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Abstract

The Vehicle Routing Problem with Time
Windows (VRPTW) is a complex com-
binatorial optimisation problem which
can be seen as a combination of two
well-known sub-problems: the Travelling
Salesman Problem and the Bin Pack-
ing Problem. Relevant objectives include
minimising the number of vehicles and the
total travelling distance for delivering de-
mand to customers, while complying with
capacity and time constraints. This paper
proposes a novel density restricted genetic
algorithm for solving VRPTW as a bi-
objective problem, incorporating a diver-
sity ratio which gives information about,
and enables restriction of, the density of
solutions. We have applied our algorithm
to a publicly available set of benchmark
instances, resulting in solutions that are
competitive compared with others previ-
ously published.

1 Introduction

Combinatorial optimisation problems can be
found in many real-life applications. Moreover,
many of these problems have not only one, but
several objectives to be optimised, which are fre-
quently in conflict. So, instead of looking for a
single permutation to give the optimal solution,
we search for arrangements to provide sets of so-
lutions that allow trade-offs between objectives.

There are many theoretical combinatorial
problems that can be directly applied to real-
life, one of them being the well known Vehi-
cle Routing Problem (VRP). This problem can
be adopted in transportation logistics like post,
parcel and distribution services.

The VRP’s main objective is to obtain the
lowest-cost set of routes to deliver demand to
customers, but we can also think about reducing
the cardinality of the set of routes. This means

that we can consider VRP as a multi-objective
problem. Moreover, VRP has several variants of
increased difficulty, in particular, the one with
time windows (VRPTW), that forms the main
problem to be studied in this paper, has time as
well as capacity constraints.

Optimal solutions for small instances of
VRPTW can be obtained using exact methods,
but the computation time required increases
considerably for larger sizes [5]. This is why
many published works have made use of heuris-
tic methods, such as local search, ant colony sys-
tems, and genetic algorithms.

Among those publications working with ge-
netic algorithms is that of Potvin and Ben-
gio [10], who developed the GENEetic ROUt-
ing System (GENEROUS), which is based
on the natural evolution paradigm. They
used sequence-based crossover and route-based

crossover in their algorithm, and also devel-
oped three mutation operators: one-level ex-

change, two-level exchange, and one based on
local search. Zhu [13] developed an adaptive
genetic algorithm, which automatically adapted
the crossover probability and the mutation rate
to the changing population dynamics. The
adaptive control maintained population diver-
sity at user-defined levels, and therefore pre-
vented premature convergence. There have been
some hybrid approaches proposed as well, like
those of Berger et al. [1], Le Bouthillier and
Crainic [8] and Homberger and Gehring [7].

There are a couple of recent studies which
are of special relevance here, because they con-
sidered VRPTW as a multi-objective problem
and used a genetic algorithm for solving it. The
first is due to Tan et al. [12], who used the dom-
inance rank scheme to assign fitness to individ-
uals. They designed a crossover operator for the
specific problem called route-exchange crossover

and used a multi-mode mutation which consid-
ered swapping, splitting and merging of routes.
Also, they used three local search heuristics
which were applied every 50 generations. The
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second is the study of Ombuki et al. [9], who
presented a multi-objective genetic algorithm to
minimise the number of vehicles and the to-
tal cost using two approaches: weighted sum
and dominance depth. They also proposed
the specific-problem genetic operators best cost

route crossover and constrained route reversal

mutation, which is an adaptation of the widely
used inversion method. The recent surveys by
Bräysy and Gendreau [2, 3] provides a complete
list of studies of VRPTW and a comparison of
the results obtained.

As we have noted already, only two of the
cited papers have considered VRPTW as a
multi-objective problem [12, 9], and only one
has taken into account the diversity of solutions
in the population [13]. The work presented in
this paper involves solving VRPTW as a multi-
objective problem by means of using a density
restricted genetic algorithm (drGA), which in-
corporates the concept of diversity preservation

to obtain good solutions to the problem. More-
over, even though it has been suggested that it
is unnecessary to introduce new parameters into
genetic algorithms, or evolutionary approaches
in general [4], the inclusion of diversity preserva-
tion led us to introduce a diversity ratio param-
eter, which restricts the density of solutions. We
have tested our algorithm on publicly available
benchmark instances, and compared our results
with those from other publications, and our al-
gorithm appears very promising.

The remainder of this paper is organized
as follows. First, in Section 2, we introduce
VRPTW in more detail. In Section 3 we pro-
vide a brief description of what multi-objective
optimisation problems are, and explain the con-
cepts of fitness assignment and diversity preser-
vation. Our proposed drGA for solving VRPTW
as a multi-objective problem is described in Sec-
tion 4. In Section 5 we present the experimental
set-up and results from our preliminary work, as
well as the comparison with some others already
published. Finally, we give our conclusions in
Section 6 and present some ideas for future work.

