over the EPNet al-
gorithm, one can have better confidence in the
results than if it is applied over an algorithm
that is not so good for this task, such as a Ge-
netic Algorithm (GA).

In the literature it is possible to find several
approaches and combinations of them to solve
diverse kinds of problems using feature selection,
e.g. leaving the architectures fixed and finding
appropriate inputs [4, 9], or leaving the inputs
fixed and then evolving the ANNs’ architectures
[6, 11, 12] to adapt the networks to the inputs.
In this work a more general approach is adopted,
in which both aspects are evolved (inputs and
architectures).

Generational proce-



Thus, for this study were performed a series
of experiments to determine the sensitivity of
the evolution of inputs in the EPNet algorithm,
i.e. it was explored whether it is better or not
to evolve the inputs. Since evolving the inputs
means that there are more parameters to evolve,
this could potentially compromise the perfor-
mance of the algorithm, and it was important
to test if and when that does happen.

The rest of this paper is organized as follows:
Sec. 2 presents information regarding the EPNet
algorithm and the configurations used to per-
form the experiments. In Sec. 3 is shown the
experimental results of the modified algorithm.
Then the conclusions are provided in Sec. 4.

2 The Algorithm and Parameters

The EPNet algorithm [13] was developed us-
ing Fogel’s Evolutionary Programming (EP) ap-
proach to evolve small ANN architectures. That
was done by implementing five different muta-
tion operators to evolve the architectures and
weights learning. Since it is based on EP, it does
not use any crossover operators to perform the
architecture evolution, thus avoiding the well-
known evolutionary ANN permutation problem
[11]. However, the algorithm was not developed
to have an input feature selection stage.

The EPNet algorithm has been tested on a
diverse set of problems for classification and pre-
diction [13, 12]. In this paper is studied the
Time Series (TS) forecasting task. The multi-
ple step prediction approach is used to perform
short term prediction (30 steps ahead) for 21 TS
of different dynamics. The aim is at time ¢ to
predict the TS at future times from past values
{zt,24—1,T1—2,...}, and feature selection corre-
sponds to deciding which past values {x;} to use
as the ANN inputs. Typically this is simplified
to choosing how many inputs n and what delay d
to get the input set {x¢, 24, ...T4_(n—1)q}, but
more complex choices are possible.

To measure the performance of the evolved
ANNS, the Normalized Root Mean Squared Er-
ror (NRMSE) on previously unseen test sets is
used, which is known to be a robust metric to
validate TS prediction results.

In previous studies with the EPNet algo-
rithm, only a small number of generations were
used to obtain the best evolved individual, e.g.
[13] used only 200 generations. Here, to fully
test the evolutionary process and behavior of the
algorithm, 2000 generations are used.

Two cases, described next, are compared:
first the control case where ANNs are evolved

with fixed inputs (as in the original EPNet algo-
rithm), and then the feature selection case with
everything else the same except that the inputs
are evolved within the EPNet algorithm.

2.1 Fixed Inputs

For the fixed input case, a feature selection ap-
proach is needed to determine an appropriate
fixed number of inputs and associated delays be-
fore the evolutionary process begins. Here was
employed the Takens embedding theorem that
has been used before for the TS prediction task
[10]. With this, the number of inputs is cho-
sen with the False Nearest Neighbour method,
and the delays between them are fixed using the
Average Mutual Information. Both techniques
were obtained and applied from [1].

There are other studies that have used these
methods, such as [4], but these did not evolve
the ANNs and instead used fixed architectures
to predict the Lorenz TS.

2.2 Feature Selection in the EPNet

As explained above, the Fvaluation function ap-
proach was not chosen because the selection of
inputs is then a separate process from the evo-
lution of the ANNs. Rather, it is natural that
everything should be evolved at the same time,
allowing the inputs to adapt as required.

To avoid introducing complex and unneces-
sary new operators for evolving the inputs, they
were evolved inside the EPNet using the same
operators already developed for the original al-
gorithm, i.e. the inputs were simply treated in
the same way as any other node in the ANN.
There are a series of potential input nodes
corresponding to the TS at past times, i.e.
{x¢,24—1,x4_2, ...}, and the add/delete node mu-
tation process selects which subset are actually
used in the network. Unlike in the fixed inputs
case, the n chosen inputs will not necessarily be
separated by some fixed time delay d.

3 Experimental Results

In this section is presented the results of the ex-
periments designed to determine whether it is
better, or not, to evolve the ANN inputs.

