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Abstract

We present a new class of neural network models of reading aloud based
on Sejnowski & Rosenberg’s NETtalk. Unlike previous models, they are
not restricted to mono-syllabic words, require no complicated input-
output representations such as Wickelfeatures and require no pre-
processing to align the letters and phonemes in the training data. The best
cases are able to achieve perfect performance on the Seidenberg &
McClelland training corpus (which includes many irregular words) and in
excess of 95% on a standard set of pronounceable non-words. Evidence is
presented that relate the output activation error scores in the model to
naming latencies in humans. Several possible accounts of developmental
surface dyslexia are identified and on various forms of damage the
models exhibit symptoms similar to acquired surface dyslexia. However,
their inability to account for lexical decision, the pseudohomophone effect
and phonological dyslexia indicate that we will still need to introduce an
additional lexical/semantic route before we have a complete model of
reading aloud. Nevertheless, the models’” simplicity, performance and
room for improvement make them a promising basis for the grapheme-
phoneme conversion route of a realistic dual route model of reading.
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Introduction

There are many processes involved in the act of ‘reading aloud’ and we are clearly a
long way from being able to construct a realistic model of them all. Any complete
reading system must (at least) be able to :

1. recognise whole words and groups of words, parse them, relate them
to their meanings and output their sounds, and

2. read aloud unknown words or pronounceable non-words (i.e. have a
series of rules that can simply convert text to phonemes),

and there is currently a lively debate concerning the exact mental processes under-
lying these abilities. The traditional position (recently championed by Coltheart,
Curtis, Atkins & Haller, 1993) is that reading can only be described by a dual route
model, with one route consisting of a series of grapheme to phoneme rules
(necessary for reading new words or pronounceable non-words) and another route
that involves some form of lexicon (necessary to output phonemes for irregular/
exception words which do not follow the rules and to provide a contact point for
semantics and traditional natural language processing). An alternative view is that
a single route may be sufficient and explicit neural network models of reading have
been constructed (e.g. Plaut, McClelland & Seidenberg, 1992) that are able to learn
all the words (including irregular words) in their training data and also read new
non-words with accuracies comparable to human subjects. Although it seems
unlikely, at this stage, that a single route model will be able to account for all aspects
of human reading abilities (Coltheart et al., 1993), there is considerable evidence that
the two routes of the traditional dual route model can not be totally independent
(Humphreys & Evett, 1985).

There are several directions from which we can attack the problem of under-
standing reading. The approach we propose here is to consider in some detail the
possibilities for constructing explicit single route connectionist models of text to
phoneme conversion and then examine how well these can fit in with more
complete models of reading.

Coltheart et al. (1993), as part of their dual route model, have already
developed an explicit (non-neural network) rule based text to phoneme system that
has good generalization performance, but (by construction) is poor at reading the
irregular words in the original training set. The class of neural network models
presented in this paper involve no explicit lexicon and no representation of
semantics and might therefore be considered to be an explicit neural network
implementation of this Grapheme Phoneme Conversion (GPC) route of a dual route
model. However, neural network models are generally able to map between word
segments larger than single graphemes and phonemes. Thus, given that an
exception word mapping can be thought of as a very low frequency high powered
rule (i.e. a rule that is activated only for one specific word and over-rides all other
potentially useful rules) such models should be able to handle exceptional words as
well. Regular words will be pronounced according to simple rules, exception words
will be pronounced according to complicated special purpose rules (effectively a
lexicon) that must over-rule the simpler rules. There will clearly be a continuous
spectrum between these two classes of words and since there are very few (if any)
‘exception” words that do not contain any regular features at all, the need for true
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lexical entries will be minimal. The success of the model depends on the network
maximizing its use of simple rules whilst minimizing its use of special purpose
rules. In this way, when presented with new words or non-words, none of the
special purpose rules will fire and the network will output phonemes according to a
full set of regular (GPC) rules, yet it will still be able to pronounce the exceptional
words it has been trained on.

The rest of this paper will explore the possibilities for constructing such
connectionist models of reading and present detailed performance results for one
particularly promising class of models. We begin with a discussion of the
representational problems underlying all connectionist models of reading and
propose that the best way to proceed is to build upon the early and rather successful
NETtalk model of Sejnowski & Rosenberg (1987). We then consider in some detail
what changes need to be made to the original NETtalk model. In particular, we
show how the learning algorithm can be modified to obviate the need to pre-process
the training data and how simple context flags can be used to deal with the problem
of homograph ambiguity. A range of variations on this basic approach are then
investigated and we eventually identify the most promising model of this type. The
performance of this model (in particular, the reading development, non-word
reading and naming latencies) is then compared with that of humans. We then
examine the extent to which we can understand developmental and acquired
dyslexias within these models. Finally, we discuss the fundamental limitations of
such single route connectionist models, and suggest the way forward for the
connectionist modelling of reading.

Representation

The first thing that has to be decided for any model of reading is the representation
to use for the inputs (letters) and outputs (phonemes). This section discusses this
choice in some detail. The simplest way to proceed with a neural network would be :

1. Have inchar sets of input units (where inchar is the number of characters, i.e.
letters, in the longest word to be presented) and have nletters units in each
set (one for each different letter in the alphabet, e.g. 26 for English). Then,
for each word, have the first letter activate the appropriate unit in the first
set, the second letter activate the appropriate unit in the second set, and so
on.

2. Have outchar sets of output units (where outchar is the number of characters,
i.e. phonemes, corresponding to the longest word to be presented) and have
nphoneme units in each set (one for each different phoneme used in the
training data, e.g. about 40 in English). Then, for each word, have the first
phoneme activate the appropriate unit in the first set, the second phoneme
activate the appropriate unit in the second set, and so on.

3. Have a set of connections and hidden units between the inputs and outputs
and use some training algorithm to adjust the connection weights so that the
activation of each word on the input units produces the correct
pronunciation on the output units.

There are a number of problems with this scheme. First, the network will have to



learn a separate set of letter to phoneme rules for each of the inchar sets of input
units and this is not very efficient. This would not be so bad if there were a one-to-
one correspondence between the letters and phonemes of every word; it would then
be fairly easy to set up a neural network to map from letter strings to phoneme
strings, and we would end up with a set of inchar versions of the required GPC
rules. Unfortunately, however, the letter-to-phoneme correspondence is often many-
to-one (up to four letters can map to one phoneme in English, e.g. ‘ough” — /O/ in
‘though’) and sometimes one-to-many (e.g. ‘x’ — /ks/ in ‘box’). (We use the
phonemic notation and terminology of Seidenberg & McClelland (1989)
throughout.) This means that the phoneme position corresponding to a given letter
position will be different for different words. This is not only disastrous for the
efficiency but also for the generalization ability. What has been learnt about a
particular letter in one position will not generalize to the same letter in another
position, nor even the same letter in the same position in a different word. Clearly,
more sophisticated models are necessary.

One of the first successful neural network systems to get round this problem
was NETtalk by Sejnowski & Rosenberg (1987). They made two important changes
to the above procedure. First, to prevent duplication, instead of having the network
process whole words all at once, they effectively processed them one letter at a time,
reducing outchar to one. A window of inchar characters moves across the input
words and activates the appropriate input units and the network is trained to output
the phoneme corresponding to the letter in the centre of that window. This meant
that only one set of GPC rules was being learnt and consequently we could expect
good generalization. Secondly, to align the letters and phonemes, they pre-
processed the training data by inserting special continuation (i.e. no output)
characters into the phoneme strings. The introduction of the moving window was
an important step forward and the model worked very well, but for many, the need
to pre-process the training data by hand was considered unacceptable since it
involved the system designer doing a significant amount of the work the network
should be doing for itself.

