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Abstract

The problem of classifying sensory inputs is
ubiquitous for both biological and artificial
systems.  Determining which neural network
learning algorithms are best for particular
classes of classification problems can be
difficult because each algorithm usually has a
number of parameters that need to be set to
optimal values for a fair comparison.  An
increasingly common and powerful approach
is to use simulated evolution to optimize those
parameters.  In this paper I reconsider the task
of evolving the most efficient learning
algorithms for neural network classifiers.

1 Introduction

The use of neural networks for classification is now
widespread.  For a particular object or situation one
has a corresponding set of relevant data, and the aim
is to classify it into one of a pre-determined set of
classes.  Typically, a simple feed-forward network is
trained on a set of correctly classified examples, and
is expected to perform well on that training set and
also to generalize well to new instances that it has not
seen before.  We have one input unit for each
dimension of relevant data (which may be binary, or
real valued, or a mixture), an appropriately large
hidden layer of sigmoidal units, and one sigmoidal
output unit for each class.  The network is usually
trained by some form of gradient descent algorithm
so that appropriate outputs are produced for each
input.  By using appropriate sigmoidal outputs, the
actual network outputs can be interpreted as posterior
probabilities of the corresponding classes [1].

If, as is commonly the case, the learning is based
on the minimization of a sum-squared error cost
function, there is a well known potential problem that
can arise with any sigmoidal network trained on
binary outputs.  It is that the weight updates depend
linearly on the derivative of the output activation
function, and for sigmoidal activation functions that
derivative tends to zero as the sigmoids saturate at
either the correct or the maximally incorrect output.
This means it is theoretically possible for the network
to get stuck with some outputs totally wrong, and in

practice this seems to be quite common in realistic
applications.  For example, if the initial weights are
set too high, there may be saturation even before the
training has begun.  Or, during the early stages of
training, some patterns (e.g. the most regular or
frequent) can dominate the weight changes and
increase the error on the other patterns.  By the time
the errors on the dominant patterns have reduced to
small values, the other patterns are already saturated
and stuck in error.

Perhaps the most obvious solution to this, that has
been used since the re-discovery of the back-
propagation learning algorithm [8], is to simply
offset the targets.  Instead of using the actual binary
targets of 0 and 1, one offsets them slightly to 0.1 and
0.9 (say), so the sigmoids never saturate and the
weight update signals no longer go to zero if the
wrong target is approached.  Another early solution
to the problem involves directly offseting the sigmoid
derivatives (a.k.a. sigmoid primes), e.g. by adding a
small constant of 0.1 (say) to them [5].  This Sigmoid
Prime Offset (SPO) approach is clearly another way
of preventing the weight update signals from going to
zero when wrong targets are approached.

There is a difficulty with both of these approaches
in that it is not obvious how to choose appropriate
values for the offset parameters.  We should probably
try to avoid deviating from true gradient descent any
more than we have to, but we want to be sure that the
offsets are large enough to be maximally effective.
Some experimentation, and perhaps a liking for
round numbers, has led to offsets of 0.1 being more
or less standard for all problems.  However, it is not
clear that these really are the optimal values, nor is it
clear which form of offset is best to use.  The
problem with performing comparisons is that the best
values of the other learning algorithm parameters
(such as the learning rates and initial weight
distributions) may depend on the type of offset used,
and also on the magnitude of the chosen offset.

A somewhat more principled solution that has
been proposed, as an alternative to both the target and
sigmoid prime offsets, is to replace the sum-squared-
error gradient descent cost function with the cross-
entropy cost function [6, 9].  In this case, the sigmoid
derivatives simply cancel out of the weight update
equations, and so we never have the problem of them
going to zero for totally wrong outputs. However,



although this is certainly a more principled approach
to follow for classification problems [1], it is not
obvious that it will actually result in faster training
than the other approaches.  Even if we do wish to
finish the training using the cross-entropy cost
function, it may still be a good strategy to start it off
using the sum-squared error cost function and offsets
if it is quicker.  However, fair comparisons are again
a problem because the optimal learning algorithm
parameters are almost certainly going to be different.