2 VRPTW

The Vehicle Routing Problem with Time Win-
dows (VRPTW) is a complex combinatorial op-
timisation problem which can be regarded as
a combination of two well-known sub-problems:
the Travelling Salesman Problem and the Bin
Packing Problem. So, it is at least as difficult as
each of them. VRPTW can be formally defined
as follows. Given:

• a set V = {v1, . . . , vn} of nodes, called
customers, with known demands di > 0, ∀ i ∈
{1, . . . , n},

• a special node v0, called the depot, with
d0 = 0,

• a symmetric cost ωij assigned to the dis-
tance between any pair of customers, or be-
tween the depot and any customer, ∀ i, j ∈
{0, . . . , n}, i < j,

• a time window or interval [bi, ei] associ-
ated with each customer vi ∈ V during which
the customer has to be supplied,

• a service or unload time si associated
with each customer vi ∈ V , and

• a fleet of identical vehicles with capacity
Q ≥ max {di : i ∈ {1, . . . , n}},
we have to design a minimum-cost set of m

routes, so that each route begins and ends at
the depot and each customer is serviced by ex-
actly one vehicle.

Since every customer has a service time win-
dow, a solution becomes infeasible if customer vi

is supplied after ei. Moreover, if a vehicle arrives
at customer vi before bi, a waiting time has to
be added to the travel time. A solution also be-
comes infeasible if the total load on any vehicle
is greater than Q.

Let R = {r1, . . . , rm} be the set of m routes.
Also, set xijk = 1 if the arc (i, j) between
any pair of customers, or any customer and
the depot, is considered in route rk, otherwise
xijk = 0. Then we can define

C =

m∑

k=1

n∑

i=0

n∑

j=0

ωijxijk (1)

as the total cost associated with the set R.

3 Multi-objective Optimisation

Any multi-objective optimisation can, without
loss of generality, be defined as a minimisation
problem of the form:

minimise f(x) = (f1(x), f2(x), ..., fk(x)) (2)

subject to constraint functions:

gi(x) ≤ 0, ∀ i = 1, 2, ..., m (3)

hj(x) = 0, ∀ j = 1, 2, ..., p (4)

where x = (x1, x2, ..., xn) ∈ X is the vector of
decision variables, X is the parameter space, and
fi : R

n → R, i = 1, ..., k, are the objective func-
tions. Functions gi, hj : R

n → R in (3) and (4)
restrict x to consider only feasible solutions.
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A decision vector x ∈ X is said to dominate

a decision vector y ∈ X (written as x ≺ y) if
and only if fi(x) ≤ fi(y) ∀ i = 1, 2, ..., k and
∃ j ∈ {1, 2, ..., k} : fj(x) < fj(y). Similarly,
we say that a decision vector x ∈ X is non-

dominated if there is no decision vector y ∈ X
such that y ≺ x.

A decision vector x ∈ X is said to be Pareto

optimal if it is non-dominated with respect to X .
The Pareto optimal set is defined as Ps = {x ∈
X | x is Pareto optimal}. Finally, the Pareto

front is defined as Pf = {f(x) ∈ R
n | x ∈ Ps}.

3.1 Fitness Assignment and Diversity

Preservation

The task of approximating the Pareto optimal
set involves: minimising the distance of the gen-
erated solutions to the Pareto optimal set, and
maximising the diversity of the achieved Pareto
set approximation. When applying a genetic al-
gorithm for solving this kind of problem, the first
goal is mainly related to the task of assigning a
scalar fitness value to individuals. The second
goal concerns how to handle the selection, be-
cause it is desirable to avoid identical solutions
in the resulting set [14].

In the single-objective case, fitness is as-
signed directly to an individual according to
its objective function evaluation. On the other
hand, in the multi-objective case, this assign-
ment cannot be done straightforwardly, due to
there being not only one objective function, but
at least two of them. In this scenario we may
use one of the following methods [14]:

Dominance count This method considers
the number of solutions dominated by a certain
individual.

Dominance depth The population is di-
vided into several fronts and the depth specifies
which front an individual belongs to.

Dominance rank This method takes into
account the number of individuals by which a
solution is dominated.

Diversity in the Pareto approximation is im-
portant because it is desirable that solutions
within it are different. Density information gives
us a good metric to handle this diversity. To
measure the density of solutions, three relevant
categories of density estimation have been used
in the past [14]:

Kernel The distance between one solution
and all others is calculated and a Kernel func-
tion is applied. Its density estimate will be the
sum of all these evaluations.