This led Seidenberg & McClelland (1989) to use a radically different
representation involving a system of distributed Wickelfeatures in which each letter
and phoneme string is split into sets of triples of characters (Wickelgren, 1969) in the
same way as for earlier models of past tense acquisition (Rumelhart & McClelland,
1986). This certainly removed the dependence on the absolute positions of the input
letters and also bypassed the problem of aligning the letters and phonemes in the
training data, but it made the interpretation of the networks output somewhat
complicated and presented enormous difficulties in understanding the nature of the
internal representations. This model was also restricted to mono-syllabic words and
had an unacceptably poor generalization performance (Besner, Twilley, McCann &
Seergobin, 1990).

More recent neural network models by Plaut, McClelland & Seidenberg (1992)
and Plaut & McClelland (1993) use yet another representation. They showed that
108 orthographic input units (one for each of the Venezky graphemes occurring in
the initial consonant, vowel and final consonant clusters) and 57 phonological
output units are sufficient to represent virtually all uninflected monosyllables.
Having only one set of input and output units for each of the three clusters brings us
a long way towards the efficiency of the NETtalk representation and hence these
models do very well at learning the training data and in generalizing to new words



or non-words. However, they are still restricted to mono-syllabic words and one
might still argue that too much work is being done by the person choosing the
representation and not enough by the network itself. A related multiple-levels
interactive activation network has been proposed by Norris (1993) and attracts
similar criticism.

In this paper we will investigate the possibility that these new and relatively
complicated representations of Seidenberg, McClelland and Plaut are not necessary
and that straightforward extensions of the original and conceptually simpler
approach of Sejnowski and Rosenberg can solve all our problems. The NETtalk
model has several unattractive features: We shall discuss the finite sized moving
window later. First we re-consider the need to pre-process the training data.

Given only a single training example, e.g. ‘ace’ — /As/, there are many
possible letter to phoneme rules we could use, namely:

a — As A A _ _ _
C — _ S _ As A _
e — S S As

and these six ways of representing the output are all equally valid. However, given
a whole set of training examples we want a minimal set of letter to phoneme rules
that are applicable as generally as possible. To someone with a good knowledge of
English pronunciation, it is clear that the rules‘a’ - /A/, ‘¢’ = /s/ and ‘e’ - /—/ are
going to be more generally applicable than ‘a” - /-/, ‘¢’ = /A/ and ‘¢’ - /s/ or
any of the other possibilities. NETtalk has to be given the best alignment in its pre-
processed training data. If, for each word, our neural network was also able to
choose (for itself) from all the possibilities which was the best way to represent the
output, then our representational problems would be solved. Fortunately, it has
recently been demonstrated (Bullinaria, 1993b) that under certain circumstances
(including those applicable here) a neural network is able to choose its own
representation from a set of possibilities. All we need to do then is combine this
procedure with the Sejnowski & Rosenberg (1987) system and we should end up
with a successful model of reading aloud.

The Basic Model

The preceding discussion thus leads us to our basic NETtalk style model which will
be described in this section. We will see, however, that in addition to modifying the
NETtalk learning algorithm, there are actually several other changes that we need to
make.

The Architecture and Learning Algorithm

The basic architecture consists of a standard fully connected feedforward network
(as shown in Figure 1) with sigmoidal activation functions and one hidden layer set
up in the same way as the NETtalk model of Sejnowski & Rosenberg (1987). The
input layer consists of a window of nchar sets of units, each set consisting of one unit
for each letter occurring in the training data (i.e. 26 for English). The output layer
consists of one unit for each phoneme occurring in the training data (i.e. about 40
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units). The input words slide through the input window which is nchar letters wide,
starting with the first letter of the word at the central position of the window and
ending with the final letter of the word at the central position. Each letter activates a
single input unit.

The original Sejnowski & Rosenberg (1987) model relied on there being a one-
to-one correspondence between the letters and the phonemes for each word. The
activated output phoneme for each presentation of the word then corresponded to
the letter occurring in the centre of the window in the context of the other letters
occurring within the window. To guarantee that each phoneme string was no
longer than the corresponding letter string, a phonemic convention was used
whereby no letter ever gave rise to more than one phoneme. We have already noted
above that this is not true for other conventions, in particular that used in the
Seidenberg & McClelland (1989) data set which has become the standard for training
models of reading. Here three of the letters (namely ‘j’, ‘g” and ‘x’) can correspond
to more than one phoneme (namely /dZ/, /dZ/ and /ks/) and hence result in some
words having more phonemes than letters (e.g. ‘box” — /boks/). In order to solve
this problem without abandoning the Seidenberg & McClelland corpus and yet keep
our basic model as simple as possible, the combinations /dZ/ and /ks/ were simply
replaced by additional ‘phonemes’ /J/ and /X/ respectively, bringing the total
number of phonemes up to forty. We shall see later how a variation of our basic
model can solve this problem without the need for such recoding. Since there can
also be a many-to-one correspondence between the letters and phonemes, some of
the outputs must be blanks (i.e. no phoneme output). It was the problem of having
to insert the blanks into the training data by hand that hampered progress with this
type of model in the past.

The simple alternative to inserting them by hand, that we are proposing here, is
effectively to generate training data such that the set of phonemes corresponding to
each word is padded out with blanks (to the same number of phonemes as there are
letters in the word) in all possible ways. If there are nl letters and np phonemes,
then there are ntarg = nl! / np! (l - np)! ways that this can be done. Clearly, we
only want to train the network on one of these ntarg possible targets or we will run
into the well known problems of over-fitting noisy training data. The important
discovery is that by calculating for each input word the total error corresponding to
each of the possible targets and only propagating back the error from the target with
the least error, the network is (with a suitably diverse set of training words) able to
learn which is the appropriate target for each word. This multi-target approach to
neural network training is discussed in more detail in Bullinaria (1993a,b).

For example, consider the word ‘ace’ again and the corresponding phonemes
/As/. This training example will be presented nl =3 times, each with ntarg = 3
possible target outputs:

presentation inputs target outputs
1. - --ace - A A -
2. - -—ace- - s - A
3 -ace- - - - ] ]

For each of the three input presentations the network’s output activation error is
calculated for each of the three target outputs. The sum of the errors for each target
over the three input presentations is then computed and the target with the
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minimum total error is used to update the network weights in the appropriate
manner. With a realistic set of training patterns the regular correspondences such as
‘a” - /A/ and ‘¢’ - /s/ will dominate the weight changes over others such as ‘¢’ —
/A/ and ‘¢’ — /s/ and eventually the network learns that the appropriate target is
/ As—/ rather than /A-s/ or /-As/.

Simulation Details

The networks were trained using the standard back-propagation gradient descent
algorithm (Rumelhart, Hinton & Williams, 1986) with the extended Seidenberg &
McClelland training corpus of 2998 monosyllabic words consisting of the original
Seidenberg & McClelland (1989) set based on that of Kucera & Francis (1967) plus
101 other words missing from that set (Plaut et al., 1992). The small initial weights
were chosen randomly with a rectangular distribution in the range 0.1 to +0.1. The
learning algorithm parameters suffered two conflicting constraints. If they were set
too low, the network training time became prohibitive. If they were set too high, the
network failed to learn properly. After some experimentation, the back-propagation
learning rate was therefore fixed at 0.05 and the momentum factor at 0.9 (which also
happen to be the same values as used by Seidenberg & McClelland, 1989). Over-
learning was controlled by not propagating back the error signal for words that
already had the correct phoneme outputs and a total output activation error less
than some critical threshold errcrit. This also had the important side effect of
reducing the training time.

