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Abstract

Modular Neural Networks have been used
to solve complex problems in a reduced
amount of time, to obtain better perfor-
mance on a range of tasks, and to pro-
vide a better understanding of the human
brain. This paper presents the first stage
of research into Modular Neural Networks
where the evolution of them allows an in-
cremental architecture for solving more
than one problem. The basis for devel-
oping that approach is described in this
work. Experimental tests and related is-
sues are presented using an Evolution-
ary Algorithm called EPNet, obtaining
appropriate modules for 20 Time Series
Forecasting tasks.

1 Introduction

Artificial Neural Networks (ANNs) have been
widely used to solve a range of problems in dif-
ferent fields, with the characteristic that each
ANN is focused to solve one problem (Fig. 1).
This generally works very well because the net-
work (or module) is specialized to solve only one
problem. But there is no fundamental constraint
that requires this approach, and it may prove
useful to investigate different approaches.

In particular, it is possible to find other ap-
proaches where the ANN is set up to solve more
than one problem. In this case there exist two
main categories: in the first, the network M1 has
n outputs, where each one is focused to solve
a particular problem Pi (Fig. 2a); in the sec-
ond, the network only has one output, but it
is focused to solve Pi tasks, i.e. the network is

Figure 1: Classical approach: one module or
ANN M1 to solve one problem P1.

trained with all training sets from each prob-
lem (Fig. 2b). If the problems/tasks are similar
or closely related in their behaviour, the cross-
task interference produced is likely to be mini-
mal, then it is possible to apply successfully the
approaches of Fig. 2 [7]. On the other hand, for
problems that are not related, the cross-task in-
terference could be considerable. Consequently,
it is sometimes better to have independent mod-
ules to solve each problem [3]. In fact, even
within a single task or problem there may be sig-
nificantly different behaviours, for example that
correspond to different input or time ranges. In
such cases, independent modules may be appro-
priate there too. Then, there could be diverse
procedures to solve one problem with Modular
Neural Networks (MNNs), e.g. with the Ensem-
ble method [19, 5], or the divide and conquer
approach [9]. Fig. 3 illustrates such architec-
tures, with different modules Mi (each an ANN)
to solve one problem P1.

Thus, it is possible to see that the next step
with MNNs is to have a bigger representation (a
model that grows as the tasks arrive) that allows
the reuse of existing modules to solve new prob-
lems, e.g. predict the Time Series (TS): Lorenz
(problem1), Mackey-Glass (problem 2), and so
on. Therefore, this work presents an initial in-
vestigation into implementing that idea, describ-
ing the basis of the algorithm and the way in
which the modules will be obtained to fit in an
incremental MNN for the TS Forecasting task.
Following previous work on MNNs [3, 12], an ap-
proach based on evolution by natural selection

Figure 2: One module or ANN M1 to solve di-
verse problems Pi.
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Figure 3: Modular Neural Network (MNN) with
many modules Mi to solve one problem P1.

is used to generate the most efficient systems
for the given problems. In this way, this pa-
per presents experimental results from the first
stage, where modules are evolved for predicting
20 TS from different fields, with the Multiple-
step Forecasting method and a prediction lapse
of 30 steps ahead.

The remainder of this paper is organised as
follows: In the next section (Sec. 2) is presented
the basis for developing an MNN that is able to
solve more than one problem, having a compact
and incremental architecture. Then (in Sec. 3)
the algorithm is described that will be used to
evolve the ANN modules and MNNs, with a dis-
cussion of some related issues in the evolution of
them, taking into account the incremental na-
ture of the MNN. This is followed (in Sec. 4)
with the results from the initial series of experi-
ments, and some conclusions (in Sec. 5).

2 Incremental Modular Neural
Networks

As noted above, the aim here is to investigate
MNNs with bigger representations that allow ex-
isting modules to be reused for solving new prob-
lems. The algorithm that we propose will involve
the following types of modules: 1) Modules able
to solve new problems of the same class as ex-
isting problems, as presented in [7]; 2) Modules
able to collaborate among themselves to solve
new problems, in a manner to be discovered by
an evolutionary procedure; 3) Modules created
to solve a unique new problem, i.e. in cases when
the existing modules cannot collaborate among
themselves to solve the problem at hand. The
evolutionary process aims to ensure that the re-
sultant system will have a compact and incre-
mental architecture.