Nearest neighbour This method takes into

3 3 2 7 4 1 8 6 5 5 8

52 3 4 6 7 8 9

Route 1 Route 2 Route 3

9

Number of routes

Permutation of    customers

10 11

1110

n

Figure 1: Example of the genetic representation
for a solution to VRPTW.

account the distance between a given point and
its k-th nearest neighbour to estimate the den-
sity in its neighbourhood.

Histogram Techniques in this category de-
fine k-dimensional grids as neighbourhoods in
the k-dimensional space. The number of indi-
viduals in the same grid area as a given solution
is then its density estimate.

4 Multi-objective drGA

We present in this section our proposed drGA
for solving VRPTW as a multi-objective prob-
lem. We detail the genetic representation, and
the stages of processing involved. We also de-
scribe our main contribution, which is the incor-
poration of a diversity preservation method.

4.1 Genetic Representation and Initial

Population

The idea for the genetic representation was in-
spired by [6], and is depicted in Figure 1, which
shows an example with n = 10. It consists of a
chromosome with three parts. The first gene in
the chromosome indicates the number of routes
in the solution (3 in this example). The fol-
lowing n genes are a permutation of the n cus-
tomers (1, . . . , 10 in this example). The rest of
the genes specify the gene of the last customer
in every route. In this example, the first route
includes customers 3, 2, 7, 4, with customer 4 the
last customer of the route, as specified in gene
12. The other two routes are 9, 1, 10 and 8, 6, 5.
The order in which these customers are serviced
is exactly as they appear in the chromosome.

The initial population is built with ran-
dom feasible solutions. Each of these solutions
contains a set of randomly generated routes.
Such routes are constructed in the following
way. First, a customer is randomly selected and
placed as the first location to visit on that route.
A second customer is randomly chosen and, if ca-
pacity and time constraints are met, it is placed
after the previous one. If any of the constraints
are not met, a new route is created and this cus-
tomer will be the first location to visit in the
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new route. This process is repeated until all cus-
tomers are assigned to a route.

4.2 Crossover

The crossover operator takes a traditional form
suggested by [6], and works as follows. The first
step selects from the first parent a random num-
ber of adjacent routes and copies them into the
offspring. The next step copies all those routes
from the second parent which do not include any
customers already copied from the first parent.
If there remain unassigned customers, these are
allocated, in the order they appear in the sec-
ond parent, to any of the existing routes. If a
solution would become infeasible after inserting
such a customer, a new route is created.

4.3 Mutation

For the mutation stage, six operators were im-
plemented:

Insertion One sub-route is randomly cho-
sen and its customers are inserted into another
route.

Swap Two sub-routes are randomly selected
and their customers are swapped.

Inversion One sub-route is randomly cho-
sen and its customers are inverted.

Displace One sub-route is randomly se-
lected and its customers are displaced one po-
sition.

Split One route is randomly chosen and
split.

Merge Two routes are randomly chosen.
The second route is appended after the last cus-
tomer in the first route.

4.4 Fitness, Diversity and Selection

Fitness is assigned to individuals using the dom-
inance depth criterion reviewed in Section 3. We
have considered the minimisation of the number
of routes and the travel distance.

The VRPTW uses a relatively low number
of vehicles. This aspect makes the definition of
niche areas problematic, since most good solu-
tions reside in a very small portion of the vehicle
number dimension [9]. This is why, as an inno-
vative feature to help in the selection process,
we consider the diversity of solutions, using the
nearest neighbour method to estimate density.
Moreover, we consider the number of equal so-
lutions to estimate and restrict density.

In other words, we introduce a new parame-
ter, which we call the diversity ratio (δ), to re-
strict the density of equal solutions from growing

indiscriminately. This parameter is defined as

δ =
#dif. solns.

pop size
(5)

where the numerator refers to the number of dif-
ferent solutions in the population. We use this
parameter to force the algorithm to preserve, at
least, a fixed number of different solutions in the
population. That is

min. #dif. solns. = pop size · δ (6)

For example, if pop size = 100 and δ = 0.1,
we are forcing the algorithm to preserve at least
10 different solutions, but if pop size = 200, the
algorithm will preserve at least 20. So, the max-
imum number of equal solutions in the popula-
tion will be given by

max. #equal solns. =
pop size

min. #dif. solns.

=
pop size

pop size · δ
=

1

δ
(7)

If after the crossover and mutation stages the
density of equal solutions has grown to more
than the maximum allowed, further individuals
are dropped until the density is rectified.

The selection process is carried out twice ev-
ery iteration: to select parents in the crossover
stage and to select the individuals for the next
generation. For the former, we select individu-
als using the tournament selection method. Fit-
ness is the first criterion to use and density the
second. For the latter, we select individuals be-
longing to the first fronts to be carried into to
the next generation.