Another important constraint placed upon us by the need to keep the training
time down, was in our use of word frequencies in the training data. The frequency
distribution of the words used during training has to be in line with that
experienced when humans are learning because there are several important
frequency effects we are hoping to model. However, the Kucera & Francis (1967)
word frequencies for our training data range from 1 to about 67000, meaning that if
we presented the words in each epoch with probabilities proportional to their actual
frequencies, we would have to train our networks for hundreds of thousands of
epochs before all the low frequency exception words could be learnt. This was
clearly totally infeasible. Fortunately, Seidenberg & McClelland (1989) found that
logarithmically compressing the frequency distribution in their training data did not
appear to significantly reduce the frequency effects in their results. Consequently,
we dealt with the training data in the same way for our model. The data was
presented in each epoch in random order with probability given by the same
logarithmic frequency distribution as in Seidenberg & McClelland (1989), resulting
in a reduced probability range of about 0.058 to 0.930 and about 25% of the training
data being used in each epoch.

Once trained there are several ways we can interpret the network’s outputs.
We shall use the most straightforward, in which the output phoneme of the network
is simply defined to be the phoneme corresponding to the output unit with the
highest activation. More sophisticated versions in the future will undoubtedly
benefit from the imposition of more complicated decision criteria, basins of
attraction, etc. (e.g. as in Hinton & Shallice, 1991; Plaut & McClelland, 1993).

During each training simulation the network’s performance on a number of
data sets was recorded. The most obvious of which were the percentages learnt
correctly and the mean square errors for the full training set and the validation data
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set. For more detailed analysis of the networks performance, similar data was also
recorded for various interesting subsets of the training data (e.g. high and low
frequency regular words, exception words, inconsistent words, strange words,
homographs, etc.). For ease of comparison with studies of humans and other
models, we utilized the precise subsets and controls defined and used by Taraban &
McClelland (1987) and also used by Seidenberg & McClelland (1989).

Due to the large amount of computer processing power required for these
simulations, only about 30 fairly small runs of this basic model have so far been
carried out and it is often difficult to distinguish real improvements caused by
parameter changes from statistical fluctuations. Some preliminary results have
already been presented in Bullinaria (1993a).

Validation Data : Non-Words

To test the networks’ generalization ability (i.e. their success at learning the GPC
rules) we measured the extent to which the networks produced ‘acceptable’
pronunciations for three sets of non-words. As in Plaut et al. (1992), the three sets of
non-words used were the 43 regular non-words and 43 exception non-words of
Glushko (1979, Experiment 1) and the 80 control non-words of McCann & Besner
(1987, Experiment 1). The allowable pronunciations of these non-words were
derived from the training data by matching word segments (particularly rimes) in
the non-words with the same segments in the training data and constructing
possible non-word pronunciations by concatenating the pronunciations of the
segments from the training data. For the regular non-words this typically led to a
single allowable pronunciation (e.g. ‘doon’ —/dUn/ by analogy with ‘soon’
— /sUn/), but for the exceptional non-words there were often several allowable
pronunciations (e.g. ‘hove’ — /hOv/ as in “cove’, - /h~v/ asin ‘love’, — /hUv/
as in ‘move’). For comparison with other studies we also distinguished between the
strictly regular pronunciations (such as ‘hove’ — /hOv/) and the other acceptable
pronunciations.

Problems Learning the Exceptions

The first few simulations were somewhat disappointing since the networks’
performance levelled off at about 85% of the training data. A closer investigation of
the networks outputs revealed that the 85% overall corresponded to 93% of the
regular words but only 45% of the irregular words and that this situation had arisen
because the network had started off by acquiring the main rules quite successfully
but was then unable to replace these where appropriate by the less common sub-
rules and exceptions. This is actually a quite common problem with the back-
propagation learning algorithm because the error signal propagated back through
the network is proportional to the derivative of the sigmoid which tends to zero as
the output activations go totally wrong. Consequently, once an output has been
learnt incorrectly, the network has difficulty in correcting it. In order to prevent
their activations getting stuck hard wrong like this, Seidenberg & McClelland (1989)
used output targets of 0.1 and 0.9 instead of 0.0 and 1.0. Another common solution
is to use a Sigmoid Prime Offset of 0.1 instead (Fahlman, 1988). Figures 2 and 3
compare these two approaches for the case of 40 hidden units and a window size of



7 characters. Both approaches show a significant improvement over the unmodified
learning algorithm. The final generalization performance was similar for the two
approaches, but the Sigmoid Prime Offset (SPO) resulted in a superior learning rate
and was therefore used throughout the remainder of the simulations. The original
poor performance on the exception words but near normal performance on the
regular words and non-words is very reminiscent of certain types of developmental
dyslexia and will be discussed further in the section devoted to learning and
developmental dyslexia.

Dealing with the Homographs

Since the Seidenberg & McClelland corpus contains 13 pairs of homographs it is
clear that the network can never achieve total success at learning this training data
and it is well known that such ambiguities can cause serious problems with neural
network learning and generalization (e.g. Bullinaria, 1993b). In humans we have no
trouble making use of (semantic) context information to resolve these ambiguities.
Experiments were therefore carried out on the use of context flags to resolve these
ambiguities for our networks. As a preliminary investigation, this was implemented
in the simplest manner possible by introducing extra characters into the input
alphabet and appending those characters to the least regular input word of each pair
of homographs. The aim was to see how many different input flags would have to
be introduced to deal with all 13 homograph ambiguities. It turned out that a single
extra character was sufficient and that this not only allowed the network to achieve
100% success rate on the homographs (compared with a maximum of 50% before)
but also resulted in improved performance on many orthographically similar non-
homographs as well. That such a simple flag works so well gives us hope that
similar flags could also be used to flip the network between different accents and
languages as effortlessly as in humans.

Clearly, this simplistic approach to dealing with homographs will have to be
re-assessed once we have a better understanding of how the model performs and
how we might incorporate semantic processing into it. We will therefore discuss
this issue further in our concluding section.

Results from the Simulations

For the basic model described above we will merely outline the gross features of its
performance. A detailed analysis of what structures are actually being represented
in the hidden units, the relationship between the output activation errors and
naming latencies, developmental dyslexias and how the model responds to different
types of damage will be reserved for the more successful and realistic variations of
this model to be discussed in the next section.

There are still a few more network parameters that we can vary. The first thing
we needed to consider was the appropriate window size and number of hidden
units. As with the original NETtalk model, various values for these parameters
were tried. We began with 40 hidden units (since this was the number of output
units) and increased the widow size from one character (which not surprisingly did
not work too well) until we got acceptable performance. Networks with a window
size of 9 characters were able to learn all but one of the training examples, namely



‘though’ — /DO/. The reason why the network failed on this word was that the
training data also included the word ‘thought’ — /T*t/ in which the sub-word
‘though” had to be pronounced as /T*/ and unless the input window is large
enough to have the final ‘t’ in the window while the initial ‘t’ is in the centre of the
window, the network has no way of resolving the ambiguity. By increasing the
window size to 13 this long range dependency could be handled and the network
was able to achieve a 100% success rate on its training data.

