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Abstract.  The oculomotor system remains plastic so that it can maintain clear
single binocular vision during development and also in novel visual conditions
(such as wearing new spectacles).  It is important to understand this adaptation
process so that we can predict in advance potential problems that might arise
with new optical devices such as virtual reality head mounted displays.  In this
paper we present neural network models of adaptation to vertical disparities at
different points in the visual field and argue that regularization (weight decay)
provides a more realistic account of the empirical data than other approaches.

1.  Introduction

To see objects clearly at different distances one needs to be able to make appropriate
changes to the focus (accommodation) and cause appropriate rotations (vergence) of
our eyes.  The range of cues that drive the accommodation and vergence systems, the
inevitable interactions between these systems, and the complicated dynamical
responses found experimentally, render the modelling of this part of the visuo-motor
system a non-trivial problem.  A number of control systems models have already been
formulated [2], but no one model has yet been universally accepted and there still
remains some dispute over the strength and positioning of the links between the
various sub-systems.  These systems models are generally specified in detail by hand
specifically to simulate adult performance.  One advantage of connectionist models is
that we are able to set up a general framework and let the network learn for itself how
the available cues and cross-links are best used.  This not only solves the problem of
determining the correct adult architecture, but also provides an additional check of the
model against developmental data, and allows us to simulate and understand the kinds
of problems that might arise during the development process.

In this paper we focus on a particular sub-problem, namely the adaptation process
that maintains clear vision as the visual system grows and when using new visual
devices such as spectacles.  Since there is good experimental data available showing
how subjects adapt when exposed to targets with vertical disparities that vary with
position in the visual field (e.g. [3, 5, 8, 9]) and a partially successful model already
exists [6], we shall concentrate on formulating more realistic models of this task.  Our
starting point is data from Schor et al. [8] describing the spatial aspects of adaptation
and Maxwell & Schor [5] on the temporal aspects of adaptation.  Both studies had
subjects presented with two targets, of equal but opposite disparities, at midline
locations, until adaptation reached a steady state.  The degree of adaptation was
assessed for a range of disparities and target separations by measuring changes in
vergence position when there was no fusion target present.  The response gains were
found to depend on both the spatial separation and the size of the disparity stimulus.
Figure 1 shows the detailed pattern of data to be modelled, taken from Schor et al. [8].
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2.  The Neural Network Models

Following McCandless & Schor [6], we begin with the natural assumption that
adaptation arises by learning associations between existing physiological outputs from
brainstem neurons sensitive to eye position [4] and the required vergence response.
They set up neural networks that map directly from a set of random linear input units
representing eye position sensitive neurons to a single linear output unit representing
the motor output of the vertical vergence system. The network training data was the
same as the experimental stimuli, namely opposite local disparities placed midline in
the upper and lower visual fields.  A gradient descent learning algorithm was used to
update iteratively the connection weights to reduce the error on the outputs for each
eye position.  The models were tested by comparing the vertical vergence responses at
all eye positions, with no fusion target present, against the experimentally observed
responses.  The response as a fraction of the stimulus is the ‘response gain’.

Such models are clearly capable of learning the training data exactly and hence
always have a response gain of one.  Since human subjects do not fully adapt to some
stimuli (i.e. have gains less than one as in Figure 1), McCandless & Schor [6] stopped
the training of their models when their adaptation matched the observed adaptation.
Whilst their simulations do demonstrate how the output from eye position sensitive
brainstem neurons could be used to drive vertical vergence changes, we feel that they
accounted for the data of Figure 1 in a somewhat ad hoc manner.

We extended the McCandless & Schor model [6] in a number of ways.  First we
investigated plausible alternatives to the Linear input codings they used to represent
the eye position signals from midbrain cells.  Of particular interest were Sigmoidal
input codings (which are simply more biologically plausible versions of their linear
signals), and Difference of Gaussian codings (such as might be provided by retinal
receptive fields).  Each of these functions is defined by a set of parameters (e.g.
height, width, centre) and a random set of these (within reasonable ranges) were
assigned to each input unit to give its activation for each eye position.  Typically,
between 80 and 800 input units were sufficient to avoid randomization artefacts.
Each network was trained by fixed step-size gradient descent on a sum squared error
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 Figure 1: The experimental pattern of response gains (from Schor et al. [8]).



measure; first on zero disparity to provide a steady pre-adaptive state, and then on two
disparity stimuli.  All the results we present will be for networks with 400 Sigmoidal
input units connected directly to a single linear output unit.  Naturally, these networks
could achieve perfect adaptation, i.e. a response gain of one, in every case.  We then
considered what might be preventing this perfect gain in human systems.

