
An Exonic Genetic Algorithm with RNA Editing Inspired
Repair Function for the Multiple Knapsack Problem

Philipp Rohlfshagen

School of Computer Science
University of Birmingham

Birmingham, B15 2TT
UK

P.Rohlfshagen@cs.bham.ac.uk

John A. Bullinaria

School of Computer Science
University of Birmingham

Birmingham, B15 2TT
UK

J.A.Bullinaria@cs.bham.ac.uk

Abstract

The multiple knapsack problem is a well-
known optimisation problem to which nu-
merous different techniques have been
proposed in the past. The most successful
approaches to date rely on the instance
specific value-weight ratios of individual
items. In this paper, we suggest a sim-
ple genetic algorithm that produces com-
petitive results without the use of such
information. The proposed algorithm has
been inspired by the modular composition
of genes and allows for an order indepen-
dent representation of the problem space:
Each of the knapsack’s items is encoded
as a movable element allowing it to group
with likewise elements in one of numerous
segments. Segments are, in turn, used to
repair invalid solutions in a fashion simi-
lar to RNA editing. Results across a se-
lection of instances from a well-known li-
brary of benchmark problems are of the
same quality as those obtained by meth-
ods relying explicitly on problem specific
knowledge.

1 Introduction

Nature inspired approaches, most notably tech-
niques based upon evolutionary principles, have
been applied successfully to solve a wide vari-
ety of optimisation problems. Problems with
constraints are of particular interest as they
occur frequently in real-life situations. Con-
straints essentially fragment the search space
into feasible and unfeasible regions and con-
siderable efforts may be wasted exploring the
unfeasible space. This is especially true for
population based approaches such as genetic
algorithms (GAs) where genetic operators act
freely upon encodings allowing unrestricted ex-
ploration of the search space. This issue has
been approached by the scientific community in

two different ways: Penalty terms and repair
functions. A penalty term penalises illegal solu-
tions to steer the search towards feasibility. Re-
pair functions, on the other hand, convert illegal
solutions into legal ones restricting the search to
the feasible region of the search space. Either
approach has its advantages and disadvantages:
Penalty terms may be added easily to the stan-
dard GA framework but potentially suffer from
the feasibility problem where the final popula-
tion of the evolutionary run consists solely of un-
feasible solutions. Special care has to be taken
to overcome this issues [4]. Repair functions, on
the other hand, keep the entire population in the
feasible regions of the search space at all times.
They may, however, be computationally expen-
sive and often seem to rely on the use of domain
specific knowledge, and such knowledge may not
always be available or easy to utilise.

In this paper, we suggest a simple genetic
algorithm with an efficient repair function that
achieves the same degree of success as prob-
lem specific approaches but without the need for
such knowledge. This is accomplished by allow-
ing the repair function to co-evolve and adapt
during the evolutionary process. We use this al-
gorithm to solve instances of the multiple knap-
sack problem (MKS), a highly constrained class
of problems of both theoretical and practical in-
terest (see [11]). The results show this approach
outperforming other techniques from the litera-
ture.

The paper is structured as follows: Section
2 describes the multiple knapsack problem fol-
lowed by a comparison of penalty terms and
repair functions in section 3, and a review of
relevant work in section 4. Section 5 gives a
brief background to molecular genetics. The
proposed algorithm is presented in section 6 and
the experimental set-up is described in section 7.
Results and analysis may be found in section 8
followed by a discussion and brief overview of
future work prospects in section 9.



2 The Multiple Knapsack

Problem

The MKS problem, sometimes called the multi-
constrained knapsack problem, is a generalisa-
tion of the single 0/1 knapsack problem. It is
NP-complete and may be found in several real-
life scenarios such as cryptography or the indus-
trial cutting stock problem. The problem is to
fill a series of knapsacks, each of capacity ci, with
any combination of items drawn from a fixed set
of size n such that the sum of values of all items
in the knapsacks is maximised without exceed-
ing any of the knapsack’s capacities. Each item
is included in all knapsacks simultaneously with
the item’s weight depending on each of the knap-
sacks. More formally,

max
n∑

i=1

vixi subject to
n∑

i=1

wijxi ≤ cj

where xi ∈ {0, 1}. The value of each item is de-
noted as vi and wij refers to the weight of item i
in regard to knapsack j. In this paper, we make
use of the SAC’94 library of benchmark prob-
lems which is available online1. This library is
a collection of solved MKS instances taken from
different publications. These instances range in
size from 15-105 items and 2-30 knapsacks.

