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Abstract

The selection operator in the standard ge-
netic algorithm (GA) determines which
individuals are chosen from a relatively
homologous population for mating and
crossover. This operator is crucial for the
performance of the GA, since it may lead
the algorithm to premature convergence
and limited search scope (or genetic diver-
sity) by repeatedly choosing very strong
individuals with similar genetic code. In
the model proposed here, a sexual strat-
egy is introduced by simulating distinct
gender groups, with each gender having
different partner selection criteria, and a
model of sexual selection that allows for
competition between individuals in the
same group and co-operation when a mat-
ing relation is established. As in natu-
ral systems, crossover is only permitted
between individuals in contrasting gen-
der groups, and the mutation probabil-
ities depend on the individual’s gender.
Experimental results on some standard
optimization problems provides evidence
that this is a useful strategy.

1 Introduction

The design of Genetic Algorithms (GAs) has
been based on inspiration from Darwinian natu-
ral selection [3] and biological genetic evolution.
Most GA systems include common relevant fea-
tures from living organisms, such as genetic re-
combination (by means of crossover), mutation,
and fitness assessment for selection. However,
one of the most common biological features is
not included in the standard algorithm, namely,
gender [6, 11].

With the appearance of gender, organisms
became more “adaptable” to their environment

by inheriting beneficial traits from both par-
ents favoured by selection. Also, a more effi-
cient process of resource and energy administra-
tion became possible by task-specialization and
task-separation according to each gender’s ad-
vantages [8, 7]. This paved the way for the ap-
pearance of some well known animal behaviours,
such as co-operation between complementary
genders, which helped with the ever present need
to move towards an optimization of the problem
of survival.

A few gendered GA models have already
been proposed in the literature [2, 9, 10, 12], but
in most cases the inclusion of gender is merely
limited to a representation of an objective func-
tion (in multi-objective optimization), or as a
tag in the chromosome preventing crossover with
other individuals bearing the same gender flag.
Many of the most fundamental observed princi-
ples of sexual selection, such as the derived com-
petition and co-operation patterns within and
between gender groups, are not modelled.

The strategies proposed here aim to extend
the GA towards a more “natural” approach by
the inclusion of gender and sexual selection in
the population. A different fitness assessment
method is used for each gender, thus modelling
natural preferences in partner selection. Male
individuals are selected based on their direct or
competitive fitness, which is the output of the
standard GA quality function over the chromo-
some. Females, however, are selected based on
their indirect or co-operative fitness, which in-
cludes a measure of the potential of the indi-
vidual to increase her offspring’s direct fitness
(compared to their father), and her fertility ca-
pabilities according to her age and life-span.

The organisation of this paper is as follows:
Section 2 provides a full description of the gen-
dered strategies, Section 3 discusses some exper-
imental results using three different optimisation
problems, and Section 4 gives some conclusions
and recommendations for future work.



2 The Gender Strategy

Sex is believed to have “evolved” from asexual
organisms some 2 billion years ago. It has pre-
vailed as a mechanism for reproduction and task
separation since then, and it is perhaps one of
the most commonly observed features in nature.
Sexual reproduction presented a number of ad-
vantages over asexual mechanisms, and made
possible a more varied genetic pool [7]. For in-
stance, if a deleterious genetic mutation took
place in an asexual individual, it would be trans-
mitted to all descendants unless a back-mutation
reverting the gene, or an additional mutation
compensating its effects, appeared. With sex-
ual reproduction, a simple genetic recombina-
tion with a partner not having this mutation
could produce offspring completely free of the
change.