We began by following McCandless & Schor [6] and restricting the amount of
training.  Figure 2 shows the outputs of three typical networks after 7000 epochs of
training with a learning rate of 0.00001 on a stimulus disparity gradient (i.e. stimulus
disparity difference over separation) of 0.1.  To relate this to the experimental data in
Figure 1, the response gradient is defined using the change in output between eye
positions of ±6 degrees and the response gain is this divided by the stimulus gradient.
We find that the response gain is now less than one, as required, and moreover, it now
depends on the stimulus separation in the right direction.  The effect of the stimulus
disparity gradient, however, cancels out in the gain calculation.  Using the alternative
input codings (e.g. Linear or Difference of Gaussian) changes the form of the
network’s extrapolation to larger eye positions, but has little effect on the pattern of
response gains.  Clearly, by picking an appropriate amount of training for each
training set, we can get any pattern of gains we want, but before following that route,
it makes sense to consider what other processes might account for the data.

3.  Regularization

A particularly natural process that prevents networks from learning their training data
exactly, and smoothes their response to potentially noisy data, is regularization in the
form of weight decay [1, p338].  Poggio et al. [7] have reviewed the use of
regularization principles in various areas of computational vision, and outlined how
they could be implemented in single biological neurons or small networks of neurons.
Normally, gradient descent learning operates by iteratively adjusting the network
weights w to reduce some output activation error function E (e.g. the sum of squared
output activation errors).  If one adds a weight cost function to this error function, it
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 Figure 2: The output responses of three trained networks based on sigmoids.



results in an extra contribution to the gradient descent weight changes ∆w ~ –∂E/∂w
proportional to the derivative of the weight cost.  If the cost function is quadratic
(i.e. the sum of squared weights) we thus get a linear weight decay contribution to the
weight changes.  This keeps the weights low and smoothes out the network response
at the expense of the output activation errors.  Using such a standard quadratic weight
cost in our model results in the asymptotic pattern of response gains shown (for 21
trained networks) in Figure 3.  The weight decay during training has a similar effect
on the network output pattern as the reduction in weights due to stopping the training
early.  The required effect of disparity gradient, seen in Figure 1, is still missing.

We can see why by considering a simplified model with just a single linear input.
We then have just one weight w trained on a target output t for an input which is a
scale factor α times half the stimulus separation s.  For a sum-squared error term and
nth order weight cost with a parameter λ, we train by performing gradient descent on
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which is indeed independent of the disparity gradient d = 2t/s.
It is clear from the above equations that, for a given stimulus separation, large

disparity gradients will require larger weights than small disparity gradients, but the
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 Figure 3: The pattern of response gains for our model with quadratic weight cost.



trade-off between the quadratic error term and the quadratic weight cost is leaving no
net effect.  A higher order weight cost, however, should have the desired result.  We
can also solve the above equations for the cubic (n = 3) weight cost and find
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where the desired disparity gradient dependence finally appears.  Solving for the
higher order weight cost cases becomes messy, but Newton’s method starting at gn = 1
allows us to iteratively approximate the gains using
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and similarly for mixed order costs.  A quartic (n = 4) weight cost, for example, will
result in even stronger cubic weight decay which will prevent large disparity gradients
from being learnt in a reasonably realistic manner.  Implementing such a weight cost
in our full model results in the pattern of response gains shown in Figure 4, which is
now much closer to the empirical pattern of Figure 1. Unfortunately, the experimental
data is too noisy to constrain our models much further at this stage.

4.  Conclusions and Discussion

We have presented a preliminary investigation into possible improvements of the
physiologically plausible neural network model of oculomotor adaptation of
McCandless & Schor [6].  First, we have shown that the details of the biologically
inspired eye position coding are not crucial to the models’ pattern of response gains.
Moreover, variations in them can be used to account for details of the saturation of the
adaptation response as the eye position moves beyond the targets.  Second, we have
argued that weight cost (which, in the context of gradient descent learning, translates
into weight decay) constitutes a natural process whereby local adaptations become
smoothed out, and have shown how it restricts the adaptation response in line with the
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 Figure 4: The pattern of response gains for our model with quartic weight cost.



empirical gain data over a wide range of stimuli.  We consider this more appropriate
than imposing individual limits on the training times for each stimulus set.  However,
McCandless & Schor [6] have noted subject reports that whilst small disparities were
easily fused, the larger disparities often remained diplopic.  This means that the
subjects were not able to produce the required eye rotations to foveate the targets in
each eye and hence had less training time with the eyes in the correct position.  We
intend to study the effect of incorporating such empirically measured variations in
training times to see if this really can provide an alternative account of the data.

We have found that the known hemifield differences in temporal response [5] can
be accommodated in our models either by varying the training data frequencies in line
with attention, or by manipulating the parameters describing the input position
coding.  This is currently being investigated further.  We also intend to examine the
models’ efficacy in simulating the experimental data for more complex target
configurations.  Finally, we are exploring how the use of different learning algorithms
might affect the results. In particular, we propose to further improve the realism of the
models by implementing them with more biologically plausible learning algorithms.

The main motivation behind our modelling work is to understand the fundamental
biological mechanisms involved in local adaptation and to gain insight into the
plasticity of the oculomotor system both in adults and during development.  In this
way, we can hope to study the development of oculomotor disorders and to resolve,
ethically, issues of safety when altering visual environments (e.g. by the use of virtual
reality headsets) both in adults and in children with their more plastic visual systems.
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