A general review of numerous different opti-
misation techniques shows that approaches us-
ing problem specific knowledge are likely to
outperform their “blind” counterparts (see [5]).
While almost all algorithms use some under-
standing about a problem’s structure in their
design, only few use instance specific attributes.
As section 4 will highlight, approaches that
make explicit use of the items’ value-weight ra-
tios clearly outperform approaches that do not
exploit such information. It may be difficult,
however, to utilise domain specific knowledge
properly. In the MKS, for example, it is not
clear whether to use the average value-weight
ratio of an item across all knapsacks or its min-
imum value. The algorithm described here does
not rely on such instance specific knowledge. In-
stead, it relies upon a general assumption made
about the class of MKS problems: Optimal solu-
tions have, on average, minimal waste of capac-
ity and contain items with higher value-weight
ratios with increasing frequency. This intuitive
concept is further illustrated in figure 1 and, as
section 4 will show, has been implemented suc-
cessfully elsewhere. The next section will inves-
tigate different techniques to handle constraints
without the use of any problem specific knowl-

L e g a l s o l u t i o n s
I l l e g a l s o l u t i o n s

O p t i m a l s o l u t i o n s
Figure 1: Illustrating the assumptions made
about the MKS: A simplistic visualisation of the
search space as viewed from a feasibility point of
view. Once an solution violates any of the im-
posed constraints, it becomes illegal. Optimal
solutions are likely to be situated very close to
the boundary separating the feasible and unfea-
sible space where waste of capacity is minimised.
Optimality is subsequently determined by the
value-weight ratios of all items included in the
knapsacks.

edge.

3 Genetic Algorithms: Penalty

Terms versus Repair Functions

GAs ([8], [15]) are abstract implementations of
evolutionary systems designed to be used as op-
timisation techniques: A population of individ-
uals encodes potential solutions to a problem of
interest. Selection, recombination and mutation
allow for the population’s fitness to increase over
time until a satisfactory solution has been found
or a stopping criterion has been met. GAs have
traditionally been using binary encodings and
are thus highly suitable for binary optimisation
problems such as the MKS: Each individual is a
binary vector with each digit indicating the in-
clusion (1) or exclusion (0) of the indexed item.

We have conducted a test to compare the
performance of a GA using penalty terms to
an identical GA using repair functions to solve
instances of the MKS. We test the two most
common penalty approaches, the violation prod-
uct and sum of violations. The former, labelled
pen1, subtracts from the encoding’s score the

1. http://elib.zib.de/pub/Packages/
mp-testdata/ip/sac94-suite/



number of constraint violations multiplied by
the highest value of all items. The latter, pen2,
subtracts the actual sum of all constraint vio-
lations. This is compared to two random re-
pair techniques: rep1 removes items from the
knapsacks at random (i.e. converts 1’s to 0’s)
until feasibility is obtained. rep2 adds a sec-
ond phase to rep1 by adding items at random,
if possible, after the removal phase. A stan-
dard steady-state GA is used, with parameter
settings as described in section 7. We found
that a random selection of parents performs well
for pen1, pen2 and rep1, while rep2 performs
best if the hamming distance between parents
is maximised. This may be explained by the
loss of diversity using rep2: A repair function
restricts the search process to the feasible region
of the search space. The second phase of rep2
further restricts the search to solutions close to
the boundary of the feasible space (see figure 1).
This results in a general loss of diversity which is
restored to some degree by maximising the ham-
ming distance between parents prior crossover.

Penalty terms are employed more frequently
in conjunction with GAs than repair functions
(see [17]). The reason for this is likely to be
the possible interference of repair procedure and
crossover, both of which perturb the encoding
they are acting on. However, the results from
this experiment, summarised in table 1, show
repair functions to outperform penalty terms on
almost all instances, everything else kept equal.
A similar result for a different problem was ob-
tained recently by Gréwal et al. [6]: The authors
found a repair function to outperform a penalty
approach when used in conjunction with a GA
on a set of digital signal processor (DSP) bench-
mark problems. These results encourage the use
of repair based techniques for the MKS.