Each evolutionary experiment was repeated
30 times to allow a reliable statistical analysis of
the results. After each evolutionary run had fin-
ished, the best individual evolved was identified
by measuring the NRMSE on an independent
test set, and the NRMSE, inputs, hidden nodes



Table 1: Effect of evolving inputs instead of us-
ing fixed inputs, showing counts out of 21 TS
after 2000 generations of evolution

NRMSE Inputs Hidden Cons

Lower mean 13 13 6 11
Lower at 0.05 sig. 11 13 2 8
Higher mean 8 8 15 10
Higher at 0.05 sig. 6 8 7 8

and connections were recorded for performing
the comparisons.

Table 1 summarizes the results of the com-
parisons showing how many of the 21 TS have
significant changes for each variable if the in-
puts are evolved rather than fixed. The compar-
ison is made for the NRMSE, and the numbers
of inputs, hidden nodes and connections, from
the best individuals found over 30 independent
runs. Row Lower Mean indicates how many
TS have lower mean values over 30 runs for each
variable presented, and row Lower at 0.05 sig.
shows how many are lower at 0.05 level of sig-
nificance using a t-test (two-tailed with unequal
variances). Similarly, row Higher mean and
Higher at 0.05 sig. indicate how many TS have
higher values.

Thus 11 TS achieve significantly smaller er-
rors on the predictions (NRMSE) by evolving
the inputs, 6 TS were significantly better if the
inputs were fixed, leaving 4 TS with no sig-
nificant difference. The Inputs column shows
that the evolution of inputs allows significantly
smaller numbers of ANN inputs for 13 TS, but
significantly larger numbers for 8 T'S. Looking at
the hidden nodes, significantly smaller networks
emerged in 7 TS if the inputs were fixed, com-
pared with only 2 TS if the inputs are evolved,
maybe because for fixed inputs the EPNet algo-
rithm has fewer parameters to evolve, and conse-
quently has more options to find networks with
fewer hidden nodes. Regarding the number of
connections, the evolved ANNs for 8 TS have
significantly more, while 8 have significantly less,
when the inputs are evolved.

If the evolution is stopped at much smaller
numbers of generations (i.e. far fewer than
2000, as in most previous studies), the average
NRMSE and network sizes tend to be larger, in-
dicating that the networks are still evolving and
that the best possible results have not yet been
achieved.

The results presented in Table 1 show that,
overall, evolving the inputs with the EPNet al-
gorithm leads to better TS prediction (i.e. lower
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Figure 1: Average NRMSE for the Mackey-
Glass TS with fixed and evolved inputs

NRMSE) with networks of similar sizes. How-
ever, the results are mixed, and to fully under-
stand the benefits, or otherwise, of evolving the
inputs, one needs to look more carefully at what
emerges for the individual TS.

Table 2 presents the number of evolved in-
puts found after 2000 generations (columns 2-5),
the fixed number of inputs found with the False
Nearest Neighbours method (column 6) and the
delays found using the Average Mutual Informa-
tion (column 7). Here is not presented the delays
found with the evolutionary algorithm because
many complex variations are possible. For ex-
ample, if ten inputs are available {x¢, ..., 29},
three fixed inputs with a delay of 2 means using
{x¢,x4—2, 244}, but if the inputs are evolved,
more complex selections could emerge, such as
{iEt,Sths, l't77} or {It74; zt777$t78}-

A clear example of this issue arises with
the Henon TS. Table 4 shows that the best
evolved network in this case has 7 inputs, which
are {Ty, Ty—1,T¢—3,T¢—5,Ti—9, Tt—15, Ti—16}, il
which the delays between inputs are unequal.
If the inputs are fixed, the False Nearest Neigh-
bour method gives a value of 5 and the Average
Mutual Information gives a delay of 9 (Table 2),
which corresponds to having the input vector
{$t,$t79, zt7187$t7277$t736}-

Even though there are more parameters to
evolve if the inputs are not fixed, the algorithm
can still obtain faster results in some cases. For
example, in Fig. 1 is shown the average NRMSE
over the entire evolution, with fixed and evolved
inputs, for the Mackey-Glass TS. It can be seen
that the evolution of inputs allows the algorithm
to obtain smaller errors faster (particularly at
the beginning of the evolution). Conversely,
there were other cases where the error was re-
duced faster if the inputs were fixed, for example
the QP2, QP3, Rossler, Star and D1 TS.