To confirm the networks’ capability of handling long range dependencies and
also to test its ability to deal with more complex multi-syllabic words, some runs
with the words ‘photographic’ — /fotOgrafik/ and ‘photography’ — /fot*grafE/
incorporated into the training data were carried out. Each of these words contain
the letter ‘0’ pronounced in two different ways and the pronunciation of the second
‘0’ is determined only by letters at least six characters away. With a window size of
13 characters the network was able to learn both words without any difficulty. With
a window size of only 11 characters (for which the crucial i’ and “y’ fall outside the
window while the problematic second ‘0’ is in the central position) the network
failed to learn the two words.

Clearly there is nothing to stop us inventing new words with arbitrarily long
range dependencies, so the required window size is very much training data
dependent. This is obviously a fundamental limitation of this model which will be
discussed further in our concluding section. However, having determined that, for
our training data, we require a window size of 13 characters we could set about
finding the optimal number of hidden units. A whole range of numbers of hidden
units were tried and Figure 4 summarizes how the training performance varied. The
general trend was that the more hidden units the network had, the less epochs it
required to learn the training data. This reduction in number of epochs is, of course,
counter-balanced (on serial computers) by the increased time taken to compute each
epoch so this in itself is not an important criterion. In fact, in terms of total training
time, the less hidden units the better. For less than about 30 hidden units the
network fails to learn all the training data so we need to keep well above that. For
our purposes it is the generalization performance that we are most concerned about.
Figures 5 and 6 show exactly how the generalization performance varies with the
number of hidden units. Above about 80 hidden units we found no significant
difference in generalization performance as we increased the number of units. As
we decrease the number of units below 80, the performance deteriorates
significantly. A reasonably safe compromise was therefore judged to be 120 units.

Figure 7 shows the learning curves for a typical run of the network with 120
hidden units, a window size of 13 characters, errcrit = 0.01 and a single context flag
to resolve the homograph ambiguities. The differences that we find in the learning
rates for the regular and exception words in our model are in general agreement
with human development (e.g. Backman et al., 1984). The network eventually
achieved 100% performance on the training data and for non-words plateaued at
94.0% (comprised of 95.3% for regulars, 93.0% for exceptions and 93.8% for controls).
Comparisons with other models are complicated by different authors using different
non-word sets and scoring criteria, so bearing this in mind, the Seidenberg &
McClelland (1989) model achieved 97.3% on the training data and about 65% on the
Glushko non-words, Plaut et al. (1992) achieved 99.9% and 97.7% and Coltheart et al.
(1993) achieved about 77% and 98%. For human subjects we would typically have
virtually 100% on mono-syllabic words under normal conditions and about 95% on
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the Glushko non-words under time pressure (Glushko, 1979).

Although our networks generally performed fairly well, and many of the non-
word errors would be acceptable under more generous criteria of acceptability (e.g.
‘wuff’ — /wuf/ and ‘wosh’ — /w*S/ are counted as wrong by the above rules),
there still remain a few errors of the kind humans would never make (e.g. ‘zute’ —
/myt/). Sejnowski & Rosenberg (1987) note that they got a better generalization
performance for the original NETtalk by using two hidden layers instead of only
one. Unfortunately, our limited computational resources have prevented us from
confirming this for our model. In the next section, however, we will examine the
effect of a number of other variations of the basic model which we might expect to
improve its performance.

It is also important for us to examine the effects of varying the over-learning
parameter errcrit. Figure 8 shows that the training performance actually shows very
little variation with errcrit. For very large errcrit (i.e. of order 1.0) the number of
epoch required to reach a given level of performance is increased, but this is more
than compensated for by the reduced number of patterns being trained on per
epoch. Figure 9 indicates that there is also no significant variation in the final
generalization performance as we vary errcrit. The temptation is therefore to keep
errcrit quite high, but we shall see later that errcrit does actually have an important
effect on the networks’ resilience to damage.

As we find variations in performance from one human to another, we also find
differences between networks with different parameters or even just different
random initial weights prior to training. Of particular interest is the fact that
different networks make their errors on different non-words, since this can give us
valuable clues as to which non-words are giving real problems to the networks and
which errors are simply due to random fluctuations. Table 1 shows the most
common final non-word errors out of nine network runs that achieved perfect
training performance (the four runs of Figures 8 & 9 plus the six successful runs of
Figures 4 & 5 which includes one overlap). We see that there were only eight of the
166 non-words that were pronounced wrongly by more than one third of the
networks and there is a clear reason for most of them. These reasons will prove
crucial for determining the required improvements for this model in the next two
sections.

Learning Trajectories

Since reading aloud has a particularly rich rule structure it is instructive to look
more closely at the learning trajectories. The most common phoneme target is the
blank, so the network invariably starts off by learning to output a blank for
everything and consequently produces no pronunciation at all. It then begins to
recognise that certain phonemes (usually /t/, /s/ and /r/) are quite common and
regular and produces long single phoneme strings of these quite indiscriminately
between long strings of blanks. At this stage all the output activations are still small
(i.e. less than 0.5). Further through the first epoch it acquires stronger output
activations for the more common phonemes (again /t/, /s/ and /r/) and these are
generally occurring in the right places. There are also many strong blanks by now
but these are less frequently in the right positions. The weaker outputs have become
more varied but are predominantly the common consonants ( /s/, /t/, /t/, /1/,
/n/, /k/ and /p/) with occasional vowels (/a/, /A/ and /E/). By the end of the
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first epoch (which uses about 730 of the training patterns) the network is already
getting 1.4% of the full training set correct, but none of them with strong outputs.
During the second and third epochs the blanks are more frequently occurring in the
right places and more phonemes are being output strongly, including the first of the
more complicated cases (‘ea’ — /E/ and ‘sh’ — /S/). The strong and correct
outputs are beginning to line up the letters and phonemes quite strongly by now
and many of the potential targets have been ruled out completely. We now have
33.6% of the training words and 34.9% of the non-words correct, many with strong
outputs on each phoneme. By epoch eight, even the less common phonemes are
being output strongly and the performance has increased to 67.4% on the training
data (85.4% regulars, 8.3% exceptions) and 75.3% on the non-words. Most of the
regular rules and major sub-rules have been learnt by epoch sixteen and we have
80.9% on the training data (95.8% regulars, 14.6% exceptions) and 91.6% on the non-
words. The networks generalization ability (i.e. its performance on the non-words)
reaches a peak after about thirty epochs and the remaining epochs (typically another
500) are used to set up the special purpose rules that are required to cope with the
exceptional words but which tend to interfere with the generalization. The fact that,
in order to deal with the exception words, we need to train well beyond the point
where the generalization performance begins to decrease again suggests that
learning here with conventional ambiguous (i.e. non-multi-target) training data is
simply not feasible (Bullinaria, 1993Db).

Letter-Phoneme Alignment

One thing that will obviously have a great effect on the networks’ performance is
how well they have managed to align the letters and phonemes correctly. If we
compare the alignments of our nine networks in pairs we find that the mean number
of training data words aligned differently is 939 (s.d. 387), i.e. over 30%. Some of
these differences are due to clear mis-alignments (e.g. ‘back’ — /b-ak/) and it is
reassuring to see that the networks can perform so well despite these errors.
However, not all the differences are necessarily errors. Although we tend to talk
about ‘solving the alignment problem’ there is actually no unique correct way to
align all the letters and phonemes. For example, we can equally well have
‘ng’ — /N-/ or /-N/ and similarly ‘th’ - /D-/ or /-D/. In other cases there can
simply be a preferred alignment out of two possibilities: for example, we could have
‘ai’ - /A-/ or /-A/, but since we often have ‘a’ - /A/ (e.g.in ‘ace’ - /As-/),
the balance is tipped towards /A-/.

