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Abstract

Ant Colony Optimization (ACO) was first
proposed to solve the Traveling Sales-
man Problem, and later applied to solve
more problems of a combinatorial na-
ture. Some research based on ACO to
tackle continuous problems has been pub-
lished, but this has not followed the origi-
nal ACO metaheuristic exactly. Recently,
ACOR has been proposed to solve contin-
uous function optimization problems. We
have taken this work and extended it to
solve multi-objective optimization prob-
lems. After an analysis of the results ob-
tained, including comparisons with two
other well-known methods, we conclude
that ACOR is a promising new technique
for solving multi-objective problems.

1 Introduction

The Ant Colony Optimization (ACO) meta-
heuristic was first proposed to solve combina-
torial problems like the traveling salesman prob-
lem [8, 6, 7], vehicle routing [1, 2, 9] and schedul-
ing [15], among others. Even though ACO has
been used widely to solve combinatorial prob-
lems efficiently, its use on continuous function
problems has been limited due to the fact that
there is not a straightforward extension.

Nevertheless, some methods based on ACO
have been proposed to tackle continuous prob-
lems [14, 12, 13], but these have not followed the
original metaheuristic exactly [11].

Recently, a new state-of-the-art technique
has been proposed, extending ACO to continu-
ous domains without the need to make any ma-
jor conceptual change to its structure. This has
been called ACOR [11]. In that work, the au-
thors deal with single-objective problems, com-
paring their solutions with other previously pub-
lished results. These solutions suggest that
ACOR might usefully be extended to perform

well on multi-objective problems too.
Multi-objective problems can be found in

most engineering domains in the real world, and
most of the time the various objectives are in-
consistent. This means that, when we try to
optimize one objective, we will probably not op-
timize them all. So, instead of looking for op-
timized parameter values to give an optimal so-
lution, we must search for values that provide
appropriate trade-offs.

In this paper we describe how we have ex-
tended the ACOR approach to deal with multi-
objective problems, and provide a visual analysis
of comparative results obtained on some stan-
dard benchmark problems.

The remainder of this paper is organized as
follows. In section 2 we review the standard
ACO metaheuristic. A brief description of the
ACOR approach is given in section 3. In section
4 we define what a multi-objective optimization
problem is. Our proposal for extending ACOR

to tackle multi-objective problems is described
in section 5. The experimental setup and results
are described in section 6. Finally, in section 7,
we give our conclusions about this work and a
few ideas for future work in this area.

2 The ACO metaheuristic

Ant Colony Optimization makes use of agents,
called ants, which mimic the behavior of real
ants in how they manage to establish shortest-
route paths from their colony to feeding sources
and back [8]. Ants communicate information
through pheromone trails, which influence which
routes the ants follow, and eventually lead to a
solution route.

ACO was initially designed to solve the Trav-
eling Salesman Problem (TSP) and works as fol-
lows. The salesman must visit a number of cities
exactly once each by the shortest total path pos-
sible. The cities and routes between them can
be represented as a connected graph, and the
ants move from one city to another following



the pheromone trails on the edges. Let τij be
the trail intensity on edge (i, j). Then, each ant
chooses the next city to visit depending on the
intensity of the associated trail. When the ants
have completed their city tours, the trail inten-
sity is updated according to:

τij = ρτij + ∆τij (1)

where ρ is a coefficient such that 1−ρ represents
the evaporation of trail, which must be set to a
value less than one to avoid unlimited accumu-
lation of trail, and

∆τij =

m
∑

k=1

∆τk
ij (2)

where ∆τk
ij = 1/Wk is the pheromone quantity

laid on edge (i, j) by the k-th ant, if edge (i, j)
is in the trajectory of the k-th ant, and Wk is
the trajectory cost (i.e. total path length) of the
k-th ant [5].

The transition probability pk
ij from city i to

city j for the k-th ant is given by

pk
ij =

τα
ij ηβ

ij
∑

l∈ allowedk
τα
il ηβ

il

, ∀j ∈ allowedk (3)

where ηij = 1/dij is called visibility and dij is
the associated cost to travel from city i to city j,
α and β are parameters that control the relative
importance of trail versus cost, and allowedk is
the set of allowed cities the k-th ant can move
to from city i [5].