Although various sexual attractors are very
common in nature, their exact functions are of-
ten still unclear. However, we may safely assume
that important principles lie behind them, for
they have passed nature’s test of evolution [2],
and in fact, they have led to life’s most com-
mon and successful strategies for reproduction.
Despite the apparent risk for survival that some
phenotypic and behavioural traits based on sex-
ual selection represent to the bearer (for exam-
ple, the brighter color and longer heavier feath-
ers of the male longtailed widow bird, which
make him easier to spot and more vulnerable to
predators), they endow the individual with bet-
ter chances for getting a mate for reproduction.
In the case of many bird species, the pompous
quirks observed in them are an instrument for
fitness assessment in the sexual selection process
that will reward the fittest with the proliferation
of his genes.

The GA strategies proposed here are mod-
elled on the following biological considerations:

• Gender: In most gendered species, males
and females have different phenotypic traits
(sexual dimorphism), and usually these
groups are responsible for different subsets
of the tasks that as a whole are vital for
survival [8, 6, 11].

• Mutation Rates: It is a recently established
fact that, in most species, males and females
have considerably different rates of certain
types of mutations [11, 6, 5].

• Sexual Selection: Males and females tend
to have distinct preferences when it comes
to selecting a partner for mating.

• Fertility and age influence the individual’s
fitness and help maintain genetic diversity
in the population by allowing new individ-
uals to intervene in crossover.

The rest of this section will specify the various
elements of the gender extension to the GA we
are proposing.

First, let P be the population of the GA, and
let X and Y be two proper subsets of P repre-
senting females and males respectively. Follow-
ing the definition of proper subsets P = X ∪ Y

and X ∩ Y = ∅. A system parameter γY then
denotes the fraction of individuals in set Y , so
it follows that at any given time, the probability
of an individual a ∈ P being in set Y or X is:

p(a, Y ) = γY , p(a, X) = 1 − γY (1)

Mating takes place in pairs, with one male and
one female parent, and using crossover, two new
individuals are produced, one of each gender.
The male parent is selected first using a stan-
dard selection procedure based on his task fit-
ness. After the male parent has been selected, a
female parent is then chosen using a sexual se-
lection scheme that includes direct fitness, age
and fertility potential.

The direct fitness of an individual is the out-
come of the task performance quality or fitness
function applied to the individual’s genotype,
and therefore it will also be referred to as the
individual’s competitive fitness. The indirect fit-
ness measure that is used to select the female
parents can be described as the weighted average
of the individual’s direct fitness, an age function
and her potential to produce fit offspring com-
pared to her partner’s direct fitness. A female’s
indirect fitness will also be referred to as her co-
operative fitness.

To make all this more precise, let us define
our selection function to be Sel(φ(a)), which re-
turns one chosen individual from the set of all
competing individuals a with fitness function φ.
The choice will normally involve some form of
randomness, and will always be biased accord-
ing to the fitness φ. The male (y) and female
(x) parents are selected according to:

∀y ∈ Y, ∀x ∈ X

ysel = Sel(f(y)) (2)

xsel = Sel

(

w1f(x) + w2∆f(y) + w3g(Age(x))

w1 + w2 + w3

)

(3)
in which the wi are a set of fixed weighting pa-
rameters that we must choose to specify appro-



priate relative importance to the three compo-
nents.

Both male and female selection depends on
the direct fitness f(y). The second factor for
females is

∆f(y) = f(yson) − f(ysel) (4)

which is a measure of how much the female’s
contribution is likely to enhance a male off-
spring’s fitness over it’s father’s. Clearly, ∆f

will have a value of zero for the initial gener-
ation. Thereafter, whenever a male offspring
has been produced and compared with it’s fa-
ther, ∆f can be computed for that female for
the next selection process. This is not a disad-
vantage for the oestrogenic individuals, because
the sexual selection scheme involves no compe-
tition between contrasting gender groups.

The third factor, involving the function
g(Age(x)), is introduced for females to provide
an effect of age on the chances of being selected.
In biological populations it will depend in a com-
plex manner on perceived likelihoods of produc-
ing healthy offspring and being experienced at
looking after them. For our purposes, a simple
triangular function of width σ around the age of
maximum fertility µ proves adequate. Thus for
Age(x) < µ + σ we have

g(Age(x)) = 1 −
|Age(x) − µ|)

σ
(5)

and beyond that age it is zero. For practical
purposes we can take µ + σ to be the given in-
dividual’s life-span.