With the complication of equivalent alignment possibilities and only nine
networks to compare, it is difficult to be sure, but the preliminary indication is that
the more hidden units we use, the better the overall alignment we get. This is the
impression we also obtain from a range of smaller scale multi-target problems
(Bullinaria, 1993b).

Another way that we could improve the alignments would be to train the
networks first on a subset of easy words (i.e. words that only have one possible
alignment) before going on to learn the more difficult words. This is, in effect, what
we do with children that are learning to read. We will avoid this course of action for
the present, however, since it would inevitably lead to unnecessary criticism of the
model.
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Variations on the Basic Model

We saw in the preceding section that our basic connectionist model of reading
already performs rather well. In this section we consider a number of variations on
the basic model that we might expect to make it even more realistic.

No Explicit Blanks

Up till now we have had a separate output unit corresponding to a blank (i.e. no
phoneme). An alternative, that might be deemed more realistic, is to have no
explicit ‘blank unit’ but simply to have some threshold such that if no output
activation exceeds that threshold then the network output is deemed to be a blank.
Figure 10 shows the performance of such a variation compared with the basic model
(using the same network and training parameters) shown in Figure 7. The
performance on the training data is not significantly different but the network with
explicit blanks performs significantly better on the non-words. Most of the
differences can be identified as corresponding to cases where all the output
activations are very low. In the basic model, as long as the most activated output is
not the ‘blank output’, then that phoneme is deemed to be output however low its
activation is. In the variation, the same level of activation may fail to reach the
threshold and thus be deemed a blank output. Virtually all the extra non-word
errors in the variation are caused by letters failing to reach the threshold in this way.
Lowering errcrit so that all the errors are reduced was found to be insufficient to
remedy the situation. It may be that introducing basins of attraction for the outputs
and/or using larger training data sets may improve things but, for the present
study, we are forced to persevere with explicit blanks. (This variation has been
discussed in more detail in Bullinaria, 1993a.)

Multiple Phoneme Outputs

We have already noted that certain phoneme combinations (namely /dZ/ and /ks/)
must be recoded for the basic model so that each word has less phonemes than
letters. This is not a satisfactory state of affairs and does not account for other
combinations of phonemes that naturally correspond to a single letter (for example,
‘v - /yU/ as in ‘cube’ - /kyUb/) which we can see from Table 1 cause many
problems with the generalization. The obvious way to proceed here is to allow more
than one output phoneme per presentation of each word.

Let us first consider the case with two output phonemes (as shown in Figure
11). Setting this up for the original NETtalk with its pre-aligned training data would
be straightforward. The main problem we have here with our multi-target training
data is that the number of possible output targets for each word grows rather
quickly with the number of output phonemes. For our previous example of the
word ‘ace” - /As/, we now have fifteen targets (As — —, A— s-= —, A— -s —,
etc.) compared with only three (A s -, A - s, — A s) when we had a single
phoneme output. The word ‘cube’ — /kyUb/ now has 105 targets compared with
only one before. One way to restrict the number of targets without making any
assumptions about the nature of the training data is for each presentation to have
each phoneme pair left justified, i.e. to allow blank outputs only to the right of any
phonemes, so that /s—/ is allowed but /—s/ is not. For ‘ace’” we then have only six
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targets (As — — A- s-= — A- — s—, — As —, — A- s-,— — As) and for
‘cube’ we are left with only nineteen targets.

From a computational point of view the number of targets is not very
important compared with, for example, the number of hidden or output units.
However many targets we have, there is still only one forward pass through the
network and one backward pass. The difference is only in the number of targets
that need to be compared with the actual network output and (assuming the whole
set of targets is stored in memory rather than repeatedly recalculated) the time taken
to do this will usually be very small in comparison with the other computations
required. Exactly how this process might be carried out in real brains is not clear at
present but, given human pattern matching ability in other areas, it should not pose
too much of a problem.

In cases where the target comparison time does become significant, there is a
computational trick (which was not actually used for any of the simulations
described in this paper) that can speed up the process. As noted in our discussion of
the learning trajectories, most of the alignments are figured out in the first few
epochs so, if the best target for each word can be remembered from one epoch to the
next (which is easily arranged), the number of target tests tends to one per word
very quickly. This is because we can test that previous best target first and we know
that, once we have found a target with a total error score less than 1.0, all the other
targets necessarily have a greater error score. It should be emphasised again that
such computational trickery merely speeds up the computation, it does not change
the effect of the learning algorithm.

A number of simulations of these two output phoneme networks were carried
out and, despite the much greater number of targets, the networks still managed to
learn to use a sensible target for each word. In practice, the opportunity for the
network to output two phonemes for a single word presentation was actually used
very rarely. The most common instances were the ¥ — /dZ/, ‘g’ - /dZ/ and
‘x" - [ks/ cases mentioned previously. Apart from these and a few exception
words (such as ‘choir’ - /k- — wl — r—/ and ‘once’ - /w” n- s— —/ ), the
only other uses of the second phoneme were with ‘u” - /yU/ and ‘ch” - /tS/ but
here the first phoneme (i.e. the /y/ and /t/) was always associated with the
previous presentation (e.g. so that ‘cube’ — /ky U- b— —/ ). That the networks
made such sensible use of their new degree of freedom is encouraging and clearly
beneficial to the generalization performances.

The use of more than two output phonemes per presentation is a straight-
forward extension of this, though the number of targets per input can grow rather
large and the extra outputs are rarely used. Of particular interest is the case of four
sets of output units since this is sufficient for us to be able to turn the training data
around and run the system as a model of spelling with the pronunciations on the
inputs and the corresponding letter strings on the outputs. Although spelling is
clearly closely related to reading aloud it is somewhat more than a simple inverse
mapping (e.g. Frith, 1980; Kreiner & Gough, 1990). The rule structures are
considerably more ambiguous and there are over 440 homophones in the Seidenberg
& McClelland data set alone. Consequently, we shall leave the analysis of these
models of spelling for another paper.

Beginning and End of Word Markers
The basic model has no explicit markers for the beginnings and ends of words and it

14



is reasonable to expect that such markers would facilitate the learning of certain
rules. The fact that the network often pronounces the Glushko non-word ‘mone’ as
/mw”n/ by analogy with “‘one’— /w”n/ rather than the regular /mOn/ is evidence
of this (see Table 1). It is easy to incorporate such markers into the training data by
simply appending the appropriate extra characters to the beginnings and ends of
each letter and phoneme string. However, there are many possible variations on
this theme which should be investigated for use in more sophisticated models of this
type. For the letters we can have different markers for the beginning and ends of
words or we can have a single ‘word separation’ character. For the phonemes we
can output distinct word separation characters, or our existing no pronunciation
‘blanks’, or some combination of these. Unfortunately, the facts that the model is
already so successful without these explicit markers and that there are variations
between different runs anyway, mean that it is difficult to confirm any significant
differences in performance between the different types of markers. What is clear
however, is that when they are included, the markers are able to rectify the problems
experienced with non-words such as ‘mone” and “wone’.