3 ACO for continuous domains

Recently, Ant Colony Optimization for contin-
uous domains has been proposed by Socha and
Dorigo [11], which they call ACOR. The main
difference between ACO and ACOR is that the
first uses a discrete probability distribution to
move from one node to another using equation
(3), while the second considers a probability den-
sity function for each dimension. In their work,
Socha and Dorigo [11] use a Gaussian function.
In both versions we have to consider one distri-
bution/function per step/dimension, i.e. n.

In ACO, the pheromone intensity τij between
nodes i and j is seen as a matrix entry, and
each ant contributes to it with a quantity rela-
tive to the quality of the solution it is propos-
ing, if edge (i, j) is in their chosen route. After
the pheromone levels are updated, all routes are
dropped and a new cycle begins.

ACOR uses a solution archive of size k, where
the best solutions, after each cycle, are stored

and sorted according to their rank. If we con-
sider this archive as a matrix, each entry can be
referred to as si

j , i = 1, 2, ..., n, j = 1, 2, ..., k.
Each ant is going to stochastically select one so-
lution from this archive in order to build its own
solution.

A solution sl in the archive is given a weight
ωl according to the its quality (rank)

ωl =
1

qk
√

2π
e

(l−1)2

2q2k2 (4)

where q is a parameter of the algorithm. So, the
probability of solution sl being chosen is

pl =
ωl

∑k

r=1
ωr

(5)

If q in (4) is small, the best-ranked solutions
are strongly preferred, and when it is large, the
probability becomes more uniform [11].

For every dimension, all ants have to sample
a Gaussian function. For each ant we have a
Gaussian function gi(x) at dimension i

gi(x) =
1

σi
√

2π
e

(x−µi)2

2(σi)2 (6)

so we need to define µi and σi.
If an ant has selected solution l to construct

its own solution, then

µi = si
l (7)

and for the standard deviation

σi = ξ

k
∑

e=1

|si
e − si

l|
k − 1

(8)

where ξ is a parameter of the algorithm that has
the same effect as the pheromone evaporation
parameter ρ in ACO, and the higher the value,
the lower the resultant convergence speed of the
algorithm [11].

4 Multi-objective optimization

problems

We can define a multi-objective optimization
problem, without loss of generality, as the mini-
mization problem [10, 16]:

minimize f(x) = (f1(x), f2(x), ..., fk(x)) (9)

subject to the constraints:

gi(x) ≤ 0, ∀ i = 1, 2, ...,m (10)

hj(x) = 0, ∀ j = 1, 2, ..., p (11)
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Figure 1: Definitions: q ≺ r, p and q are non-
dominated and belong to the Pareto front.

where x = (x1, x2, ..., xn) ∈ X is the vector of
decision variables, X is the parameter space, and
fi : R

n → R, i = 1, ..., k are the objective func-
tions. Functions gi, hj : R

n → R in (10) and
(11) are the constraint functions of the problem.

To make this clearer, let us consider the fol-
lowing simple example. Minimize the objective
functions f1(x) and f2(x):

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2 (12)

f2(x) = 9x1 − (x2 − 1)2 (13)

subject to the constraints:

g1(x) = x2

1
+ x2

2
− 225 ≤ 0 (14)

g2(x) = x1 − 3x2 + 10 ≤ 0 (15)

In this case we have k = 2, n = 2, m = 2,
p = 0, and the aim of this paper is to develop an
algorithm that will find values of the decision
variables x1 and x2 which minimize the func-
tions fi while satisfying the constraints gi. The
difficulty is that minimizing one fi will often be
incompatible with minimizing the others.

We need a terminology and notation to spec-
ify the trade-offs between minimizing the various
fi. A decision vector x ∈ X is said to dominate

a decision vector y ∈ X (written as x ≺ y) if
and only if fi(x) ≤ fi(y) ∀ i = 1, 2, ..., n and
∃ j ∈ {1, 2, ..., n} : fj(x) < fj(y). Conversely,
we say that a decision vector x ∈ S ⊂ X is
nondominated with respect to S if there is no
decision vector y ∈ S such that y ≺ x.

A decision vector x ∈ X is said to be Pareto

optimal if it is nondominated with respect to X.
The Pareto optimal set is defined as Ps = {x ∈
X | x is Pareto optimal}. Finally, the Pareto

front is defined as Pf = {f(x) ∈ R
n | x ∈ Ps}.
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Figure 2: Selection criteria to store solutions in
the archive.