Fortunately, increases in computational resources
over recent years have now rendered it feasible to
optimize such learning parameters using evolutionary
strategies [10], and thus we can ensure that we are
comparing each approach when performing as best
they can.  In the remainder of this paper I shall
describe the Target Offset, Sigmoid Prime Offset,
and Cross Entropy approaches in more detail, and
present the results of some evolutionary simulations
that optimize each case for a representative pair of
classification problems – one with binary inputs and
one with real valued inputs.  I shall end with a clear
conclusion concerning which approach is best.

2 The Neural Network Classifiers

The procedure for training feed-forward networks by
gradient descent is now well known [1, 6], so I shall
simply summarize my notation here.  The standard
weight wij update equation at each epoch n is
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where E is the chosen cost function. Past experience
indicates that networks learn better if they have
different learning rates ηL for each connection layer,
and each bias set.  So, to ensure that each network
learns at its full potential, each has five learning
parameters: the learning rate η IH for the input to
hidden layer, ηHB for the hidden layer biases, ηHO for
the hidden to output layer, and ηOB for the output
biases, and the momentum parameter α.  The initial
network weights wij(0) are generated randomly with a
uniform distribution from the range [-i wL, +iwL].
Naturally, different initial weight range parameters
iwL are allowed for the input to hidden layer
connections, the hidden layer biases, the hidden to
output layer connections, and the output biases.

With the sum squared error (SSE) cost function
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the output layer weight derivatives are
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where tj are the binary target network outputs, oj are

the actual outputs, and h i are the hidden unit
activations.  The term in square brackets is the
problematic sigmoid derivative that goes to zero as
the sigmoids saturate.  We thus consider
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where spo2 is the sigmoid prime offset that would be
zero if the derivative were performed exactly.  For
completeness, we should also allow the possibility of
a similar sigmoid prime offset spo1 at the hidden
layer, since the hidden units can also saturate and
cause problems during training, or even at the start of
training if the initial weights are set too large.

The second problem solution mentioned above is
to offset the output targets, and take them to be toff
and 1–toff, rather than 0 and 1, with appropriate
outputs beyond these targets deemed errorless for the
purposes of weight updates.

Finally, the third approach is to employ a better
gradient descent cost function.  For the cross-entropy
(CE) cost function for two classes
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and the output layer weight derivatives are
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For classification with multiple class the appropriate
CE error function is slightly more complex, and for
the output activations one should use a generalization
of the standard sigmoid known as the sof tmax
function, but the weight update equation ends up the
same [1].  One might expect there to be no need for
offsets here, and indeed there is no place for an spo2,
but we should still check to see if there is any
advantage in having a non-zero spo1 at the hidden
layer, or a non-zero output target offset toff.

3 Evolving the Classifiers

Our goal here is to use evolution by natural selection
to optimise the three approaches to neural network
classifier training discussed above, with view to
determining which of them is best.  The evolutionary
processes are simulated by taking whole populations
of individual instantiations of each classifier, and
allowing them to learn, procreate and die in a manner
approximating those processes in real (biological)
systems.  Each individual will have a genotype that
contains all the innate parameters needed to specify
it, and that genotype will depend on the genotypes of
its two parents plus random mutation.  Throughout
their simulated lives, the individuals will learn from
their environment how best to adjust their weights to
perform their classifications most accurately.  Each



individual will eventually die, but the fittest ones will
have first produced a number of children.

In biological evolutionary systems, the ability of
individuals to survive or reproduce will depend on a
number of factors which can vary in a complicated
manner on that individual’s performance over a range
of related and unrelated tasks (finding food, fighting,
fleeing, and so on).  For the current purposes, it is
appropriate and sufficient to assume a simple relation
between the performance on the given classification
task and the survival or procreation fitness.  Whilst
any monotonic relation should result in similar
evolutionary trends, we often find that, in simplified
simulations, the details can have a big effect on what
evolves and what gets lost in the noise.