The combination of this selection scheme and
the crossover operator steadily evolve a sym-
biotic relationship. The rationale for this is
that each gender specialises on a substring of
the genome. For example, with a one-point
crossover, females may contribute to the trail-
ing part of the genome string. The better a fe-
male’s contribution is to her offspring’s fitness,
the better her fitness will also be, and hence the
better her chance to get selected again. Such
co-operative patterns between opposite genders
allow the selection and crossover operators to
“adapt” to each other.

As with all GAs, each individual a ∈ P will
be specified by a chromosome that represents
the given problem solution as a string of length
L in some generalised alphabet. We then have to
define appropriate mutation and crossover oper-
ators on those chromosomes.

Mutation is implemented at different fixed
rates for each gender group, and following bio-
logical systems, the male’s rate is higher than

the female’s [11, 6, 5], so

∀y ∈ Y, ∀x ∈ X

my > mx (6)

For all the experiments presented in this paper, a
standard one-point crossover was used, but there
are obviously many other possibilities.

3 Experimental Results

Three different standard optimization problems
were selected to test our proposed gendered se-
lection strategy. The first was the exponential
NP-hard Travelling Salesman Problem (TSP),
the second was one of DeJong’s test functions in
his GA analysis [4], and the last was a function
with many local optima in its landscape [10].
Our sexual selection GA and the standard GA
were compared using the results from each test
problem performed with all other parameters
matched.

For each test function, the mutation rate for
the standard GA was computed using

mP = γY mY + (1 − γY )mX (7)

where γY is the proportion of males in the pop-
ulation of the gendered GA, and mY is the male
mutation rate in that algorithm. From equa-
tion 1, we can see that the effective mutation
rate for both algorithms should then be approx-
imately equal.

In all our experiments the well known
“roulette wheel” selection method was used so
as to maintain similarity with the standard GA
for performance comparisons, and a one-point
crossover was used. All the results presented
are averaged over 100 experimental runs.

3.1 Test Function 1 (The TSP)

The TSP is a classic combinatorial problem that
has been widely used to study different optimi-
sation algorithms in the past. The task is to find
the minimum length route that visits, with no
repetition, each member of a set of points/nodes
in some metric space. Many evolutionary meth-
ods have already been proposed for this prob-
lem, and some effective evolutionary operators
have been design to boost the algorithms’ per-
formance. For more detailed information on
the TSP, and references to other proposed ap-
proaches, see [1].

To ensure a fair comparison of our sexual se-
lection strategy against the standard GA, the



Nodes Standard GA Gendered GA
DeJ’s X Optima DeJ’s X Optima

20 0.7382 96 0.9828 100
50 0.2370 0 0.7189 44
200 0.0350 0 0.1009 0
500 0.0121 0 0.0265 0

Table 1: Comparison of performance for 100 ex-
perimental runs of the Standard and Gendered
GA for the TSP problem.

standard genetic operators for the TSP were
used. The usual TSP representation was im-
plemented, i.e. the chromosome consisted of the
list of points in the order they are visited, so
a chromosome (2 4 1 3) represented the tour
2 → 4 → 1 → 3 → 2. Mutation simply con-
sisted of swapping two cities in the list.

The initial parameters were population size
|P | = 200, crossover probability of 0.75 and
elitism proportion of 0.07. The gendered strat-
egy parameters, used in equation 3, were w1 =
0.75, w2 = 0.55 and w3 = 0.18. The perceived
fertility function, defined in equation 5, had pa-
rameter values µ = 2 and σ = 4. The mutation
rate for males was mY = 0.1, and for females
it was mX = 0.001, and hence, from equation
7, the mutation rate for the standard GA was
0.0505. The proportion of male individuals in
the population was 0.5 (i.e. 50%).