These definitions are represented graphically in
Figure 1.

5 ACOR for multi-objective

problems

The main difference we are proposing between
ACOR for single- and multi-objective problems
lies in how to store solutions in the archive. In
ACOR, the best solutions after each cycle are
stored, with the best solutions defined as those
that are closer to the optimal solution. In multi-
objective problems we do not have an optimal
solution, but a set of solutions that are trying to
reach the Pareto optimal set [16]. In this case,
we have to define which solutions are better than
which others.

There are a number of criteria we could use
to say that one solution is better than another.
In this paper we have chosen to use the concept
of dominance depth [4, 17]. Dominance depth
involves grouping solutions into several fronts.
Once the solutions are grouped, we prefer those
solutions belonging to the outer-most front, i.e.
the front closest to the Pareto front, to be stored
in the archive.

If the number of solutions exceed the size k
of the archive, they are selected according to the
density information, which means that a solu-
tion’s chance of being archived is decreased the
greater the density of solutions in its neighbor-
hood [17]. We will call this information crowding

distance [4]. The criteria used to store solutions
in the archive are represented graphically in Fig-
ure 2.

All the other processes in standard ACOR are
preserved for multi-objective problems.



Problem n
Variable Objective

Comments
Bounds Functions

SCH1 1 [−103, 103] f1(x) = x2 convex
f2(x) = (x − 2)2

SCH2 1 [−5, 10] f1(x) =



















−x if x ≤ 1

−2 + x if 1 < x ≤ 3

4 − x if 3 < x ≤ 4

4 + x if x > 4

disconnected

f2(x) = (x − 5)2

DEB1 2 [0, 1] f1(x) = x1 disconnected

f2(x) = (1 + 10x2)
(

1 −
(

x1
1+10x2

)α

− x1 sin(2πqx1)
1+10x2

)

α = 2, q = 4

DEB2 2 x1 ∈ [0, 1] f1(x) = x1 multimodal
x2 ∈ [−30, 30] f2(x) = g(x)h(x)

g(x) = 11 + x2
2 − 10 cos(2πx2)

h(x) =

{

1 −
√

f1(x)/g(x) if f1(x) ≤ g(x)

0 otherwise

POL 2 [−π, π] f1(x) = 1 + (A1 − B1)
2 + (A2 − B2)

2 nonconvex,
f2(x) = (x1 + 3)2 + (x2 − 1)2 disconnected
A1 = 0.5 sin 1 − 2 cos 1 + sin 2 − 1.5 cos 2
A2 = 1.5 sin 1 − cos 1 + 2 sin 2 − 0.5 cos 2
B1 = 0.5 sin x1 − 2 cos x1 + sin x2 − 1.5 cos x2

B2 = 1.5 sin x1 − cos x1 + 2 sin x2 − 0.5 cos x2

FON 3 [−4, 4] f1(x) = 1 − exp

(

−
∑3

i=1

(

xi −
1
√

3

)2
)

nonconvex

f1(x) = 1 − exp

(

−
∑3

i=1

(

xi + 1
√

3

)2
)

KUR 3 [−5, 5] f1(x) =
∑n−1

i=1

(

−10 exp
(

−0.2
√

x2
i + x2

i+1

))

nonconvex

f2(x) =
∑n

i=1(|xi|
0.8 + 5 sin x3

i )

ZDT1 30 [0, 1] f1(x) = 1 convex

f2(x) = g(x)
(

1 −
√

x1/g(x)
)

g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1)

ZDT2 30 [0, 1] f1(x) = 1 nonconvex
f2(x) = g(x)

(

1 − (x1/g(x))2
)

g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1)

ZDT3 30 [0, 1] f1(x) = 1 convex,

f2(x) = g(x)
(

1 −
√

x1/g(x)
)

− (x1/g(x)) sin(10πx1) disconnected

g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1)

ZDT4 10 x1 ∈ [0, 1] f1(x) = 1 nonconvex

xi ∈ [−5, 5] f2(x) = g(x)
(

1 −
√

x1/g(x)
)

i = 2, . . . , n g(x) = 1 + 10(n − 1) +
∑n

i=2

(

x2
i − 10 cos(4πxi)

)