Since it has worked so well in the past, I shall
follow a similar evolutionary regime to that which I
have previously used to study genetic assimilation
and the Baldwin effect in the evolution of adaptable
control systems [2, 4], and the evolution of
modularity in neural network systems [3].  This
involves a more natural approach to procreation,
mutation and survival than many evolutionary
simulations have used in the past (such as described
in [10]).  Rather than a traditional ‘generational’
scheme in which each member of the whole
population is trained for a fixed time and the fittest
are picked to breed and form the next generation, a
‘steady state’ scheme is used with populations
containing competing learning individuals of all ages,
each with the potential for dying or procreation at
each stage.  During each simulated year, all the
individuals will learn from their own experience with
the environment (i.e. set of training/testing data) and
have their fitness determined.  Then fitness based
competition between randomly selected pairs kills
some of the least fit individuals, and a flat random
sub-set of the oldest individuals die of old age.  The
dead are replaced by children, each having one parent
chosen randomly from the fittest members of the
population, who randomly chooses a mate from the
rest of the whole population.  Each child inherits
characteristics from both parents such that each
innate free parameter is chosen at random somewhere
between the values of its parents, with sufficient
noise (or mutation) added that there is an appropriate
probability of the parameter falling outside the range
spanned by the parents.  There are clearly many other
aspects of biological evolution that one could
incorporate into the simulations, but this simplified
approach proves adequate.

All the information needed to specify the details
of each individual network will be coded as innate
parameters in its genotype, namely the architecture,
the initial connection weights, the learning algorithm,
the learning rates, the offsets, and so on.  In natural
biological evolution, all these parameters will be free
to evolve.  In simulations that are designed to explore

particular issues, it is sensible to fix some of these
parameters to avoid the complication of unforeseen
interactions (and also to speed up the simulations).
In my earlier studies of the Baldwin effect [2, 4], for
example, it made sense to keep the architecture fixed
and allow the initial innate connection weights and
learning rates to evolve.  In my study of modularity
[3] it was more appropriate to have each individual
start with random initial connection weights and
allow the architecture and learning rates to evolve.

Here it is appropriate to take a fixed fully
connected feed-forward architecture with one hidden
layer and random initial weights, and allow all the
learning algorithm parameters to evolve, i.e. the four
learning rates, the momentum, and the offsets.  Then,
given that the appropriate ranges for the random
initial weights may well depend on the evolved
learning parameters, and vice versa, we must allow
the four initial weight distributions to evolve as well.
Altogether, each genotype thus contains up to twelve
evolvable parameters: four to control the individual’s
distribution of random initial weights, five to control
its learning rates, and up to three to determine the
offsets.  All the other network parameters, such as the
number of hidden units, are kept fixed in time and
across the whole population.

4 Simulation Specifications

As always, we can expect a certain degree of problem
dependence with the simulation results, so two
representative sets of classification training data were
studied.  First, a set with binary inputs:

‘What’ – A simplified pattern recognition task that
maps simple images (5 × 5 binary matrices) to a
representation of ‘what’ (a 9 bit binary vector with
one bit ‘on’).  Following earlier studies [7, 3], 9
patterns consisting of different 3 × 3 arrays with 5
cells ‘on’ were used as images, and these could
appear in any of 9 positions in the full input array,
giving 81 training patterns in all (Figure 1).

and second, a set with real valued inputs:

‘2D3C’ – Two common classes and one rare class
that depend on position in a unit two dimensional
input space.  A set of 125 training patterns were
generated by random sampling (Figure 2).  Some
learning algorithms will have difficulty in learning
to deal with the rare class because of saturation in
favour of the neighbouring common class.

Past experience indicates that a crucial factor in
obtaining reliable results is the setting of all the
evolutionary parameters appropriately according to
the details of the problem, and the speed and
coarseness of the simulations.  For example, if all the
individuals were able to learn to classify perfectly by



the end of their first simulated year, and we only
tested their performance once per year, then the
advantage of those that learn in three months over
those that take nine is lost, and our simulated
evolution would not be very realistic, nor would it
encourage faster learning.  Since all the networks
were allowed to evolve their own learning rates, this
had to be controlled by restricting the number of
hidden units and the number of presentations of the
training data set per simulated year for each
individual.  With 36 hidden units (which is plenty,
but not excessive, for both tasks) appropriate
numbers of training set presentations per year proved
to be two for the ‘What’ task and four for the ‘2D3C’
task.  A fixed population size of 100 was chosen as a
trade-off between maintaining genetic diversity and
running the simulations reasonably quickly.  The
death rates were set to result in reasonable age
distributions, and in particular, to prevent the
population becoming dominated by skilled adults
who killed off most of their children before they had
a fair chance to learn how to classify well.  In
practice, this meant 10 deaths per year due to
competition, and another 3 individuals over the age
of 20 dying each year due to old age.  The results
appear to be pretty robust with respect to the other
parameter details, but it is important that the
distributions of the mutations are chosen to speed up
the evolution as much as possible by maintaining
genetic diversity without introducing an excessive
amount of noise into the process.  These parameter
choices led to coarser simulations than one would
ideally like, but otherwise the simulations would still
be running.