In real speech the gaps in the pronunciations are often within words rather
than in between them and this leads us on to the whole problem of stress in multi-
syllabic words and the relationships with adjacent words and semantics. In the
multiple-phoneme output models there is room for the inclusion of stress and other
markers in the output strings and hence we have the possibility of working with
continuous stressed speech. Once again however, this is beyond the scope of this
paper and will be reported elsewhere.

No Hidden Units

For comparison with other types of model which do not perform as well as our basic
neural network, such as analogy models which find it difficult to get as much as 80%
generalization performance (e.g. Sullivan & Damper, 1992), it is interesting to see
how well our model can do without any hidden units, i.e. with only direct input to
output connections. It is not surprising that these networks cannot perform as well
as the models that do have hidden units, since it is easy for us to construct non-
linearly separable exception words which are well known to require hidden units
(e.g. Minsky & Papert, 1969). What might be considered surprising is how well they
can do. Since some output errors will remain however long we train for and the
training regime presents different words in different orders in each epoch, the
weights never fully stabilise and there remain fluctuations in the performance.
Figure 12 shows the learning curves for the two phoneme output case with the
performances averaged over several epochs for the data points beyond epoch 512.
This network reached a final average performance of 88.5% on the Seidenberg &
McClelland training data (comprised of 100.0% for regulars, 31.2% for exceptions)
and 90.4% on the non-words. Considering how well such a simple association can
do, we should perhaps investigate more closely what exactly is happening in other
models (such as statistical analogy models) which generally do worse than this.
Once again, the considerably superior performance on the regular words compared
with the exception words is reminiscent of some forms of developmental dyslexia
and will be discussed in more detail in the section devoted to learning and
developmental dyslexia.
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Alternative Training Data

The Seidenberg & McClelland (1989) set of mono-syllabic words has become the
standard for training models of reading and for the purposes of comparing models it
would be foolish not to use it. However, it has been found that if smaller training
sets are used, then obviously incorrect grapheme-phoneme correspondences can be
learnt by our models (e.g. ‘ace’ — /-As/ instead of /As—/) without noticeably
affecting the output performance on that training set. Moreover, it is clear that the
more training examples we have, the easier it will be for the network to identify the
precise extent of the various sub-rules. It is likely, therefore, that simply using larger
training sets could further improve our network’s generalization performance,
particularly since more words here means longer words and these will tend to be
more regular than the words we have used thus far. It is also important for us to
test that our model really can handle large numbers of poly-syllabic words in its
training data.

We therefore constructed a suitable set of training data consisting of words
derived from the Lund corpus (Svartvik & Quirk, 1980). To simplify the
performance comparisons, the data set was constructed with the single phoneme
output model in mind. We started with a computerized lexicon containing 61141
words and their corresponding phoneme strings (using 44 different phonemes). Of
these words, 2415 had more phonemes than letters and most of these could be
identified as arising from nine correspondences of the form ‘x’ - /ks/, ‘u’ — /yU/,
etc. Since these would also cause alignment problems with many words that did
have fewer phonemes than letters, these nine phoneme pairs were replaced
throughout by new ‘phoneme’ symbols brining the total number of phonemes up to
53. The remaining 387 ‘words” with more phonemes than letters (such as ‘mrs’
— /misiz/) were removed, as were 524 words with less than 2 letters or more than
14 letters. We will refer to this remainder as the “main lexicon’. Of these there were
14014 words that had a non-zero frequency count in the Lund corpus. To simplify
the computer simulation (i.e. to be able to run it on a computer with limited memory
and computational power), words that would have had more than 64 training
targets were removed leaving 12840 words of which none were homographs. The
distribution of the logarithms of the Lund frequency counts was similar to that of
the Seidenberg & McClelland corpus. For convenience when comparing results, the
frequency counts of the words contained in the Seidenberg & McClelland corpus
were replaced by the Kucera & Francis counts and words that occurred in the
Seidenberg & McClelland corpus and the ‘main lexicon’ but not the reduced 12840
word set were added to that set. Three words in the Seidenberg & McClelland set
(namely “frappe’, ‘math’ and ‘plow’) that are used in various experiments but were
missing from the ‘main lexicon” were also added to our word set and the least
regular of each of the remaining homographs were removed giving us a final lexicon
of 13891 words.

This lexicon was then used to train a range of networks. A few trial runs
revealed that we needed to increase the window size from 13 to 17 characters to deal
with all the long range dependencies. One main run was then carried out with 160
hidden units, an errcrit of 0.01 and explicit beginning and end of word markers. The
learning curves are shown in Figure 13. The increased number of words used per
epoch gives the impression that learning is faster than in the basic model (shown in
Figure 7) but the total number of epochs required to deal with all the exception
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words was actually increased. This, together with the increased lengths of the
words, meant that the overall training time was increased by a factor of more than
six. (Unfortunately, a few acronyms such as ‘iou” and foreign words such as
‘famille’ slipped through the word selection procedure and caused particular
problems with the training.) As hoped, the non-word performance was improved
(to 97.0%), but direct comparison with the basic model is complicated by the
different phonetic transcriptions used in the larger training set. (It is unlikely that a
small number of homographs would make much difference to the performance of a
network trained on such a large data set.)

Finally, we note that (as for the original NETtalk) it is a basically straight-
forward extension to train our model on a continuous stream of words and on
transcribed real informal speech containing errors and inconsistencies. A full
investigation of this is planned and will be reported elsewhere.

Recurrent Connections

Given that the phoneme (or stress marker) to be output next by the network will
often have a strong dependence on the previous phonemes (or stress markers) it is
quite feasible that the models’ performance could be further improved by the
incorporation of recurrent connections. So far we have only implemented the
simplest form of recurrent connections whereby a copy of the previous output is
included as an extra input into the network (as shown in Figure 14). Various other
types of recurrent connections are possible, such as Elman (1990) type context units
and basins of attraction (Plaut & Shallice, 1992), and it may be necessary to
incorporate them in the future to account for other aspects of the reading process or
simply to improve the existing performance. In fact, we shall suggest in the
concluding section that the whole moving window architecture should be replaced
by an equivalent system of recurrent connections.

On the other hand, rather than improving our model, such recurrent
connections could conceivably confuse the multi-target learning algorithm and
prevent the network from settling down into using a sensible set of targets. Either
way, the effects of such connections were in need of investigation. Consequently,
three recurrent networks with 40, 80 and 120 hidden units, errcrit = 0.01 and a
window size of 13 characters were trained on the Seidenberg & McClelland training
data. As with our other variations on the basic model, it was difficult to distinguish
real changes in performance over the corresponding non-recurrent networks from
statistical fluctuations. The recurrent versions learnt the training data perfectly in a
similar number of epochs to their non-recurrent counterparts and Table 3 shows that
they also have a similar (and possibly slightly better) performance on non-words.
The important point is that these extra connections do not degrade the networks’
performance and do not disrupt the multi-target learning.

Parallel Implementations

Our neural network models are very computationally intensive and one way to
speed up the training is to perform the computations in parallel. The learning
algorithm was therefore re-implemented in C* for the Connection Machine . (C* and
Connection Machine are registered trademarks of Thinking Machines Corporation.)
The simplest implementation involved distributing the training patterns over
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the computer’s processors. This necessitated the use of batch training rather than
on-line training and unfortunately, as a consequence, the number of epochs required
to reach 100% performance on the training data increased so much that despite the
considerably faster computer we never managed to complete a single run. The
problem was that in order to perform a reasonable approximation to gradient
descent and to settle into a good set of targets the total step size in weight space
must be kept small. If our batch size is 8192 patterns (corresponding to the number
of processors on half of our local Connection Machine) then to keep the same total
step size we must reduce our back-propagation learning rate by some appropriate
factor from that used by the on-line version. Given that we keep the step sizes
reasonably optimal in both cases, we then have a race between single accurate steps
for the batch mode against 8192 inaccurate steps for the on-line mode. In this case
the on-line version won by a long way and we went back to our old serial
computers. It is possible that varying the step size during the learning will improve
matters, but this is likely to involve a great deal of trial and error and has not yet
been carried out.