Table 2: Evolved inputs versus fixed inputs in the EPNet algorithm with 2000 generations

Evolution of inputs

Time Series

Fized values

Mean Std Dev Min Max Inputs Delays
Henon 10.23 2.800041 5 16 5 9
Tkeda 11.57 2.329471 6 16 7 5
Logistic 12.40 2.190890 7 16 3 9
Lorenz 12.63 2.189053 9 17 5 17
Mackey-Glass 12.47 1.995397 8 17 19 19
Qp2 12.67 1.625939 10 16 7 22
Qp3 11.63 1.629117 7 15 9 6
Rossler 11.10 1.936046 6 14 13 12
Births in Quebec 11.20 2.074475 5 14 21 4
Dow Jones 11.50 1.943158 8 16 21 46
Gold Prices 11.40 2.206573 8 16 21 27
IBM Stock 12.27 2.016028 6 17 19 52
SP500 12.07 2.273283 6 16 21 25
Colorado River 11.10 2.564344 5 16 13 3
Lake Eriel 11.13 2.255007 5 15 17 7
Equipment Temp. 11.17 2.780267 5 17 17 33
Kobe 11.83 2.290661 8 16 5 4
Star 13.10 2.171127 10 17 5 6
Sunspot 11.33 1.971055 7 16 19 23
D1 10.93 2.504249 6 15 21 8
Laser 13.10 1.647359 9 17 19 2

In Tables 3 and 4 are presented the NRMSE
and network sizes for the fixed and evolved in-
puts respectively. It is these results that were
summarized in Table 1. Columns 2-5 give the
mean, standard deviation, minimum and maxi-
mum values of the NRMSE (evaluated on previ-
ously unseen test sets) for the best individuals
from the 30 runs. Columns 6-8 give the number
of inputs, hidden nodes and connections of the
best individuals overall from the 30 runs, corre-
sponding to the NRMSE in column Min.

Comparing the results for individual TS,
there are no obvious patterns indicating why
evolved inputs provide better NRMSE perfor-
mance in some cases but not others. Although
evolving the inputs means more parameters to
evolve, the EPNet algorithm still finds smaller
architectures for some TS, though larger archi-
tectures are found for others. Moreover, there
appears to be no correlation between the cases
of improved performance and any of the other
differences that emerge as a result of having
evolved rather than fixed inputs.

For example, if the size of an ANN is taken
to be the total number of trainable connections,
then out of the 11 TS improved at 0.05 level
of significance for the NRMSE, only 6 TS ob-
tain smaller architectures for the best individual

found than when the inputs are fixed (Connec-
tions columns in Tables 4 and 3). These TS
are Mackey-Glass, Dow Jones, Gold Prices, Col-
orado River, Lake Eriel and Laser. For the 8
TS that were better if the inputs are fixed, only
QP2, QP3 and IBM Stock had smaller architec-
tures than if the inputs are evolved.

4 Conclusions

This paper studied the issue of feature selection
for evolved ANNs. It presented a series of exper-
iments to determine whether it is better, or not,
to evolve the inputs when the EPNet algorithm
is used for TS prediction tasks. This was done
by comparing evolving the inputs against keep-
ing them at fixed computed values throughout
the evolutionary process. The fixed inputs were
computed using the approaches employed in pre-
vious studies, namely False Nearest Neighbour
for the number of inputs and Average Mutual
Information for their delays.

It was shown that evolving the inputs gave
significantly better prediction results for 11 of
the 21 TS studied, but in 6 cases was it bet-
ter to keep the inputs fixed. For the remaining
4 TS there was no significant difference. This
led to the conclusion that it is certainly not the



Table 3: Individual TS results for fixed inputs. Evolved NRMSE and architecture parameters for
the best individual values over 30 runs with 2000 generations