As with any other evolutionary simulation, an
appropriate choice of fitness function is crucial.  For

classification problems, one should naturally count
the number of classification errors, but there are
several ways one can do this.  We can simply count
the number of correct highest output unit activations,
or we can set thresholds on the output activations; we
can count whole training patterns, or individual
output units; and so on.  Probably the most principled
fitness measure would be in inverse proportion to the
total number of network output unit activations that
are significantly wrong (e.g. more than 0.2 from their
binary targets) over the whole training set.  This does
work reasonably well, but the distribution of errors
actually becomes rather skewed over the population,
so the appropriate fitness measure was chosen to be
1/log(1+ErrorCount).

5 Simulation Results

My previous studies involving this evolutionary
regime [2, 3, 4] indicated that the consequences of
evolution can depend rather strongly on the initial
conditions, i.e. on the distribution of the innate
parameters across the initial population.  In
particular, I found that populations tend to settle into
a near optimal state more quickly and reliably if they
start with a wide distribution of initial learning rates,
rather than expecting the mutations to carry the
system from a state in which there is very little
learning at all.  Thus, in all the following simulations,
the initial population learning rates ηL were chosen
randomly from the range [0.0, 4.0], the momentum
parameters α randomly from the range [0.0, 1.0], and
the random initial weight ranges iwL from the range
[0.0, 4.0].  This produces results that are sufficiently
consistent that we are able to present typical runs,
rather than averages which tend to obscure many of

Figure 1:  The ‘What’ training data that consists of
classifying nine 3 × 3 pixelated images that can
appear anywhere in a 5 × 5 input grid.
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Figure 2:  The ‘2D3C’ training data that consists of
125 data points sampled randomly from a two
dimensional input space and split into three classes.



the interesting details.  We still find quite large
variations in some of the evolved learning rates and
initial weights, but the crucial performance levels and
offsets are very robust.

It is convenient to start by looking at the easier
‘What’ task, and then explore whether any different
behaviours emerge for the ‘2D3C’ task.  Figures 3
and 4 show how the initial weight distribution sizes
and learning rates evolve for the ‘What’ task with
SSE and CE cost function and no offsets.  The degree

to which each parameter varies with year is an
indication of how important it is to individuals’
fitness.  Note the large differences between the
emerging values for the different network
components and for the different cost functions.  It is
clear that the common practice of setting the same
initial weight distributions and learning rates
throughout a given network is unlikely to result in the
optimal performances we can arrive at with an
evolutionary approach.
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Figure 4:  Evolution of the initial weight ranges and learning rates for the CE cost and ‘What’ training data.
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Figure 5:  Learning of the ‘What’ training data by the evolved populations for SSE (left) and CE (right) cost.
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Figure 3:  Evolution of the initial weight ranges and learning rates for the SSE cost and ‘What’ training data.



Figure 5 provides plots of the classification error
rates against age for the final evolved populations.
The graph on the left shows how the evolved SSE
population from Figure 3 is unable to learn the task
to perfection, whereas on the right the evolved CE
population from Figure 4 is consistently able to learn
the given task by about 10 simulated years of age.  It
is easy to confirm that the problem with the SSE case
is that some outputs really are getting stuck with
totally wrong values as noted in the introduction.

As discussed above, we can hope to do better,
particularly in the SSE case, by evolving appropriate
offsets.  Figure 6 shows what happens in practice.
For both the SSE and CE cost functions, we find that
spo1 and toff take on very low (effectively zero)
values, indicating that their presence does not help.
In the SSE case, we see that s p o 2  takes on
surprisingly large values, much greater than the small
offset of around 0.1 that is traditionally used.

