
To Modularize or Not To Modularize?

John A. Bullinaria

School of Computer Science, The University of Birmingham
Edgbaston, Birmingham, B15 2TT, UK

j.bullinaria@physics.org

Abstract

There is a considerable degree of modularity
in the human brain and numerous reasons why
it might have evolved to be that way. One
may be tempted to build such modularity into
our artificial systems. Indeed, Rueckl, Cave
& Kosslyn (1989) demonstrated how a clear
advantage in having a modular architecture
can exist in neural network models. Here I
present a series of simulations of the evolution
of such neural systems that show how the
advantage can cause modularity to evolve.
However, I shall also show that it is possible
to evolve even more efficient systems that are
not modular. It seems that making the
decision whether to build modularity into our
systems is not as easy as is often thought.

1 Introduction

When building complex intelligent systems, one has
numerous design decisions to make. Given the
obvious potential for disruptive interference, it seems
quite reasonable that two independent tasks will be
more efficiently carried out separately by two
dedicated modules, rather than together by a
homogeneous (fully distributed) system. Certainly
there is considerable neuropsychological evidence
that human (and other animal) brains do operate in
such a modular manner (e.g. Shallice, 1988). There
is still some controversy over the precise form that
modularity takes, and it now seems unlikely to be of
the strong (hard-wired, innate and informationally
encapsulated) type of Fodor (1983). Nevertheless,
some form of modularity has apparently arisen as the
result of evolution by natural selection, and one
might think it a good strategy to use the end point of
such an evolutionary process (i.e. modularity) in
building our artificial systems. In this paper I begin
to question whether this really is a good idea.

Connectionist neural network systems are the
natural starting point for AI systems built to operate
in a manner analogous to human brains, so I shall
look at that type of system. And, for concreteness, I
shall concentrate on one particularly well studied
instance of modularity in the human brain, namely

the fact that visual perception involves two distinct
cortical pathways (e.g. Mishkin, Ungerleider &
Macko, 1983; Goodale & Milner, 1992; Ungerleider
& Haxby, 1994) – one running ventrally for
identifying objects (“what”), and another running
dorsally for determining their spatial locations
(“where”).

Some time ago, Rueckl, Cave & Kosslyn (1989)
considered the interesting question of why “what“
and “where” should be processed by separate visual
systems in this way. By performing explicit
simulation and analysis of a series of simplified
neural network models they were able to show that
modular networks were able to generate more
efficient internal representations than fully
distributed networks, and that they learned more
easily how to perform the two tasks. The implication
was that any process of evolution by natural selection
would result in a modular architecture and hence
answer the question of why modularity has arisen in
human brains. It also implied that hard wiring
modularity into our AI systems, at least for neural
network systems, is likely to be a good idea.

Now, twelve years later, the power of modern
computer technology has reached a level whereby the
relevant explicit evolutionary simulations are now
feasible. Already Di Ferdinando, Calabretta & Parisi
(2001) have established that modularity can evolve
as expected. In this paper, I present the results of
further simulations and conclude that, whilst
modularity may arise under certain circumstances,
the situation is not quite as straight-forward as the
original computational investigation of Rueckl et al.
(1989) suggested.

2 Avoiding Disruptive Interference

The basic structure of simple feed-forward neural
network models is now widely known. One typically
uses a three layer network of simplified neurons. The
input layer activations represent the system’s input
(e.g. a simplified retinal image). These activations
are passed via weighted connections to the hidden
layer where each unit sums its inputs and passes the
result through some form of squashing function (e.g.
a sigmoid) to produce its own activation level.
Finally, these activations are passed by a second
layer of weighted connections to the output layer

where they are again summed and squashed to
produce the output activations (e.g. representations of
“what“ and “where”). The connection weights are
typically learnt by some form of gradient descent
training algorithm whereby the weights are iteratively
adjusted so that the network produces increasingly
accurate outputs for each input in a representative set
of training data.