Fig. 4 illustrates the first (i.e. simplest) ap-
proach to develop a MNN with these character-
istics, where the super-index j in the modules
M j

i represents the task for which it was created,
and the sub-index i represents the number of the
module for its original task. In this example, we
see that when the kth problem Pk arrives, it uses

Figure 4: The first MNN proposal.

the existing modules two and five from the task
one (M1

2 and M1
5 ), and the existing module one

from the task four (M4
1 ). For the problem Pl it

uses module three from task two (M2
3 ), module

one from task four (M4
1 ) and modules one and

five from task one (M1
1 and M1

5 ). If the next
problem Pm cannot be solved with the existing
modules, a new set of modules {Mm

i } will be
created for it. Thus, within this representation,
it is possible to obtain modules from all the ap-
proaches presented in Figures 1 to 3 and then
attempt to combine them to find solutions for
new tasks/problems as they arise.

Note that we can also go one level deeper,
and not only use existing modules (as a whole)
to try to solve each new task, but also re-use sub-
sets of neurons within the modules, as presented
in Fig. 5. In this example, the modules M1

2 and
M2

3 already share a neuron – the last one of the
first hidden layer from M1

2 . When the problem
Pk arrives, it uses one neuron from the output
layer of M1

2 and one neuron from M2
3 . Problem

Pl follows a similar procedure. From this con-
figuration it is expected that, at the beginning
of the procedure, the existent modules can only
solve one task (the classical approach), but as
the architecture starts to grow, more modules
or neurons could be shared and usefully con-
tribute to solving the new tasks. This config-
uration is further motivated by its relation to
processes found in nature, whereby individuals
use existing brain structures to learn to perform
new tasks as they appear.

Note that our algorithm discovers new mod-
ules for the new tasks as they arrive, which is

Figure 5: The second MNN proposal.

Proceedings of the 2008 UK Workshop on Computational Intelligence

Page 32



rather different to finding all the modules in the
same evolutionary stage as done by Lui and Yao
in their work focussed on solving a single prob-
lem [10].

The information presented in this section
gives an overview of the general idea for devel-
oping this kind of incremental MNN. Existing
general knowledge about the operation of neural
networks suggests that it should perform well,
but to be sure, we need to build an explicit sys-
tem and test it on real problems. To create a
MNN with the characteristics stated above, first
we need an Evolutionary Algorithm (EA) to find
the compact representation of ANNs (or mod-
ules), and then we need to test the performance
of what emerges. The next two sections are ded-
icated to these aspects.

3 The EPNet Algorithm

In this section we present a number of issues and
modifications relating to the EA, called EPNet
[17, 18], that can be used to evolve ANNs, with
the individuals of the last generation employed
as modules (via the ensemble method) for the
system proposed in the last section.

Since the EPNet algorithm is based upon the
standard Evolutionary Programming approach,
it presents several advantages over a traditional
EA. In particular: it does not use crossover, be-
cause useful information in the parent would
usually be destroyed by that operator; it uses
Lamarkian inheritance, something that is useful
for passing information learned by a parent us-
ing Modified Back Propagation to the offspring;
and during the mutation process, EPNet first
measures the importance of a connection before
adding or deleting it, as explained in [4].

The original EPNet algorithm proposed by
Yao and Lui [18] used a fixed configuration of
inputs throughout the whole evolutionary pro-
cess, which means that we must have existing
domain knowledge of the whole problem to de-
termine the required inputs. But since our pro-
posed algorithm will not know which tasks will
arrive, it is clearly not possible to use the orig-
inal EPNet algorithm. Therefore some minimal
modifications had to be devised to adjust the al-
gorithm to our requirements. The first change
was to leave the inputs specification as another
parameter in the algorithm. Then, the existing
procedure to add or delete nodes or connections
could also be used for the inputs. Another op-
tion considered in this case, was to use an au-
tomatic procedure to determine the inputs, as
explained in the following paragraphs.

Suppose we have a TS defined as a vector
X = [x1, x2, . . . , xt], with its values sampled at
regular intervals. Then to predict the value (or
point) xt+1 we can use a small subset of recent
information from our TS. This method is called
lagged variables. If we use this, we say that
we have an Autoregressive Model and the input
space is called the Embedding Space. Therefore
our TS is transformed into a reconstructed state
space using a delay space embedding [14, 2].
Then, it is possible to say that an accurate pre-
diction could be reached using only a finite seg-
ment of previous values up to the point to be
predicted. Summarizing that, we have:

xt+1 = F [xt, xt−k, xt−2k, . . . , xt−(d−1)k] (1)

where d is the number of inputs and k is the
time delay. The only condition that needs to be
satisfied is that if the attractor is of dimension
D, then we must have d ≥ 2D + 1. But since we
know neither D nor the delay, we must use other
techniques to find them, e.g. Average Mutual In-
formation for the time delay, and False Nearest
Neighbour for the embedded dimension.