There are other (though not so straightforward) ways to slice up the
calculations between the computer’s processors, such as having the processors
acting as network units or connections (e.g. Deprit, 1989). This will not require batch
processing and is more like the kind of parallel processing that happens in real
brains. Such approaches are obviously worth further consideration in the future.

Performance of the Best Model

In this section we describe in detail the performance of our best reading model to
date, and compare it with normal human performance.

The variations to our basic model that were discussed in the last section can
clearly be applied in various different combinations. The changes that appeared to
improve performance were multiple phoneme outputs, beginning and end of word
markers, recurrent connections and larger training data sets. The first two of these
seem to be necessary to remedy several of the most common non-word errors of
Table 1 and so we will definitely include these in our improved model. However, in
order to ease the comparison with other models and to keep the model as simple as
possible (not to mention reducing the strain on our computational resources) we will
forgo, for now, the use of recurrent connections and larger training sets.

The best combination model tried so far therefore has explicit blanks in the
output units, two output phonemes per presentation, explicit beginning and end of
word markers, no recurrent connections, on-line training with the Seidenberg &
McClelland training corpus, a window size of 13 characters and a single context flag
to resolve the homograph ambiguities. We had very little information to help us
choose the optimal number of hidden units and value of errcrit. Experiments with
very small scale models of this type (Bullinaria, 1993b) suggest that the probability
of achieving a good generalization performance increases with the number of
hidden units. Moreover, the more hidden units we have, the more brain-like the
system is likely to be and the more likely it is to behave reasonably realistically
when damaged. A preliminary investigation of network damage also indicated that
reducing errcrit leads to more resilience and more realistic post-damage
performance. Thus, bearing in mind our limited computational resources, we
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carried out two runs with 300 hidden units, one with errcrit = 0.0001 and one with
errcrit = 0.

The two sets of learning curves obtained were very similar and those of the
errcrit = 0 network are shown in Figure 15. We see that the curves are also very
similar to those of the basic model (shown in Figure 7), except that the final non-
word performance is now slightly better. The learning trajectories are closely related
to those of the basic model. The network starts off by outputting blanks for
everything. Then, since the phonemes (as distinct from blanks) are much more
common targets on the first set of output units, it proceeds as though the second set
were not there and goes through the same learning process as before. Only once the
letters and phonemes are strongly lined up is it forced to begin making use of the
second set of outputs and we end up with the pattern of alignments discussed
previously. We will now look at various aspects of the models” performance in
more detail.

Generalization

Table 3 summarizes the two models’ generalization (i.e. non-word) performance.
For each case we show the total percentages of the three sets of non-words that were
pronounced acceptably together with the total percentages that were pronounced
regularly. Also shown is the percentage of the output pronunciations that have a
close rival output. Not surprisingly, the non-regular pronunciations and the close
rival outputs occur much more frequently for the exceptional non-words (i.e. non-
words that are derived from exceptional base words) than for the regular non-
words. The ‘Overlap’ sub-table counts the instances that co-occur for both networks
and consequently provides an indication of the variations between the two
networks. (The only two non-word errors that were made by both networks were
‘wosh” - /wuS/ and ‘1lokes” — /10kz/.) Finally, we see that the networks actually
perform better than humans working under time constraints (Glushko, 1979). That
humans often pronounce non-words by analogy with similar exception words,
rather than by using the most regular rules, has often been taken to be evidence
against the existence of a traditional GPC route in a dual route model. We can see
from Table 3 that our models are actually more likely to pronounce non-words by
analogy than humans.

Additional evidence of the models operating by analogy comes from the way
that the networks learn to align the letters and phonemes. It is interesting that,
unlike the smaller and simpler networks considered in our discussion of the basic
model, the two networks here chose to solve the alignment problem in a remarkably
similar manner: there were only 22 different alignments out of the 2998 words.
Where one of the two versions could be judged superior, the errcrit = 0 network won
by 10 items to 1, which is consistent with its slightly better performance on the non-
words. Although the regular alignments would have worked just as well (as in all
the other networks we have tested), whenever an ‘1’ follows a double vowel, the ‘1’
phoneme always takes the central position and the ‘blank’ the final position (e.g. “ail’
— [/ Al-/ rather than /A-1/). Such apparently unnecessary sub-rules do not seem to
affect the generalization performance. Similarly unnecessary sub-rules
corresponding to exception word analogies are also likely to occur. For the
networks to operate efficiently, the rules and sub-rules clearly need to be arranged
into a context dependent hierarchy, but there will not necessarily be a unique
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hierarchy to account for a given set of training data. For example, consider the 17
words in the training data ending in ‘ead’. Six have the regular /Ed/ ending whilst
eleven have the irregular /ed/ ending. The /ed/ sub-rule must take precedence
over the regular rule in a particular set of contexts which must include all of the
eleven words but none of the six. Which rule has precedence in other cases, e.g.
when we test the network’s generalization performance on non-words, is not
determined. This is why our networks and humans sometimes respond with a
strictly regular pronunciation and sometimes by analogy with an irregular word.
(Humans also suffer from priming effects that do not exist in our current models.) It
is only by using a more representative training set that such rule ambiguities can be
resolved. Since our networks are already trained on virtually all mono-syllabic
words any enlargement of the training data set will primarily consist of longer and
poly-syllabic words which tend to be more regular. Consequently, they will tend to
restrict the sub-rule contexts more tightly than the mono-syllabic words used thus
far and hence, as we employ more realistic training data, the generalization
performance of our models should become more regular and human like.

Another possible reason why humans may give more regular non-word
responses than our networks is that the GPC route in humans never achieves perfect
performance on the training data and leaves a separate semantic/lexical route to
deal with most of the exception words. This is equivalent to stopping the training
early (e.g. near the generalization peak) or using some other regularization device
that restricts the network’s acquisition of the exception words (as discussed further
in the section on damage and acquired dyslexia). Either way, because the exception
word performance remains relatively low, the non-word pronunciations are less
likely to be formed by analogy with the exception words and are hence more likely
to be regular. This is confirmed by the results in Table 4 which shows our two
networks’ generalization performance after 32 epochs where the exception word
performance is still only about 30%. The mean proportion of acceptable exception
non-word pronunciations that are regular is now 83.6% compared with 64.0% after
full training and 81.6% in humans. These results also give an indication of the likely
performance when the network has acquired a smaller proportion of exception
words for other reasons, e.g. because it has been trained on a more realistic set of
training data.

An interesting study by Treiman & Zukowski (1988) suggests that when
humans pronounce non-words by analogy (rather than according to the main GPC
rules), they use vowel plus final consonant units to a greater degree than initial
vowel plus consonant units or vowels alone. They arrived at this conclusion by
studying the pronunciation of 36 non-words derived from the irregular base words
‘friend’, ‘said’, ‘been’ and ‘gone’ by changing the initial consonant cluster, the final
consonant cluster or both consonant clusters. The same 36 non-words were tried on
our two networks. All 72 responses were acceptable with 6 of them pronounced by
analogy. Unfortunately, none of the analogies employed by our networks
corresponded to the base words in the experiment, so no conclusions could be
drawn. Since we only have two networks compared with ten subjects in the
experiment, this is not a disastrous result. It is clearly something that is worth
investigating further when more trained networks become available. (Since all the
base words are fairly common it is also quite conceivable that the effect in humans is
enhanced by priming effects not yet possible in our networks.)