From this point of view, the question of
modularity relates to the connectivity between the
network’s hidden and output layers. During training,
a hidden unit that is being used to process
information for two or more output units is likely to
receive conflicting weight update contributions for
the weights feeding into it, with a consequent
degradation of performance relative to a network that
has a separate set of hidden units for each output unit
(e.g. Plaut & Hinton, 1987). However, avoiding this
kind of disruptive interference by using such an
extreme version of modularity that allocates a
separate set of hidden units (or module) for each
output unit is likely to be rather inefficient in terms
of computational resources, and an efficient learning
algorithm should be able to deal appropriately with
the conflicting weight update signals anyway.
Nevertheless, splitting the hidden units up into
disjoint sets corresponding to distinct output tasks,
may be an efficient option. Indeed, it is hard to
imagine how it could be optimal to expect a single
set of hidden units to form more than one distinct
internal representation.

When a neural network is trained using standard
gradient descent type learning algorithms, one
generally finds that the processing at the hidden layer
tends to become fully distributed – in other words,
there is no spontaneous emergence of modularity
(e.g. Plaut, 1995; Bullinaria, 1997). However, the
human brain is some-what more sophisticated than a
simple feed-forward network learning by gradient
descent, and Jacobs, Jordan & Barto (1991) have
shown explicitly how it is possible to set up gated
mixtures of expert networks that can learn to process
two tasks in a modular fashion. Such systems appear
to have advantages in terms of learning speed,
minimizing cross-talk (i.e. spatial interference),
minimizing forgetting (i.e. temporal interference),
and generalization. In a further computational study,
Jacobs & Jordan (1992) have shown how a simple
bias towards short range neural connectivity can also
lead to the learning of modular architectures.

For the present study I am more interested in
identifying optimal fixed architectures for learning to
perform the given tasks, rather than in building
systems that are able to learn an appropriate
architecture. Evolving learning systems by natural
selection seems an obvious way to proceed. The old
Nature-Nurture debate has certainly come a long way
in recent years (e.g. Elman et al., 1996), but it is still

important to distinguish which characteristics are
innate and which need to be learnt during an
individual’s lifetime. Fortunately, as computer
technology becomes more powerful, we are able to
explore these issues by increasingly realistic
simulations, and old ideas about the interaction of
learning and evolution (e.g. Baldwin, 1896) can now
be confirmed explicitly (e.g. Hinton & Nowlan,
1987). In suitably simplified systems, it has been
possible to observe the genetic assimilation of learnt
characteristics without Lamarckian inheritance, to see
how appropriate innate values for network
parameters and learning rates can evolve, to
understand how individual differences across evolved
populations are constrained, and so on (e.g.
Bullinaria, 2001). In the remainder of this paper I
shall investigate the evolution of modularity in the
neural network models of the “what” and “where”
vision tasks previously studied by Rueckl et al.
(1989). The lessons we learn here should be
applicable to the learning and evolution of
modularity more generally, and give us some ideas of
what structures might be most appropriate to build
into our AI systems.

3 The “What” and “Where” Model

Rueckl et al. (1989) have already carried out an
extensive series of investigations into the internal
representations that are learned in simple neural
network models of the “what” and “where” vision
tasks. For ease of comparison, and minimization of
repetition, I shall study exactly the same simplified
model that they used. I shall explore whether the
advantages of modularity they observed are sufficient
to drive the evolution of modularity, and test the
robustness of their results. I shall also follow Rueckl
et al. (1989) and Jacobs et al. (1991) in emphasizing
that the simulated tasks are vast over-simplifications
of what real biological visual systems have to cope
with. It makes sense to use them, however, despite
their obvious unrealistic features, since they allow us
to illustrate the relevant factors with simulations we
can perform on current computational hardware in a
reasonable amount of time.

Our chosen task consists of mapping a simplified
retinal image (a 5 × 5 binary matrix) to a simplified
representation of “what” (a 9 bit binary vector with
one bit ‘on’) and a simplified representation of
“where” (another 9 bit binary vector with one bit
‘on’). I shall use the same 9 input patterns and 9
positions as in the previous studies, giving the same
81 retinal inputs for training on. Each of the 9
patterns consist of a different set of 5 cells ‘on’
within a 3 × 3 sub-retina array, and the 9 positions
correspond to the possible centers of a 3 × 3 array
within the full 5 × 5 array.