The metric used for comparison of the gen-
dered and standard GA performance was De
Jong’s off-line measure [4], defined as

X∗
e (h) =

1

T

T
∑

t=1

f∗
e (t) (8)

where f∗
e (t) = best{f(a1), f(a2), . . . , f(a|P |)} at

generation t, and T is the total number of gen-
erations. This measure is thus the average of
the best individuals over all the generations pro-
duced by the algorithm. Since all our experi-
ments were based on 100 trials, our off-line mea-
sure is then averaged over 100 runs.

In Table 1 the performance comparison of
the gendered and standard GA for the TSP is
shown. The main indicator given is DeJong’s off-
line measure and the table also shows the num-
ber of known global optima that each algorithm
achieved. As mentioned before, no problem-
oriented operators were used e.g. edge preser-
vation crossover, etc. since we were aiming to
compare the behaviour of the strategy against
the standard GA. Figure 1 shows the typical in-
creases in performance with generation we get
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Figure 1: 50-node TSP results for the standard
and gendered GA. Fitness averages over the pop-
ulation (above), and average best individual fit-
nesses (below).

for the two approaches.

3.2 Test Function 2

The second test function used was proposed by
DeJong in his analysis of the behaviour of a
GA [4]. This function is defined as

f(x, y) = 100(x2 − y)2 + (1 − x)2

−2.048 ≤ x, y ≤ 2.048

Figure 2 shows the function. The representation
used was a binary Gray code chromosome.

Here, different parameters from the TSP case
are appropriate. For both GAs, the population
size was 80 individuals iterated for 14 genera-
tions, and an elitism proportion of 0.07 was used.
Then for the gendered GA, the male mutation
probability was set at 0.1, the female mutation
probability at 0.001, and the proportion of males
in the population was 0.5. Again using equa-
tion 7, the mutation rate for the standard GA
was set at 0.0505. The wi factors in equation 7
were w1 = 0.65, w2 = 0.2 and w3 = 0.15.

Table 2 shows the performance of the gen-
dered and standard GA for test function 2.



Figure 2: Test Function 2. This was previously
used for analysis of the behaviour of genetic al-
gorithms in DeJong’s studies [4].

Metric Standard GA Gendered GA
Best 3905.89 3905.93

Pop. Fit 3515.99 3529.40
Best Fit 3905.67 3905.65

Table 2: Best solution obtained, population fit-
ness average and best fitness average for the
standard and gendered GA on test function 2.

The best solution obtained by each algorithm
is shown on the first row, while the average fit-
ness of the population and the average fitness of
the best individual over the experimental trials
are shown in rows 3 and 4 respectively. Figure 3
shows how the fitness varies with generation.

The differences here are smaller than for the
TSP case, so we performed t-tests to provide a
rigorous comparison of the results from each al-
gorithm. In this case, the sexual selection GA
does perform significantly better than the stan-
dard GA in terms of the population average fit-
nesses (p < 0.01), but not in terms of the best
individual fitnesses (p = 0.7).

3.3 Test Function 3

For the last test, a function used in [10], con-
taining many local optima in its landscape, was
chosen. It is defined as

f(x, y) = x1/3sin(x) + y1/3sin(y) + c

0.0 ≤ x, y ≤ 32.0

in which the constant c is an arbitrary integer
value chosen to keep the function with positive
values. Figure 4 provides a scene of the func-
tion’s multi-peak nature. As with test function
2, the chromosome here was a binary Gray coded
representation.
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Figure 3: Results for the standard and gendered
GA on test function 2. Fitness average of the
population (above), and average best individual
fitness (below).

Figure 4: Test Function 3. This test function
has a landscape, or problem search space, with
many local optima.