4 Previous Work

The MKS problem is probably one of the most
widely studied constrained optimisation prob-
lems in the evolutionary computation commu-
nity. Here we concentrate on approaches that
deal with instances contained within the SAC’94
library of benchmark problems. We review four
different approaches, two of which use domain
specific knowledge. The earliest approach is by
Khuri et al. [12] who suggest the use of a graded
penalty term (violation product) to penalise in-
valid solutions based upon the number of con-
straint violations. The authors use a canoni-
cal GA with modified fitness function to focus
the search process on the feasible regions of the

search space. This concept is taken further by
Kimbrough et al. [13] using a two-market GA.
Two phases are used to obtain feasible solutions:
The first phase is optimality improvement while
the second phase is feasibility improvement. The
authors test two different penalty terms, viola-
tion product and sum of violations, the former
of which is identical to the graded penalty term
suggested in [12].

Further improvement is achieved using in-
stance specific knowledge: Cotta et al. [2]
suggest a hybrid GA with a greedy construc-
tion heuristic that builds solutions by selectively
choosing items of high value-weight ratios. The
individuals in the algorithm’s population rep-
resent perturbations of the problem instance
by manipulation of the items’ profits. Jun et
al. [10] suggest an evolutionary game algorithm
that also makes use of the value-weight ratios.
This information is used to construct a repair
function that removes items in order of increas-
ing ratios until feasibility is obtained. This is
followed by a second phase that includes items,
if possible, in order of decreasing ratios. The su-
periority of this last approach over the previous
ones demonstrates the validity of the assump-
tions made earlier: The repair function produces
tightly packed solutions maximising the value-
weight ratios of the items considered for inclu-
sion. The results of all these studies are sum-
marised in table 2 and are used for comparison
to the results obtained here (see section 8).

5 Exons, Introns and RNA

Editing

This section will provide a brief background
in genetics highlighting the motivation for our
work. Evolutionary computation has tradition-
ally been inspired by population genetics but
there has been a recent trend towards molecu-
lar genetics. This movement is partly driven by
recent advances in genetics, most notably the
genome sequencing projects, which have shed
light on the great complexity of information pro-
cessing in the cell. The approach suggested here
has been inspired by some aspects of molecular
genetics and hints at the great potential abstrac-
tions of biochemical processes have to offer.

The information processing architecture of
the cell is highly complex and recent advances in
genetics have shown how biochemical processes
that occur after transcription but before trans-
lation add a significant level of complexity to
the expression of DNA. The central dogma of



Instance opt pen1 pen2 rep1 rep2

hp2 3186 36% 3172.2 0% 5645 0% 3119.5 100% 3186
pb6 776 79% 773.7 75% 773 100% 776 100% 776
pb7 1035 63% 1032.6 54% 1031.6 63% 1033.2 100% 1035
pet3 4015 100% 4015 0% 4230 100% 4015 100% 4015
pet4 6120 100% 6120 0% 6577 100% 6120 100% 6120
pet5 12400 99% 12399.9 0% 13298 89% 12398.8 100% 12400
pet6 10618 9% 10587.8 0% 13390 64% 10611.4 31% 10607.5
pet7 16537 4% 16484.5 0% 20594 5% 16476.8 84% 16533.1
sent01 7772 72% 7768.1 65% 7767.4 77% 7769.3 92% 7771.1
sent02 8722 20% 8710.7 37% 8714.9 32% 8715 25% 8713
weing7 1095445 4% 1095158.9 0% 1121698.2 2% 1095194.5 0% 1095033.1
weing8 624319 0% 908647.8 0% 1116698.2 55% 623850.3 2% 620611.7
weish12 6339 0% 6307.5 2% 6790.78 100% 6339 100% 6339
weish17 8633 5% 8575.5 2% 8747.7 98% 8632.8 100% 8633
weish21 9074 4% 9250.4 3% 9578.4 99% 9073.8 100% 9074
weish22 8947 2% 9396.7 2% 9507.6 96% 8946.3 69% 8941.4
weish25 9939 0% 9916.9 3% 10225.3 83% 9937 97% 9938.8
weish29 9410 2% 10417.5 0% 10252 97% 9409.4 95% 9408.9

Table 1: Comparing penalty terms to repair functions: For each approach, the percentage of times
the global optimum has been found is shown alongside the final average value after 20,000 function
evaluations. Repair functions perform better than penalty terms on almost all instances. It is also
interesting to note that several of the final results obtained using the penalty approaches are situated
clearly in the unfeasible regions of the search space.