The basic network originally investigated by
Rueckl et al. (1989) is shown in Figure 1. It has 25
input units, 18 output units and 81 training examples.
The arrowed lines represent full connectivity, and
Nhid1, Nhid12, Nhid2 specify how many hidden
units in each block. Rueckl et al. (1989) studied in
detail the fully distributed network (Nhid1 = Nhid2 =
0) and the purely modular network (Nhid12 = 0) .
Our characterization allows an exploration of the full
continuum between these extremes. If the maximum
number of hidden units Nhid1 + Nhid12 + Nhid2 =
Nhid is fixed, we need only define two innate
architecture parameters Con1 = Nhid1 + Nhid12 and
Con2 = Nhid2 + Nhid12 corresponding to the number
of hidden units connecting to each output block.

4 Evolving the Model

Simulating an evolutionary process for the models
discussed above simply involves taking a whole
population of individual instantiations of each model
and allowing them to learn, procreate and die in a
manner approximating these processes in real (living)
systems. The genotype of each individual will
depend on the genotypes of its two parents, and
contain all the appropriate innate parameters. Then,
throughout its life, the individual will learn from its
environment how best to adjust its weights to
perform most effectively. Each individual will
eventually die, perhaps after producing a number of
children.

For biological evolution, the ability of an
individual to survive or reproduce will depend on a
number of factors which can vary in a complicated
manner with that individual’s performance over a
range of related and unrelated tasks (food gathering,
fighting, running, and so on). For the purposes of our
simplified model, however, we shall consider it to be
a sufficiently good approximation to assume a simple
relation between our single task fitness function and
the survival or procreation fitness. Whilst any
monotonic relation should result in similar
evolutionary trends, we often find that, in simplified

simulations, the details can have a big effect on what
evolves and what gets lost in the noise.

A more natural approach to procreation, mutation
and survival will be followed than many evolutionary
simulations have used in the past (e.g. in Belew &
Mitchell, 1996). Rather than training each member
of the whole population for a fixed time and then
picking the fittest to breed and form the next
generation, the populations will contain competing
learning individuals of all ages, each with the
potential for dying or procreation at each stage.
During each simulated year, each individual will
learn from their own experience with the
environment (i.e. set of training/testing data) and
have their fitness determined. A biased random
subset of the least fit individuals, together with a flat
random subset of the oldest individuals, will then die.
These are replaced by children, each having one
parent chosen randomly from the fittest members of
the population, who randomly chooses a mate from
the rest of the whole population. Each child inherits
characteristics from both parents such that each
innate free parameter is chosen at random somewhere
between the values of its parents, with sufficient
noise (or mutation) that there is a reasonable
possibility of the parameter falling outside the range
spanned by the parents. Ultimately, the simulations
might benefit from more realistic encodings of the
parameters, concepts such as recessive and dominant
genes, learning and procreation costs, different
inheritance and mutation details, different survival
and procreation criteria, more restrictive mate
selection regimes, protection for young offspring,
different learning algorithms and fitness functions,
and so on, but for the purposes of this paper, the
simplified approach outlined above seems adequate.
A similar regime has already been employed
successfully elsewhere (Bullinaria, 2001) to study the
Baldwin effect in the evolution of adaptable control
systems.