For some well known TS, such as the Mackey-
Glass, these parameters are already available in
the literature, but for most other TS we need to
calculate them. Unfortunately, some TS have a
rather difficult dynamic and when we attempt
to calculate the delay and embedded dimension
we can obtain unreliable values. For example, if
we apply the Average Mutual Information and
the False Nearest Neighbour using the standard
package Visual Recurrent Analysis (VRA) [2] for
the Daily Morning Gold Prices TS (see Sec. 4)
we obtain a delay of 27 and an embedded dimen-
sion of 10, and for the Dow Jones TS a delay of
46 and an embedded dimension of 10. In both
cases the number of dimensions was limited to
ten, so these values could be bigger.

Continuing with describing the modifications
required for the EPNet algorithm, we had to use
the modified Early Stopping procedure as de-
scribed in [11]. This is because, for some TS, the
validation error does not behave in the smooth
manner expected, and consequently the train-
ing stage would often stop even if the validation
error could be reduced further. For this rea-
son, a procedure to avoid premature stopping
was needed, still avoiding the over fitting and
maximizing the generalization, but better than
the classical Early Stopping approach [11].

The parameters used with EPNet to perform
the experiments of the next section were set to:
population size 20, generations of evolution 300,
initial connection density 80%, initial learning
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Table 1: Multiple-step or closed-loop forecasting
Forecast Inputs

yt+1 xt, xt−1, xt−2

yt+2 yt+1, xt, xt−1

yt+3 yt+2, yt+1, xt

yt+4 yt+3, yt+2, yt+1

rate 0.25, minimum learning rate 0.1, epochs for
learning rate adaptation 5, number of mutated
hidden nodes 1, number of mutated connections
1-3, temperatures in SA 5, iterations per tem-
perature in SA 100, stopping after 10 genera-
tions of no improvement in the average fitness,
1000 epochs inside the EPNet, and 2000 epochs
of further training at the end of the algorithm.
All these parameters are convenient traditional
values (similar to those used in [17]) and are not
intended to be optimal.

Finally, we specify the method used to per-
form the forecasting, called multiple-step ahead.
The input TS X is [x1, x2, . . . , xt], the num-
ber of points ahead to predict is n, the test
set is [xt+1, xt+2, . . . , xt+n], and the forecast in
the same interval is [yt+1, yt+2, . . . , yt+n]. Table
1 shows an example in which the network has
three inputs and the lapse n to predict is four.

4 Experimental Results

The experiments presented in this section can
be seen as the first stage in implementing the
incremental MNN as stated in Sec. 2. The Time
Series (TS) used in this study belong to differ-
ent fields, which gives a wide range of differ-
ent dynamics on which to test our algorithm.
The specific TS used were: Henon, QP2, QP3,
and Rossler from [1]; Ikeda and Dow Jones from
[2]; Logistic from [6]; Lorenz from [16]; Mackey-
Glass from [15]; Number of daily Births in Que-
bec, Daily closing price of IBM Stock, SP500,
Monthly Flows Colorado River, Monthly Lake
Erie Levels, Daily morning Gold Prices, Seismo-
graph (vertical acceleration, nm/sq.sec) of the
Kobe earthquake, Daily brightness of a vari-
able Star and Monthly means of daily relative
Sunspot numbers from [8]; Santa Fe Competi-
tion: D1 and Laser from [13].

Each TS is split into several different data
sets for use in the experiments. The first is the
training data set; next is the validation set which
is used to stop the training early to minimize the
over fitting; then there is a test set for use inside
EPNet to obtain the fitness of each individual
in the population, and finally there is another
independent test set on which the best individ-