Approach
SGA HGA EGA 2-MGA

Instance # opt 5,000-200,000 20,000 20,000 2,500,000

hp2 35/4 3186 - - 100% 3186 - 3186
pb6 40/30 776 - - 100% 776 - 730.2
pb7 37/30 1035 - - - 1034.6 - 1033
pet3 15/10 4015 83% 4012.7 100% 4015 100% 4015 -
pet4 20/10 6120 33% 6102.3 94% 6119.4 100% 6120 -
pet5 28/10 12400 33% 12374.7 100% 12400 100% 12400 -
pet6 39/5 10618 4% 10536.9 60% 10609.8 99% 10617.9 -
pet7 50/5 16537 1% 16378 46% 16512 100% 16537 - 16486.6
sent01 60/30 7772 5% 7626 75% 7767.9 100% 7772 - 7769.8
sent02 60/30 8722 2% 8685 39% 8716.5 69% 8721.7 - 8720.4
weing7 105/2 1095445 0% 1093897 40% 1095386 100% 1095445 - 1094727
weing8 105/2 624319 6% 613383 29% 622048.1 73% 623844.8 - 623627.8
weish12 50/5 6339 - - 100% 6339 - 6339
weish17 60/5 8633 - - 100% 8633 - 8633
weish21 70/5 9074 - - 100% 9074 - 9074
weish22 80/5 8947 - - 100% 8947 - 8947
weish25 80/5 9939 - - 100% 9939 - 9939
weish29 90/5 9410 - - 100% 9410 - 9203.2

Table 2: Summary of results from the literature: Each instance is listed alongside its size (number
of items/number of knapsacks) and optimal solution. For each technique, all available results are
shown: The percentage of times the global optimum has been found alongside the final average value.
The number of function evaluations used are shown below each of the names. SGA refers to the
canonical GA with graded penalty term. HGA is the hybrid GA with greedy construction heuristic.
EGA is the evolutionary game algorithm and 2-MGA is the two market GA. Details in text.

genetics tells us that double-stranded DNA is
first transcribed to single stranded RNA which
is subsequently translated into a polypeptide of
amino acids. However, almost all eukaryotic
genes contain non-coding regions called introns,

which require splicing prior translation.
In general, eukaryotic genes are modular,

composed of exons and introns in an alternat-
ing fashion. Exons are often synonymous with
independent protein domains allowing for vital



effects such as exon shuffling [3] to occur: Exons
from different genes may be recombined to pro-
duce novel protein products (see [14]). Introns,
on the other hand, are artefacts of exon mobil-
ity and also serve as a buffer for crossover to oc-
cur. Some introns, however, play a much more
vital role and may occasionally be included in
the final transcript by means of alternative splic-
ing. In other cases, introns may serve as editing
templates for adjacent exons in a process called
RNA editing. Loosely speaking, RNA editing se-
lectively targets individual nucleotides for mod-
ification to yield a fully functional protein fab-
rication of which would otherwise be prevented
by processes such as non-sense mediated decay.

RNA editing itself is catalysed by double-
stranded RNA adenosine deaminase (dsRAD)
which converts adenosine (A) to inosine (I). Ino-
sine is subsequently interpreted as guanosine (G)
making it effectively an A-G exchange. This al-
lows for 26 of 61 codons to be altered, a propor-
tion that encodes 12 of the 20 amino acids [7].
The full biochemical details of RNA editing are
highly complex and beyond the scope of this pa-
per (see, for example, [1]) but fortunately not re-
quired to formulate a sound and useful abstrac-
tion of this post-transcriptional process. The al-
gorithm alongside its repair function is discussed
in the next section.