Each genotype in our simulation will naturally
include all the innate parameters needed to specify
the network details, namely the architecture, the
learning algorithm, the learning rates, the initial

9 "what" 9 "where"

5 × 5 retina

Nhid1 Nhid2Nhid12

Input Layer

Hidden layer

Output Layer

Figure 1: The architecture of the basic neural network model for the “what“ and “where” tasks.

connection weights, and so on. In real biological
evolution, all these parameters will be free to evolve.
In simulations that are designed to explore particular
issues, it makes sense to fix some of these parameters
to avoid the complication of un-foreseen interactions
(and also to speed up the simulations). In my earlier
study of genetic assimilation and the Baldwin effect
(Bullinaria, 2001), for example, it made sense to keep
the architecture fixed and to allow the initial innate
connection weights and learning rates to evolve.
Here it is more appropriate to have each individual
start with random initial connection weights and
allow the architecture to evolve. Then, since the
optimal learning rates will vary with the architecture,
we must allow these to evolve along with the
architecture. Moreover, the appropriate ranges for
the random initial weights may also depend on the
architecture and learning rates, so we must allow
these to evolve as well.

Clearly it is important that we fix all the
evolutionary parameters appropriately according to
the details of the problem and the speed and
coarseness of the simulations. For example, if all
individuals were able to learn the task perfectly by
the end of their first year, and we only tested their
performance once per year, then the advantage of
those that learn in two months over those that take

ten is lost and our simulated evolution will not be
very realistic. Since the networks were allowed to
evolve their own learning rates, this had to be
controlled by restricting the number of presentations
of the training data set to two per simulated year for
each individual. A fixed population size of 200 was
a trade-off between maintaining genetic diversity and
running the simulations reasonably quickly. The
death rates were set in order to produce reasonable
age distributions. This meant about 20 deaths per
year due to competition, and another 5 individuals
over the age of 20 dying each year due to old age.
The mutation parameters were chosen to speed the
evolution as much as possible by maintaining genetic
diversity without introducing too much noise into the
process. These parameter choices led to coarser
simulations than one would like, but otherwise the
simulations would still be running.

5 Results for the Basic Model

The obvious starting point was to simulate the
evolution of the basic system as described above.
For comparison purposes, this involved fixing the
learning algorithm to be that used by Rueckl et al.
(1989), namely online gradient descent with
momentum using the Sum Squared Error cost

3600024000120000
.001

.01

.1

1

10

Year

In
iti

al
 W

ei
gh

ts

iwHB

iwHO

iwOB

iwIH

 3600024000120000
.001

.01

.1

1

10

100

Year

P
ar

am
et

er

etaHB

alpha

etaHO

etaOB

etaIH

3600024000120000
0

12

24

36

Year

U
ni

ts

Nhid2

Nhid12

Nhid1

 3600024000120000
0

1

2

3

Year

1
/F

it
n

e
ss

Mean

Min

Max

Figure 2: A typical evolution of the model in Figure 1 with 36 hidden units, Sum-Squared Error cost function
and Log Error Count fitness function.

function E (Hinton, 1989). Also following them, the
target outputs were taken to be 0.1 and 0.9, rather
than 0 and 1, and appropriate outputs beyond these
targets were deemed errorless. Past experience
indicates that the networks learn better if they have
different learning rates for each of the different
connection layers, and each of the different bias sets.
So, to ensure that the architecture comparisons were
fair in the sense that they were all learning at their
full potential, each network had five learning
parameters: the learning rate η IH for the input to
hidden layer, ηHB for the hidden layer biases, ηHO for
the hidden to output layer, and ηOB for the output
biases, and the momentum parameter α. These
appear in the standard weight update equation

∆ ∆w n
E

w
w nij L

ij
ij() ()= − + −η ∂

∂
α 1 .

The initial network weights wij(0) were generated
randomly with a uniform distribution from the range
[-iw, +iw]. Naturally, different range parameters iw
were allowed for the input to hidden layer
connections, the hidden layer biases, the hidden to
output layer connections, and the output biases. Each
genotype thus contained two parameters to control
the network architecture, five to control its learning
rates, and four to control the distribution of random

initial weights.
The next consideration was the choice of fitness

measure. The obvious measure is in terms of the
number of network outputs over the whole training
set that are significantly wrong (e.g. more than 0.2
from their binary targets). The distribution of errors
actually becomes very skewed over the population so
an appropriate fitness measure was chosen to be
1/log(1+ErrorCount).