A systematic study reveals that the final spo2
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Figure 6:  Evolution of the offsets for the SSE (left) and CE (right) cost functions with the ‘What’ training data.
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Figure 7:  Evolution of the initial weight ranges and learning rates for the SSE cost and ‘2D3C’ training data.
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Figure 8: Evolution of the initial weight ranges and learning rates for the CE cost and ‘2D3C’ training data.



values are rather dependent on the details of the
mutation distributions employed.  However, what
does seem to consistently happen is that the offset
swamps the actual sigmoid derivative to result in
weight updates that are good approximations to the
CE weight updates, but with the learning rates
multiplied by spo2.  Normally, multiplying the
learning rates by large numbers would be detrimental
to learning, but because the base learning rates ηL are
also allowed to evolve, they adjust themselves in

inverse proportion to spo2  to give appropriate
effective learning rates at each stage.  In effect, the
SSE cost function has discovered how to evolve into
the better CE cost function, with its superior learning
performance.

It seems that we have a clear answer to what is the
best learning algorithm for the ‘What’ task, but is this
true more generally?  We now turn to the ‘2D3C’
data set with its real valued inputs.  This actually
proves harder to learn, and the evolution takes longer.
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Figure 9: Learning of the ‘2D3C’ training data by the evolved populations for SSE (left) and CE (right) cost.
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Figure 10: Evolution of the offsets for the SSE (left) and CE (right) cost functions with the ‘2D3C’ training data.
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Figure 11: Learning of the ‘2D3C’ training data by the evolved populations corresponding to Figure 10.



Figures 7 and 8 show the evolution of the initial
weight distributions and learning rates here in the
absence of offsets.  The learning abilities of the
evolved populations are shown in Figure 9.  As with
the ‘What’ task, the CE population easily learns the
task, but the SSE population cannot.

If we allow offsets to evolve, they emerge as in
Figure 10.  For both the SSE and CE cases, toff again
takes on effectively zero values, but here spo1 at the
hidden layer takes on values around 0.1 rather than
near zero.  This allows the networks to use rather
large initial weight values, and potentially saturate
many of the hidden units, without getting stuck with
inappropriate internal representations there.  In the
SSE case, we again see spo2 take on relatively large
values, so the system again essentially evolves into a
good approximation of the CE case.

The learning abilities of the final populations
from Figure 10 are shown in Figure 11.  Performing
statistical comparisons between the cases is made
difficult by the small population sizes, and the
relatively large effect of very poorly performing
outliers introduced by the rare disastrous mutations
that arise from the mutation distributions necessary to
get the simulations completed in a timely fashion.
However, taking three separate generations near the
final evolutionary states and removing the worst
performing 3% provides reasonable results.   We find
the tasks are learned to perfection by mean age of
13.0 (s.d. 8.2, N = 291) for the SSE case, and 12.4
(s.d. 7.0, N = 291) for the CE case.  There is actually
no significant difference between these performances
(t test p = 0.29).  For comparison, the CE case with
no offsets (Figure 9 right) has a mean learning age of
15.9 (s.d. 13.7, N = 291) which is significantly worse
than both the cases in Figure 11 (t test p < 0.003).
Naturally it is this improvement that drives the
evolution of the non-zero spo1, but the effect is rather
small and noisy, and easily masked by the variability
inherent in the random initial weights.  In fact one
has to be very careful in setting the evolutionary
parameters (in particular the mutation distributions)
to guarantee that the effect emerges at all from the
noise.

6 Conclusions

We have seen how an evolutionary approach can be
used to generate neural network classifiers that can
learn quickly and reliably.  These may find a place in
many real world applications.  Three well known
techniques for preventing the problems of learning
binary outputs using SSE cost functions were
investigated, namely introducing target offsets,
introducing sigmoid derivative offsets, and changing
the cost function to CE.  Attempts to optimize the
offsets and other learning parameters for two
representative classification training sets resulted in

the SSE cost function effectively evolving into the
CE cost function which has no such learning
problems.  This suggests that the best general
strategy is to employ the CE, rather than SSE, cost
function for training neural network classifiers.  It
also emerged that one can also improve on the
standard CE case by allowing a sigmoid derivative
offset to evolve at the hidden layer to prevent the
hidden units becoming saturated and stuck with
totally inappropriate values early on in training.
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