6 The Exonic Genetic Algorithm

The review of past literature highlights the ben-
efit of using an item’s value-weight ratio. The
approach suggested here makes use of the same
repair function as in [10], but instead defines the
relative order of items considered for either re-
moval or inclusion and not the actual order. In
other words, if we view the encoding as a di-
rectional vector, we always start considering the
left-most items for removal first. The inclusion
phase, on the other hand, proceeds from right
to left. Items are represented as movable ele-
ments allowing for their actual order to evolve
during the evolutionary process. In order to en-
hance scalability, we relax the requirement for
an exact ordering of items: The encoding is com-
posed of segments with items being allowed to
move from one segment to another. The order
of segments defines the order of consideration for
the two phases of the repair function. All items
within the same segment, however, are chosen
at random. This also increases the population’s
diversity as identical unfeasible individuals may
differ after the repair phase. This principle is il-
lustrated in figure 2. Each item is represented as

111 2 11 330 43 1 52 1 620 730 8 11 920 1 0111112 11 33043 152 1620 7308 11 9201 011
I t e m #S e g m e n tB i n a r y v a l u eR e m o v a l

I n c l u s i o n 33043 1 730 52 1620 920 1112 11 8 111 011
Figure 2: The exonic encoding and repair ap-
proach: Each encoding consists of triplets con-
taining the item to be represented, its segment
number and binary value. This information is
then used to repair the encoding if necessary.
Groups are prioritised but items in each group
are chosen at random for removal/inclusion.

a triplet composed of the item’s number it repre-
sents, the current segment number and a binary
value indicating whether the item is to be used
in the solution (1) or not (0). Two mutation
operators are used: One moves items from one
segment to another while the other inverts the
element’s binary value.

The proposed algorithm is an extension to
the canonical steady-state GA inspired by the
modular organisation of genes. We have shown
in previous work how a modular encoding based
upon the structural properties of eukaryotic
genes may greatly improve the canonical GA
on a dynamic version of the knapsack problem
[16]. The repair function suggested here bears
noticeable resemblance with the process of RNA
editing where individual nucleotides within an
exon are targeted for modification to produce
viable protein products. Such modifications are
required, for example, in mitochrondrial RNA
to remove stop codons which would otherwise
prevent fabrication of active proteins [7]. Mi-
tochrondrial RNA may thus be considered un-
feasible prior to its repair similar to the unfeasi-
ble encodings of the MKS. GAs with RNA edit-
ing have been suggested previously [9] but those
implementations bear only little resemblance to
the approach suggested here. Apart from the
newly proposed encoding and repair function,
the GA uses standard components throughout:
Each iteration consists of the common selection,



crossover, mutation and replacement cycle. The
first parent is selected at random while the sec-
ond parent is the individual in the population
with maximum hamming distance to the first.
This is to enhance diversity during the algo-
rithm’s execution. Uniform crossover is used fol-
lowed by the mutation operators described ear-
lier. In order to use uniform crossover we have
to fixate the order of items represented by each
individual. Mutations to segment numbers are
used to establish movability. In other words, the
first element of an individual always represents
the first item of the instance to be solved, but
its segment number allows for a different order-
ing to be establish during the two-phase repair
process. For replacement, each of the two off-
spring competes with one of its parents, chosen
at random, in a binary tournament.

7 Experimental Setup

The experiments have been set-up to comply
with the settings found in previous work. We
use 18 instances of the MKS chosen from the
SAC’94-library. For each instance, we run the
algorithm 100 times with the number of func-
tion evaluations limited to 20,000. The crossover
rate is set to 0.8 and a low mutation rate of
0.5/n is chosen, where n is the number of items
in the problem instance. The mutation rate is
identical for both mutation operators. The pop-
ulation size is 150 and the number of exons is
set to 10. These parameters have been estab-
lished after some initial, although by no means
exhaustive, testing. For each instance, we note
the number of times the optimal solution has
been found and how many function evaluation
were required on average to do so. We also note
the total average result found across all 100 runs
after 20,000 function evaluations. The results
are shown and discussed in the next section.

8 Results and Analysis

All results are shown in table 3 and compared
to those discussed in section 4. We compare
performances solely based upon the informa-
tion available in the literature and do not im-
plement the other approaches to generate fur-
ther data. The ExGA completely outperforms
SGA and 2-MGA being at least as good across
all instances. It is interesting to note the rel-
atively poor performance for instance weing7,
the only case where the ExGA performs worse
than HGA. In all other cases, however, ExGA

performs better than HGA. Comparing ExGA
to EGA, the best of the other approaches, we
note a slightly superior performance: The two
approaches perform equally well across the ma-
jority of instances while the ExGA performs bet-
ter on 3 instances and worse on 2.