My earlier evolutionary studies (Bullinaria, 2001)
indicated that the evolution can have a strong
dependence on the initial conditions, i.e. on the
distribution of the innate parameters across the initial
population, and that the population settles into a near
optimal state more quickly and reliably if it starts
with a wide distribution of initial learning rates,
rather than expecting the mutations to carry the
system from a state in which there is little learning at
all. Thus, in all the following experiments, the initial
population learning rates were chosen randomly from
the range [0.0, 4.0], the momentum parameters
randomly from the range [0.0, 1.0], and the random
initial weight ranges from the range [0.0, 4.0].

Figure 2 shows how the innate parameters
evolved for a typical simulation when there were 36
hidden units in total. Rueckl et al. (1989) used only
18 hidden units, but this was considered too near the

3600024000120000
.001

.01

.1

1

10

Year

In
iti

al
 W

ei
gh

ts

iwHB

iwHO

iwOB

iwIH

 3600024000120000
.001

.01

.1

1

10

Year

P
ar

am
et

er

etaHB

alpha

etaHO

etaOB

etaIH

3600024000120000
0

12

24

36

Year

U
ni

ts

Nhid2

Nhid12

Nhid1

 3600024000120000
0

1

2

3

Year

1
/F

it
n

e
ss

Mean

Min

Max

Figure 3: A typical evolution of the model in Figure 1 with 36 hidden units, Cross Entropy cost function and
Log Error Count fitness function.

minimal number needed to perform the task for small
scale artifacts to be reliably avoided (e.g. Bullinaria,
1997). The top two graphs show that the learning
parameters soon settle down to appropriate values
and confirm our intuition that different learning rates
and ranges of initial weights are appropriate for the
different sets of connections and biases. For
comparison, Rueckl et al. (1989) chose all their
random initial weights and biases uniformly from
within the range [–0.3,+0.3], all the learning rates to
be 0.75, and the momentum to be 0.8. The third
graph shows that after a hesitant non-modular start,
the population quickly evolves to take on a modular
architecture with Nhid12 near zero. This is exactly
what we would expect from the Rueckl et al. (1989)
study, right down the to way the hidden units are split
between Nhid1 and Nhid2 according to the relative
difficulties of the two tasks. The final graph shows
how the log(1+ErrorCount) = 1/Fitness varies during
the evolutionary process, and confirms that members
of the evolved population do manage to learn the
given tasks.

6 Dependence on Cost Function

The fact that the above results confirm what we
would expect from the Rueckl et al. (1989) study
may make the evolution of modularity seem almost
inevitable. However, the aim of this paper is to begin
an investigation into whether this is really the case.
The starting point I chose was to note that, if we treat
our network outputs as specifying a probability
distribution over the binary targets, then we should
really use the Cross-Entropy cost function for our
gradient descent learning rather than the Sum-
Squared Error cost function used above (Hinton,
1989). Figure 3 shows the result of a typical
evolutionary simulation using the Cross Entropy cost
function, with everything else the same as before.
Not surprisingly, different patterns of initial weights
and learning parameters evolve. What was less

expected was the evolution of a completely non-
modular architecture with Nhid1 and Nhid2 both very
close to zero. Moreover, the mean Fitness indicates
that this population is much fitter than the population
trained with the Sum Squared Error cost function.

Figure 4 compares explicitly the speeds of
learning for the final populations evolved using the
Sum Squared Error and Cross Entropy cost functions.
This shows the clear superiority of the non-modular
Cross-Entropy population, and explains why that
population has a better average fitness. Members of
the modular population typically perfect the tasks
between the ages of 13 and 23, whereas the non-
modular population reach those performance levels
between the ages of 8 and 16. Further simulations
that explored other potential system variations, such
as changing the fitness measure between
1/log(1+ErrorCount), 1/ErrorCount, –Cost, 1/Cost,
and 1/log(Cost) had little effect on the results.