NRMSE Best Ind.
Time Series
Mean Std Dev Min Max Inputs Hidden Connections

Henon 0.785112 0.103130 0.552615 0.981666 5 14 131
ITkeda 0.959694 0.034274 0.849187 1.014560 7 14 144
Logistic 0.001052 0.000652 0.000217 0.002870 3 11 71
Lorenz 0.016993 0.009701 0.004919 0.047069 5 15 138
Mackey-Glass 0.336494 0.035695 0.259019 0.415552 19 10 176
Qp2 0.028665 0.006725 0.016584 0.043588 7 14 147
Qp3 0.176651 0.055778 0.093578 0.325843 9 12 128
Rossler 0.142443 0.247063 0.001809 1.118090 13 12 157
Births in Quebec 0.516288 0.029663 0.440343 0.586517 21 8 131
Dow Jones 1.409703 0.329013 0.744604 2.041210 21 9 178
Gold Prices 1.305383 0.415891 0.710825 2.427460 21 15 308
IBM Stock 0.715871 0.112638 0.459090 0.996211 19 12 200
SP500 0.597546 0.067702 0.444256 0.768787 21 15 288
Colorado River 0.964563 0.079263 0.844041 1.139390 13 15 223
Lake Eriel 0.770567 0.246672 0.425295 1.457200 17 9 140
Equipment Temp. 0.683046 0.173931 0.296670 1.207780 17 16 278
Kobe 1.009605 0.145755 0.668835 1.329590 5 16 153
Star 0.025598 0.004490 0.015847 0.036367 5 13 115
Sunspot 0.539722 0.110897 0.371779 0.897257 19 17 322
D1 1.030869 0.216930 0.569237 1.429940 21 14 272
Laser 0.153638 0.045795 0.088370 0.320004 19 14 268

Table 4: Individual TS results for evolved inputs. Evolved NRMSE and architecture parameters for
the best individual values over 30 runs with 2000 generations

NRMSE Best Ind.
Time Series
Mean Std Dev Min Max Inputs Hidden Connections

Henon 0.654182 0.197501 0.336084 1.038330 7 12 114
Ikeda 0.905389 0.061768 0.653851 0.991480 15 17 283
Logistic 0.000592 0.000378 0.000126 0.001495 12 15 192
Lorenz 0.019564 0.011186 0.003145 0.044841 17 16 290
Mackey-Glass 0.004186 0.002008 0.001673 0.012219 12 12 164
Qp2 0.071087 0.036165 0.025993 0.193532 13 17 258
Qp3 0.404328 0.120893 0.149107 0.630460 11 15 204
Rossler 0.005333 0.017721 0.000506 0.097060 11 17 242
Births in Quebec 0.513337 0.017996 0.465915 0.545526 12 19 306
Dow Jones 1.097907 0.053064 0.997859 1.211680 11 12 155
Gold Prices 1.057707 0.151929 0.835188 1.532440 14 14 205
IBM Stock 0.875539 0.062092 0.745606 0.995658 13 18 279
SP500 0.648791 0.025466 0.590659 0.706523 11 12 157
Colorado River 0.802570 0.090089 0.600033 0.968082 8 15 182
Lake Eriel 0.704184 0.103292 0.395519 0.920900 13 8 95
Equipment Temp. 0.784072 0.088246 0.604829 0.939192 11 13 157
Kobe 0.808204 0.145650 0.543781 1.166810 11 15 192
Star 0.022751 0.005533 0.013487 0.033852 17 14 245
Sunspot 0.670356 0.100118 0.446804 0.873600 10 9 93
D1 1.089576 0.216749 0.714094 1.525940 14 13 202

Laser 0.060268 0.018450 0.026656 0.091397 14 17 263




case that using the values given by the False
Nearest Neighbour and Average Mutual Infor-
mation is the best way to perform input feature
selection, i.e. to fix the inputs during the evolu-
tionary process. However, one can also conclude
that the standard EPNet algorithm is not capa-
ble of finding the best input features in all cases
either. Moreover, looking at the detailed results
for individual TS did not reveal any clear picture
of when evolving the inputs would be better.
Since it should in principle be possible for
the evolution of the inputs to find the computed
inputs used in the fixed input case, one needs
to ask why the EPNet algorithm is not finding
them in the cases where they lead to better per-
formance than the actual evolved inputs. One
possibility is that the evolution simply needs to
be run for even more generations, and that is
something that clearly needs to be explored fur-
ther. Another issue is that the mutation oper-
ations of adding or deleting random inputs in-
troduce a lot of noise into the operation of the
evolving ANNSs, and for some TS that is clearly
leading to worse performance than if the inputs
are fixed. This suggests two more strands for
taking this research further: first looking more
carefully at the disruption caused by the changes
to the inputs during evolution, and second look-
ing at making the evolution of inputs easier by
starting at the computed values so that evolu-
tion can improve on them where possible, but
hopefully not end up with inferior values. By
following these ideas it is hoped that simple
extensions to the evolutionary ANN approach
presented in this paper will result in improved
feature selection and resultant performance in
many cases, and worse performance in none.
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