Table 2: NRMS Error on independent test set
Time Series Mean Std Dev Min Max

Henon 1.2644 0.3603 0.6131 1.8859

Ikeda 1.0497 0.1608 0.8677 1.3498

Logistic 0.0001 0.0001 6.17E-06 0.0005

Lorenz 0.1081 0.1237 0.0108 0.3050

Mackey-Glass 0.0009 0.0008 8.15E-05 0.0025

QP2 0.1569 0.1323 0.0146 0.4524

QP3 0.9912 0.2189 0.5157 1.3168

Rossler 1.2108 2.5582 0.0016 7.7933

Births in Quebec 0.3464 0.0653 0.2769 0.4949

Dow Jones 3.6316 3.4756 1.2748 9.7451

Gold Prices 1.9218 1.1785 0.8216 4.6065

IBM Stock 1.0446 0.2636 0.7040 1.3930

SP500 1.3690 0.3370 0.6385 1.9614

Colorado River 1.6606 1.7132 0.5667 5.8620

Lake Erie 1.9232 1.0370 0.6229 3.9093

Kobe 0.6558 0.1130 0.5050 0.8941

Star 0.0256 0.0226 0.0018 0.0665

Sunspot 0.7666 0.1546 0.6242 1.0678

D1 2.4011 0.5728 1.5082 3.3198

Laser 0.1965 0.2300 0.0104 0.7309

ual found in the evolutionary process is tested
to obtain the final performance. For each TS,
Table 2 shows the average over ten runs of the
Normalized Root Mean Squared Error (NRMS)
obtained for the TS with the independent test
set. The column “Min” shows the NRMS of
the best individual found over ten runs. The
TS are arranged according to their dynamics:
Chaotic from Henon - Rossler; Demographic -
Births in Quebec; Economical/Financial: from
Dow Jones - SP500; Hydrology Colorado River
and Lake Eriel; Physics: Kobe - Sunspots; and
the last two form the Santa Fe competition.

From all the experiments we can identify four
categories to classify the results. Accurate pre-
diction: Logistic, Mackey-Glass, Star and Laser.
Accurate prediction in almost all or some points:
Lorenz, QP2, Rossler, Births in Quebec, Henon
and Kobe. Prediction that follows the trend of
the original data: QP3, D1, Colorado River, and
Lake Eriel. And the cases where it was not pos-
sible to obtain a good prediction at all: Ikeda,
Dow Jones, IBM Stock, SP500, Gold Prices and
Sunspots. To clarify the results, some tables
(average over the ten runs) and graphs are now
presented which show the behaviour of the algo-
rithm for particular TS. The graphs correspond
to the best individual found over ten runs, there-
fore their error (NRMS) could be obtained from
Table 2 column “Min”.

The Mackey-Glass TS is a commonly used
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Table 3: Average results for Mackey-Glass TS
Parameter Mean Std Dev Min Max

Number of Connections 161.5 36.1363 110 235

Number of Inputs 10.1 1.4491 8 13

Number of Hidden Nodes 12 1.4907 10 14

Error Training Set 0.0733 0.0564 0.0227 0.1973

Error Test Set EPNet 0.0001 5.16E-05 8.72E-05 0.0002

Error Final Test Set 0.0008 0.0007 8.15E-05 0.0023

Figure 6: Mackey-Glass TS. 30 step prediction

Figure 7: Henon TS. 30 step prediction

Figure 8: Mackey-Glass. Average NRMS

task for testing TS prediction algorithms. The
accurate results shown in Table 3 are similar to
previous studies with EPNet [17]. Fig. 6 com-
pares the actual and predicted TS, showing that
it is not possible to distinguish between the test
set and the prediction (i.e. accurate forecasting).
In Table 4 is given the results for the Henon TS,
and in Fig. 7 is shown the actual TS prediction
where acceptable predictions are only made for
small numbers of time steps. Fig. 8 presents the
average NRMS for the Mackey-Glass TS. There
it is possible to see how the error is decresed
considerably during the first generations of evo-
lution. Fig. 9 shows the corresponding evolution

Table 4: Average results for the Henon TS
Parameter Mean Std Dev Min Max

Number of Connections 128.8 28.14 85 174

Number of Inputs 9.9 0.9944 8 11

Number of Hidden Nodes 10.5 1.8408 8 13

Error on Training Set 3.0130 6.9494 0.0039 22.3053

Error on Test Set EPNet 0.0657 0.1425 0.0005 0.4675

Error on Final Test Set 1.2644 0.3603 0.6131 1.8859

Figure 9: Mackey-Glass. Average Connections

Figure 10: Mackey-Glass. Average Inputs

Figure 11: Mackey-Glass. Average Hidden Units

of the connections, where they start to decrease
around the middle of the evolution, as do the in-
puts in Fig. 10 and the number of hidden units
in Fig. 11. In this case, the EPNet Algorithm
was able to find a small architecture for the ANN
without any decrease of performance.

5 Conclusions

The work presented in this paper is the first
stage in the development of an Incremental
Modular Neural Network (MNN) for Time Series
(TS) Forecasting. The basis for its development
has been described, and a series of experimental
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test results have been presented using an im-
proved Evolutionary Algorithm to find suitable
networks, which in the future will be used as
modules for the proposed algorithm. Since the
algorithm must solve the TS problems as they
arrive, it was not possible to specify the optimal
number of inputs for each problem. Therefore
modifications of the the standard EPNet evo-
lutionary algorithm were implemented, leaving
the inputs as another parameter to be adjusted
by the algorithm. Also, modified early stopping
procedures for the learning were implemented,
and a suitable framework established for repre-
senting and testing the networks. In this way,
the key issues in applying MNNs to TS forecast-
ing have been addressed. We expect to be able
to present further experimental results in a near
future using the full incremental MNN.
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