The number of function evaluations required
to reach the optimum solution is generally much
lower than the limit of 20,000 and, in the case
of pet3, as low as 706. Most striking is the poor
performance for weing7. On the other hand, per-
formance on sent02 and weing8 is superior to
EGA by 23% and 17% respectively. The results
also indicate the method seems to scale well and
that performance is dependent upon the specific
attributes of the problem space rather than the
number of items. For example, weish29 with
n = 90 is solved every time while pet6 with
n = 39 is solved in only 82% of all cases. Further
extensive testing is required as the number of in-
stances considered here is insufficient to validate
this assumption. Figure 3 shows the algorithm’s
performance in respect to the number of items in
each problem instance indicating no correlation
between performance and problem size.

9 Conclusion and Future Work

We have shown that a “blind” search algorithm
may produce results competitive with those ob-
tained using algorithms with explicit domain
specific knowledge. The exonic genetic algo-
rithm (ExGA) incorporates a repair function
that relies upon the relative order of items (left
to right, right to left). The actual order of items
is adaptive and evolves during the evolutionary
process. This is a partial ordering only with
items of same priority being selected at random
during the repair process. This improves the
algorithm’s scaling performance, at least across
the limited number of test cases considered here.
The adaptive approach offers at least two ad-
vantages over the other approaches in the liter-
ature: Firstly, problem specific knowledge is not
required. Secondly, items of low value-weight
ratios may be part of the globally optimum so-
lution. A rigid approach will always attempt to
remove such item if the solution is unfeasible.
The ExGA, however, may place such item in a
position such that it will never be considered for
removal.

As mentioned earlier, further testing is re-
quired to firmly establish how well the algo-
rithm will scale. It is also of interest to in-
vestigate why there is a performance drop on
some instances, most notably weing7. Addi-



ExGA Differences
Instance Solved FunEvals Average SGA HGA EGA 2-MGA Rep2

hp2 100% 5386.4 3186 - - ±0% ±0 ±0%
pb6 100% 2515.7 776 - - ±0% +45.8 ±0%
pb7 100% 6288.2 1035 - - +0.4 +2 ±0%
pet3 100% 705.6 4015 +17% ±0% ±0% - ±0%
pet4 100% 1450.9 6120 +67% +6% ±0% - ±0%
pet5 100% 2193.4 12400 +67% ±0% ±0% - ±0%
pet6 82% 8888.8 10615.6 +78% +22% −17% - +51%
pet7 100% 9918.2 16537 +99% +54% ±0% +50.4 +16%
sent01 100% 9471 7772 +95% +25% ±0% +2.2 +8%
sent02 92% 15305 8721.9 +90% +53% +23% +1.5 +67%
weing7 15% 16257.9 1095317.4 +15% −25% −85% +590.4 +15%
weing8 90% 13456.1 624178.2 +84% +61% +17% +550.4 +88%
weish12 100% 5919.3 6339 - - ±0% ±0 ±0%
weish17 100% 5661.1 8633 - - ±0% ±0 ±0%
weish21 100% 8809.2 9074 - - ±0% ±0 ±0%
weish22 100% 10776.9 8947 - - ±0% ±0 +31%
weish25 100% 11957.2 9939 - - ±0% ±0 +3%
weish29 100% 11743.1 9410 - - ±0% +206.8 +5%

Instances worse 0 1 2 0 0
Instances equal 0 2 13 6 9
Instances better 9 6 3 8 9

Table 3: For each instance, the number of times the optimum has been found is shown and how
many functions evaluations on average were required to do so. The total average after 20,000
function evaluations is shown also. Where possible, the number of times the optimum has been
found is compared. In all other cases, the numerical difference after 20,000 function evaluations has
been used.

02 04 06 08 01 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8I n s t a n c e
P erf ormance

n

% s o l v e d

1 : p e t 32 : p e t 43 : p e t 54 : h p 25 : p b 76 : p e t 67 : p b 68 : p e t 79 : w e i s h 1 2
1 0 : s e n t 0 11 1 : s e n t 0 21 2 : w e i s h 1 71 3 : w e i s h 2 11 4 : w e i s h 2 21 5 : w e i s h 2 51 6 : w e i s h 2 91 7 : w e i n g 81 8 : w e i n g 7

Figure 3: Performance of ExGA across all instances: The top line shows the number of times the
instance has been solved (out of 100 runs) while the lower line shows the number of items in each
instance.



tional future work should also attempt to deter-
mine whether the suggested approach could be
applied to other constrained problems that so far
have relied upon the explicit use of instance spe-
cific information. The multiple knapsack prob-
lem is of great interest and we have shown here
how it may be solved efficiently making some as-
sumption about the class of problem in general
but refraining from the use of instance specific
information. The success of the suggested ap-
proach also supports the notion that algorithms
exploiting insights from molecular genetics are
worthy competitors to the well established tradi-
tional approaches that are based on population
genetics.