7 Analysis of Learning Speeds

Although we cannot rely on the mean learning times
to predict what will evolve (since the worst and best
cases, the standard deviations, the reliability, and so
on, will also be important), plots of mean learning
times as a function of the network architecture do
show quite clearly where the different optimal
configurations are situated. Obviously we have to be
careful, because the different architectures may have
significantly different optimal learning and initial
weight parameters, but we shall see that it is possible
to proceed with this approach.

Figure 5 shows contour plots of the mean number
of simulated years of training required to achieve
zero ErrorCount for the evolved populations from
the same simulations presented in Figures 2, 3 and 4.
In the left hand graph, for the Sum Squared Error
cost function, we see that the optimal configurations
(shown darkest) are situated in the Nhid12 = 0, i.e.
totally modular, region. In the right hand graph, for

3 62 41 20
0

1

2

3

4

Age

Lo
g(

1
+

 E
rr

or
C

ou
nt

)

 3 62 41 20
0

1

2

3

4

Age

Lo
g(

1
+

 E
rr

or
C

ou
nt

)

Figure 4: Comparison of learning speeds for the evolved populations with Sum Squared Error (left) and Cross
Entropy (right) cost functions.

the Cross Entropy cost function, the optimal
configurations (shown darkest) are situated in the
Nhid12 = Nhid, i.e. total distributed, region. The
mean best learning time is about 19 simulated years
for the Sum Squared Error case, compared with about
10 years for the Cross Entropy case. Given these
results are what the evolutionary simulations told us,
they are not surprising.

The important thing we need to test is how robust
these optimal configurations are with respect to using
non-optimal learning rate and initial weight
parameters. It is clearly possible to re-run the
evolutionary simulations with the architecture fixed,
to determine appropriate parameters for each
configuration. The natural control conditions against
which to compare the results of Figure 5 will be to
have the architecture constrained to be fully
distributed for the Sum Squared Error case, and
constrained to be fully modular for the Cross Entropy
case. In the non-modular case all Nhid = 36 hidden
units would be used for both tasks, and in modular

case we would just allow the proportion of hidden
units dedicated to each task to vary. Using the
parameters evolved in this way resulted in the mean
learning time plots shown in Figure 6. We see that,
even with the parameters optimized for the opposite
kind of architecture, the optimal architectures are still
in the same regions as before. The high performance
regions become slightly more spread out and the
mean best learning times are increased by about one
simulated year in each case, but still we have a clear
dependence of the optimal architecture on the
learning cost function, and still we find the non-
modular architecture far superior in terms of learning
speeds.

8 Conclusions

By using simulated evolution by natural selection to
optimize the architecture and learning parameters for
simple neural network systems performing simplified
versions of the “what” and “where” vision tasks, we

−36 −24 −12 0 12 24 36
0

6

12

18

24

30

36

Nhid2 − Nhid1

N
hi

d1
2

−36 −24 −12 0 12 24 36
0

6

12

18

24

30

36

Nhid2 − Nhid1

N
hi

d1
2

Figure 5: Mean learning times using evolved learning parameters as a function of architecture with Sum Squared
Error (left) and Cross Entropy (right) cost functions. Darkest shading indicates fastest learning.

−36 −24 −12 0 12 24 36
0

6

12

18

24

30

36

Nhid2 − Nhid1

N
hi

d1
2

−36 −24 −12 0 12 24 36
0

6

12

18

24

30

36

Nhid2 − Nhid1

N
hi

d1
2

Figure 6: Mean learning times using control learning parameters as a function of architecture with Sum Squared
Error (left) and Cross Entropy (right) cost functions. Darkest shading indicates fastest learning.

have seen that the appropriate choice between
modular and non-modular architecture depends
crucially on the cost function we choose for the
neural network’s learning algorithm. Moreover,
contrary to earlier indications (Rueckl et al., 1989), it
seems that a non-modular architecture with an
appropriate learning cost function is far superior in
terms of perfecting the given tasks as quickly and
reliably as possible.