ZDT6 10 [0, 1] f1(x) = 1 − exp(−4x1) sin6(6πx1) nonconvex,
f2(x) = g(x)

(

1 − (f1(x)/g(x))2
)

nonuniformly

g(x) = 1 + 9
(

(
∑n

i=2 xi)/(n − 1)
)0.25

spaced

Table 1: The test problems studied.
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Figure 3: Problem SCH1
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Figure 4: Problem SCH2

6 Experimental setup and results

Naturally we need to test our new approach
against existing techniques for multi-objective
optimization. To do this, we have considered the
multi-objective test problems analyzed in [4] and
[3]. These works apply NSGA-II and MOPSO
respectively, which are well-known methods for
solving multi-objective problems. The test prob-
lems studied are specified in Table 1.

Our results are compared directly with those
obtained using NSGA-II [4] and MOPSO [3].
We have used the code for both of these that is
available from the EMOO repository1. We have
set the population size = 100 and the number
of iterations = 250 for the three methods, and
k = 100, q = 0.0001 and ξ = 0.85 in our pro-
posal. The results comparisons are displayed in
Figures 3 to 14.

In Figures 3 to 6 we can see that all three
methods have obtained similar results, and the
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Figure 5: Problem DEB1
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Figure 6: Problem DEB2

solutions are uniformly distributed over the
Pareto approximation.

For problem POL, shown in Figure 7, our
ACOR approach obtained similar results to
MOPSO, but these solutions are not as good as
those obtained by NSGA-II.

Analyzing Figures 8 and 9, we see that ACOR

is not performing as well here as the other two
techniques, as solutions from ACOR are not uni-
formly distributed over the Pareto approxima-
tion.

For problems ZDT1, ZDT2 and ZDT3,
shown in Figures 10, 11 and 12, we can ob-
serve that the solutions obtained using ACOR

and NSGA-II are uniformly distributed over the
Pareto approximations. In these cases MOPSO
was out-performed.

We can see in Figure 13, showing problem
ZDT4, that the MOPSO Pareto approximation

1. http://www.lania.mx/~ccoello/EMOO/
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Figure 7: Problem POL
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Figure 8: Problem FON
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Figure 9: Problem KUR

in this case is considerably distant from that dis-
covered by NSGA-II. The ACOR solutions lie
between these two sets.

The last problem, ZDT6, shown in Figure 14,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

 

 
NSGA−II
MOPSO
MOACOr

 

 

Figure 10: Problem ZDT1
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Figure 11: Problem ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

 
NSGA−II
MOPSO
MOACOr

 

 

Figure 12: Problem ZDT3

is particularly interesting. MOPSO found so-
lutions that are far from being a good Pareto
approximation. NSGA-II solutions are very
well distributed over the Pareto approximation.
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ACOR could find a better Pareto approximation
than NSGA-II and has solutions uniformly dis-
tributed over it.

We can summarize our empirical results as
follows: The new ACOR algorithm presented
here was able to find a Pareto approximation
as good as that obtained with NSGA-II in seven
of the twelve standard test problems considered,
and found a better Pareto approximation in one
of them.

7 Conclusions

We have presented an extension of the ACOR al-
gorithm that can be used for multi-objective op-
timization problems. Tests on a series of bench-
mark problems have indicated that this ap-
proach may provide a promising new approach
for this type of problem. We have demon-
strated that, overall, the solutions obtained us-
ing ACOR are comparable with those obtained
using two other well-known methods, namely
NSGA-II and MOPSO.

We can conjecture, that the ACOR algo-
rithm’s good performance is due to the fact that
each ant has to select one of the promising solu-
tions in the archive to construct its own solution.
This means that there is a variety of Gaussian
functions that are available to the ants to be se-
lected and sampled in order for the ants to try
to construct even better solutions.

This is the first work using a variation of
ACOR for solving multi-objective problems, and
it is clear that further research would be worth-
while. For example, we should investigate more
carefully the solution sets that are stored in the
archive, and our conjecture concerning the rea-
son for the algorithm’s good performance. We
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Figure 14: Problem ZDT6

need to consider more carefully the properties
of the test problems that result in the different
performance levels found across the various al-
gorithms compared in this study. We also need
to look at various performance metrics to estab-
lish whether there are significant differences in
the performance levels obtained by the various
methods, beyond those that are clearly visible
in the graphs presented.
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