Acknowledgements

This work was supported by a Paul and Yuanbi
Ramsay scholarship.

References

[1] B. L. Bass. RNA editing and hypermuta-
tion by adenosine deamination. Trends in
Biochemical Sciences, 22(5):157–162, 1997.

[2] C. Cotta and J. M. Troya. A hybrid ge-
netic algorithm for the 0-1 multiple knap-
sack problem. In G. D. Smith, N. C. Steele,
and R. F. Albrecht, editors, Proceedings of
the International Conference on Artificial
Neural Networks and Genetic Algorithms,
pages 250–254. Springer, 1997.

[3] W. Gilbert. Why genes in pieces? Nature,
271(501), 1978.

[4] J. Gottlieb. On the feasibility problem of
penalty-based evolutionary algorithms for
knapsack problems. In E. J. W. Boers,
J. Gottlieb, P. L. Lanzi, R. E. Smith,
S. Cagnoni, E. Hart, G. R. Raidl, and
H. Tijink, editors, Applications of Evolu-
tionary Computing: EvoWorkshops 2001:
EvoCOP, EvoFlight, EvoIASP, EvoLearn,
and EvoSTIM, Como, Italy, 2001.

[5] J. J. Grefenstette. Incorporating problem
specific knowledge into genetic algorithms.
In L. Davis, editor, Genetic algorithms and
simulated annealing, pages 42–60. Morgan
Kaufmann Publishers, 1987.

[6] G. Gréwal, S. Coros, D. Banerji, and
A. Morton. Comparing a genetic algorithm
penalty function and repair heuristic in the

DSP application domain. In Artificial In-
telligence and Applications, pages 31–39,
2006.

[7] A. Herbet and A. Rich. RNA processing
and the evolution of eukaryotes. Nature Ge-
netics, 21:265–269, 1999.

[8] J. H. Holland. Adaptation in Natural and
Artifical Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

[9] C.-F. Huang and L. M. Rocha. Exploration
of RNA editing and design of robust ge-
netic algorithms. In Proceedings of the 2003
IEEE Congress on Evolutionary Computa-
tion. IEEE Press, 2003.

[10] Y. Jun, L. Xiande, and H. Lu. Evolutionary
game algorithm for multiple knapsack prob-
lem. In Proceedings of the IEEE/WIC In-
ternational Conference on Intelligent Agent
Technology, pages 424–427. IEEE, 2003.

[11] H. Kellerer, U. Pferschy, and D. Pisinger.
Knapsack Problems. Springer, 2004.

[12] S. Khuri, T. Bäck, and J. Heitkötter. The
zero/one multiple knapsack problem and
genetic algorithms. In E. Deaton, D. Op-
penheim, J. Urban, and H. Berghel, editors,
Proceedings of the 1994 ACM Symposium
of Applied Computation proceedings, pages
188–193. ACM Press, 1994.

[13] S. Kimbrough, M. Lu, D. Wood, and D. J.
Wu. Exploring a two-market genetic al-
gorithm. In GECCO0-2002: Proceedings
of the Genetic and Evolutionary Computa-
tion Conference, pages 415–422, California,
2002. Morgan Kaufmann.

[14] J. A. Kolkman and W. P. C. Stemmer. Di-
rected evolution of proteins by exon shuf-
fling. Nature Biotechnology, 19:423–428,
2001.

[15] M. Mitchell. An Introduction to Genetic
Algorithms. MIT Press, 1996.

[16] P. Rohlfshagen and J. A. Bullinaria. Al-
ternative splicing in evolutionary computa-
tion: Adaptation in dynamic environments.
In Proceedings of the 2006 IEEE Congress
on Evolutionary Computing (CEC 2006),
Piscataway, NJ, 2006. IEEE.

[17] O. Yeniay. Penalty function methods for
constrained optimization with genetic algo-
rithms. Mathematical and Computational
Applications, 10(1):45–56, 2005.