The human brain does, nevertheless, appear to
have evolved to be modular with respect to the full
scale versions of these tasks. However, drawing
conclusions from our simulations about the
modularity in human brains is not straightforward. If
the results (i.e. modularity versus non-modularity)
depend so crucially on such non-biologically
plausible details as the learning algorithm, then it is
clearly going to be rather difficult to extrapolate from
them to biological systems. Moreover, it is not hard
to imagine other crucial constraints on biological
evolution that are not present in our current artificial
systems (e.g. Jacobs & Jordan, 1992).

As far as understanding the human brain is
concerned, the general simulation approach I have
presented appears promising, but future simulations
in this area will clearly have to be much more
realistic if we are to draw reliable conclusions from
them. When it comes to choosing appropriate
architectures for artificial neural network (and quite
likely, other computational intelligence) systems, the
simulations presented here indicate that we have to
be much more careful about choosing appropriate
architectures than was previously realized.

References

Baldwin, J.M. (1896). A New Factor in Evolution.
The American Naturalist, 30, 441-451.

Belew, R.K. & Mitchell, M. (Eds) (1996). Adaptive
Individuals in Evolving Populations. Reading,
MA: Addison-Wesley.

Bullinaria, J.A. (1997). Analysing the Internal
Representations of Trained Neural Networks. In
A. Browne (Ed.), Neural Network Analysis,
Architectures and Applications, 3-26. Bristol:
IOP Publishing.

Bullinaria, J.A. (2001). Exploring the Baldwin Effect
in Evolving Adaptable Control Systems. In: R.F.
French & J.P. Sougné (Eds), Connectionist
Models of Learning, Development and Evolution,
231-242. London: Springer.

Di Ferdinando, A., Calabretta, R, & Parisi, D. (2001).
Evolving Modular Architectures for Neural
Networks. In R.F. French & J.P. Sougné (Eds),
Connectionist Models of Learning, Development
and Evolution, 253-262. London: Springer.

Elman, J.L., Bates, E.A., Johnson, M.H., Karmiloff-
Smith, A., Parisi, D. & Plunkett, K. (1996).
Rethinking Innateness: A Connectionist
Perspective on Development. Cambridge, MA:
MIT Press.

Fodor, J.A. (1983). The Modularity of the Mind.
Cambridge, MA: MIT Press.

Goodale, M.A. & Milner, A.D. (1992). Separate
Visual Pathways for Perception and Action.
Trends in Neurosciences, 15, 20-25.

Hinton, G.E. (1989). Connectionist Learning
Procedures. Artificial Intelligence, 40, 185-234.

Hinton, G.E. & Nowlan, S.J. (1987). How Learning
Can Guide Evolution. Complex Systems, 1, 495-
502.

Jacobs, R.A. & Jordan, M.I. (1992). Computational
Consequences of a Bias Toward Short
Connections. Journal of Cognitive Neuroscience,
4, 323-336.

Jacobs, R.A., Jordan, M.I. & Barto, A.G. (1991).
Task Decomposition Through Competition in
Modular Connectionist Architecture: The What
and Where Vision Tasks. Cognitive Science, 15,
219-250.

Mishkin, M., Ungerleider, L.G. & Macko, K.A.
(1983). Object Vision and Spatial Vision: Two
Cortical Pathways. Trends in Neurosciences, 6,
414-417.

Plaut, D.C. (1995). Double Dissociation Without
Modularity: Evidence from Connectionist Neuro-
psychology. Journal of Clinical and
Experimental Neuropsychology, 17, 291-321.

Plaut, D.C. & Hinton, G.E. (1987). Learning Sets of
Filters Using Back-Propagation. Computer
Speech and Language, 2, 35-61.

Rueckl, J.G., Cave, K.R. & Kosslyn, S.M. (1989).
Why are “What” and “Where” Processed by
Separate Cortical Visual Systems? A
Computational Investigation. Journal of
Cognitive Neuroscience, 1, 171-186.

Shallice, T. (1988). From Neuropsychology to
Mental Structure. Cambridge: Cambridge
University Press.

Ungerleider, L.G. & Haxby, J.V. (1994). ‘What’ and
‘Where’ in the Human Brain. Current Opinion in
Neurobiology, 4, 157-165.