5 Experiments and Results

To test our algorithm, we used the publicly avail-
able benchmark set due to Solomon [11], which
includes 56 instances of size n = 100. These in-
stances are categorised as Random, Clustered,
and mixed: R, C and RC. Solomon [11] provides
a complete description of the test data, and the
data-sets themselves are publicly available from
his web site1.

We ran our algorithm on each instance for
three different values of δ: 0.01, 0.05 and 0.1.
Figures 2 and 3 display the average conver-
gence obtained for two typical problem instances
(C204 and RC208 respectively).

We can observe from this figure that drGA
with δ = 0.1 could find better solutions, on av-
erage, for those instances. The same behaviour

1. http://w.cba.neu.edu/∼msolomon/home.htm
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Ref. C1 C2 R1 R2 RC1 RC2 Accum.

[10] 10.00 3.00 12.60 3.00 12.10 3.40 422.20
838.00 589.90 1296.80 1117.70 1446.20 1360.60 62571.90

[13] 10.00 3.00 12.80 3.00 13.00 3.70 434.20
828.90 589.90 1242.70 1016.40 1412.00 1201.20 59177.70

[1] 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.48 589.93 1221.10 975.43 1389.89 1159.37 57952.00

[8] 10.00 3.00 12.08 2.73 11.50 3.25 406.99
828.38 589.86 1210.14 969.57 1389.78 1134.52 57555.65

[7] 10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.38 1212.73 955.03 1386.44 1108.52 57192.00

[12] 10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.74 590.69 1187.35 951.74 1355.37 1068.26 56290.48

[9] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

drGA 10.00 3.00 13.17 3.64 13.00 4.38 451.00
857.49 591.03 1248.55 954.47 1413.95 1099.09 58031.73

∆L 3.51 0.28 5.15 6.88 4.32 7.20 4.11
∆H 0.00 0.00 3.86 17.10 2.28 23.79 7.82

Table 1: Averaged best results grouped by instance set.
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Figure 2: Average convergence instance C204.

was found in the majority of the instances, so
we naturally chose to work with this parame-
ter value. The other parameters were set to:
pop size = 200, generations = 600, tournament
size = 5, crossover rate = 0.8, mutation rate =
0.2 (insertion = 0.3, swap = 0.3, inversion = 0.2,
displacement, = 0.15 and split = 0.05).

We ran our algorithm 10 times for every
problem instance and recorded the best solutions
in each run, but because of space limitations, we
cannot present them all here (though they are
publicly available from our research web site2).
We can note that drGA has found two new best
solutions and another 23 similar to the best-
known. In Table 1 we summarize the results
for the instances grouped in sets. They com-
pare our averaged best results with those from
recent publications. We present for each author
and instance set the average number of routes
(upper) and the average travel distance (lower).
The last column presents the total accumulated
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Figure 3: Average convergence instance RC208.

sum, indicating the total number of vehicles and
the total travel distance for all 56 instances. In
the last two rows we compute the percent differ-
ence between our results and the lowest (∆L),
and the highest (∆H) travel distance for each
instance set.

Analysing the results in Table 1, we can see
that for instance sets C1 and C2, our algo-
rithm obtained, on average, the highest costs,
but the gap between these and the lowest re-
sults is narrow. On the other hand, for the
other sets, although the results from our algo-
rithm are not the overall best, they do show con-
siderable improvement over several of the other
algorithms. Moreover, in the case of the accu-
mulated travel distance, the difference between
our results and the highest is 7.86%, despite our
algorithm using a larger number of routes. An-

2. http://www.cs.bham.ac.uk/∼agn/research/
2008/ukci/results.pdf
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other interesting observation is that our results
for sets R and RC and accumulated confirm the
multi-objective nature of VRPTW, in that we
obtained lower travel distances, compared with
other authors, using more routes.

6 Conclusions

We have proposed in this paper our novel density
restricted Genetic Algorithm (drGA) for solv-
ing VRPTW as a multi-objective problem. Its
main characteristic involves guaranteeing a min-
imum number of different solutions in the pop-
ulation at all times, depending on the value of a
new diversity ratio parameter δ which controls
the density of equal solutions. We have applied
our algorithm to a set of benchmark problems
with three different values for this parameter
and demonstrated its importance for obtaining
good results. We have also compared our results
with those from recent publications also using
the genetic paradigm. Although our results are
not the overall best, they are better than some,
and, on average, competitive. Our drGA also
managed to find solutions such that the accu-
mulated travel distance is better than others, de-
spite the number of routes being larger, indicat-
ing the trade-offs underlying the multi-objective
aspects of VRPTW.

Given this promising start, we are now pur-
suing our approach further with improved vari-
ations on the diversity ratio theme, and also ex-
ploring more systematically what improvements
might be possible by varying the various other
associated design decisions made in this study.
We are also comparing our results with those
obtained using another kinds of heuristics.
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