Metric Standard GA Gendered GA
Best 14.977 14.978

Pop. Fit 9.660 9,667
Best Fit 14.712 14.736

Table 3: Best solution obtained, population fit-
ness average and best fitness average for the
standard and gendered GA on test function 3.
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Figure 5: Results for the standard and gendered
GA in test function 3. Fitness average of the
population (above), and average best individual
fitness (below).

The parameters used in this case were a pop-
ulation size of 80 and 14 generations, and an
elitism proportion of 0.07. For the gendered GA,
a male mutation rate of 0.1 was used, and the
females had a rate of 0.01. The male proportion
in the population was again 0.5. The wi fac-
tors in equation 7 were w1 = 0.5, w2 = 0.3 and
w3 = 0.22.

The results for this test function using the
gendered and standard GA are given in table 3.
Figure 5 shows how the fitness varies with gen-
eration. In this case, there is no significant dif-
ference between the sexual selection GA and the
standard GA in terms of the population average
fitnesses (p = 0.5), but the gendered GA is sig-
nificantly better in terms of the best individuals
(p < 0.01).

4 Conclusions

We have presented gendered selection strategies
for GAs that model the competitive behaviour
observed between individuals of the same gen-
der, and the co-operative patterns that emerge
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Figure 6: A comparison of the population aver-
age fitness behaviour (above), and the best aver-
age fitness (below). The Wi indicate the factor
which has non-zero weight wi in equation 3.

between different gender groups. Distinct mate
selection patterns, mutation rates and age pa-
rameters for the two gender groups are likely to
help the algorithm avoid local optima stagnation
and possible exponential take-over of strong in-
dividuals.

Results from our preliminary experiments
suggest that this is a promising approach that
can significantly outperform the standard GA,
both in terms of the number of generations re-
quired and in the quality of the solutions. There
is clearly a certain degree of problem dependence
in the improvements, and this is something we
plan to explore more systematically in the fu-
ture.

The extra parameters required for the sex-
ual selection scheme certainly add complexity to
the algorithm. However, they also provide more
flexibility for the designer by allowing freedom
to set the weights (wi) of the underlying factors
according to the nature of the problem being
dealt with.

Intuitively, we can arrive at a general strat-
egy for understanding and setting the sexual se-



lection weight parameters:

• w1 (Competitive fitness factor) is the weight
given for the quality function of the individ-
ual. Setting higher weight on this parame-
ter may result in having better off-line mark
on average.

• w2 (Age and fertility factor) should improve
genetic diversity in the population by not
allowing very strong individuals take over
the genetic pool. In problems where many
good solutions are wanted (e.g. design prob-
lems), w2 should have a relatively strong
weight

• w3 (Co-operative fitness factor) is the
weight given for the potential of the female
to improve her offspring’s competitive fit-
ness. On average, if w1 or w3 are high,
the on-line [4] and off-line measures of the
algorithm are likely to improve. However,
if the proportion of males in the popula-
tion is either very high or very low, (i.e.
the male:female ratio is very distant from
50:50), then w2 is likely to make the algo-
rithm find a better solution.

Figure 6 provides an initial indication of the ef-
fects on the gendered GA performance results
for test function 3 due to each the three weight
factors wi. For the W1 plots, the weight factor
w1 was set to 1.0 and the other two were elim-
inated with a value of 0.0. Similarly, the W2
plots correspond to setting the weight factor w2

to 1.0 with w1, w3 set to 0.0, and finally, W3 has
w3 set at 1.0 with w2, w3 set to 0.0. We see there
are clear differences between the effects of the
three weights, and also between the results for
population averages and best individuals. Plots
such as these will provide a valuable source of
information for our future investigations of the
problem dependences of the gendered GA per-
formances.

Further research is also planned to explore
the best general parameter-tuning and parame-
ter control strategies, as well as the nature of the
trade-offs of different mutation rates between
genders, to build a more solid theoretical basis
for the whole gendered GA approach.
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