Finally for this section, we compared the performance of our two networks
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with a comparable network trained on pre-processed training data, i.e. data for
which the alignment problem had already been solved. Since the final set of
alignments learnt by the errcrit = 0 network was essentially perfect (modulo the “ail’
anomaly mentioned already and which did not result in any of the non-word
errors), we used the training data with these alignments built in by hand to train a
network with exactly the same parameters. The learning curves are too similar to
those of the non-aligned case (shown in Figure 15) to be worth presenting here. As
noted previously, the multi-target networks have generally learnt the appropriate
alignments by epoch eight. Before epoch eight there are two opposing effects that
may be significant. Firstly, the fact that no training at all is being done on incorrect
targets means that learning should be speeded up. Secondly, the fact that there is
only one possible target for each word means that there is less chance of arriving at
an acceptable target ‘by accident’. Since progress in the first few epochs depends so
crucially on the random order of the training data presentation anyway, it is
virtually impossible to determine what is actually happening. The important
observation is that beyond epoch eight there is no significant difference at all
between the aligned and non-aligned cases in either training or generalization
performance.

Extracting the Rules

Our network’s performance on the non-words demonstrates quite clearly that it has
learnt a good set of GPC rules. Unlike other models that employ complicated
representations such as Wickelfeatures, it is easy to for us to see exactly what output
is produced by different combinations of input letters. First, Table 5 shows the
default outputs for each letter in the alphabet and the corresponding error scores.
Most of the consonants give rise to the expected phonemes. The vowels, on the
other hand, either have high errors or give the default blank output. This is because
the vowel pronunciations depend so much more critically on the context. To get the
response equivalent to asking a human to pronounce a single letter on its own we
need to sandwich that letter between beginning and end of word markers. As
expected, this does give strong non-blank outputs for all the letters including the
vowels. In networks that do not have beginning and end of word markers, such as
our original basic model, the default outputs are strong non-blank phonemes for the
letters by themselves.

We can simulate the effect of a generic consonant (which we shall represent
by ‘C’) by activating the input units corresponding to the ten strongest consonants
(namely d, f, k, 1, m, n, p, 1, s, t) at one tenth of their full value. The total input is
then equivalent to a single consonant but all the corresponding output activations
are less than 0.02. Using this and the beginning and end of word marker “|” we can
examine the rules learnt for the vowels in different contexts.

Table 6 shows how the long and short vowels are produced in different
contexts, in particular the rule that a final ‘e’ lengthens the preceding vowel. For the
double vowels there is somewhat less ambiguity when they are on their own, as we
can see from Table 7. In Table 8 we have the outputs when they are sandwiched
between generic consonants.

These results constitute the main GPC rules, but they can be over-ridden by
more powerful sub-rules. Table 9 gives some well known consonant examples.
First, the letter ‘c’ is pronounced differently (i.e. hard or soft) depending on which
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vowel follows it. Next we see some of the familiar pairs of letters that have special
pronunciations. Finally, we see that some letters and combinations are pronounced
differently at the beginning of words. Table 10 shows some typical vowel sub-rules.
For example, we see how the ‘00" — /U/ rule is over-ridden if the ‘00’ is followed by
a ‘k’ but not a ‘ke’. Similar special rules apply for the vowels in the combinations
‘ur’, ‘or’, ‘ol and “oth’.

In Table 11 we can begin to see how the exception words are dealt with. The
‘i’ in ‘pint’ is pronounced /I/ instead of the regular /i/ and the ‘i’ in ‘give’ is
pronounced /i/ instead of the regular /I/. We see that as we supply more and
more context information the error measure increases until the new sub-rule takes
over completely. In this way, we can also determine which context information is
most useful in defining each sub-rule.

By plotting (in Figure 16) the mean absolute weight values for connections
coming out of the various input window positions we have further evidence that the
network is using the context information in a sensible manner with the centre of the
window having more effect than the extremities. If the curve was purely the result
of the way that the words are presented (i.e. with every presentation having a letter
in the central position and letters in positions 1 and 13 being relatively rare) it would
be symmetric around the central position 7. In fact it is skewed to the right in the
same way as the actual mutual information provided by the neighbouring letters in
the training data (Lucassen & Mercer, 1984).

It has been suggested (e.g. Glushko, 1979) that, when humans pronounce new
words or non-words, they do not do so by using a set of GPC rules, but rather, they
operate by analogy with words that they already know. So we have to ask: Has our
network really learnt a set of rules, or is it merely operating by analogy with the
words it has been trained on, or is the distinction meaningless anyway? From Table
9 we see, for example, that it knows the ‘rule’ that ‘ph’ is pronounced /f/, but it is
equally valid to say that the ‘ph” is pronounced by analogy with the “ph”’s occurring
in the training data. More revealing perhaps, is a consideration of the well known
rule that a terminal ‘e’ in a word lengthens the preceding vowel. Table 6 suggests
that the network knows this rule for all the vowels, but it is not clear from this that it
really is able to apply this rule to cases (i.e. vowel-consonant clusters) not present in
the training data. To test this point we investigated the network’s performance on
word strings of the form “VCel’ (where Vis any vowel and C is any consonant)
which do not occur in the training data. There are actually only 12 VC's of this form
that are not in the Seidenberg & McClelland corpus (namely: eb, oc, ef, of, uf, og, ek,
el, ex, ix, ox, ux) of which we reject two (namely: of, og) because their VCI follow a
sub-rule rather than the main rule and to which we add one (namely: ax) whose
VCel form follows a sub-rule rather than the main rule. For each of these we tested
the networks’” output on both ‘1 KVCel’ and ‘|KVC |’ where Kis one of a set 39
common initial consonant clusters (namely: b, ¢, d, f, g h,j, kL m,n, p, 1, st v, w,
Y, z, qu, ph, bl, br, ch, cl, cr, fl, gr, sh, sl, sp, st, th, tr, shr, spr, squ, str, thr) or the
generic consonant C. Table 12 shows the results averaged over our two networks.
Both networks have problems with the ‘el” case. For the other 10 cases, both
networks have perfect performance on all the short vowels and on the long vowels
with the generic consonant. The performances on the long vowels with the full set
of initial consonants are good, but by no means perfect. However, we do not really
expect perfect performance on the final ‘e’ lengthening the vowel because there are
numerous exceptions to the rule in the training data (e.g. “were’ — /wer/ and ‘none’
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— /n”n/). As discussed in the previous section on generalization, we can expect the
performance to improve, i.e. become more regular, if we train on a more realistic set
of training data. Although the ‘e rule’ is a classic example of a GPC rule, even here
the distinction between rule and analogy is unclear - one could still argue that the
network is simply operating by analogy with ‘V_e” independent of the consonant
that fills the blank. If one takes this point of view, then the network does not need to
learn any rules - it (and humans) can read everything purely by analogy. This is not
to say that abstraction does not take place - the network (and humans) still need to
learn which of the possible sub-words are most important when pronouncing by
analogy (e.g.‘V_e |’ rather than “ | KV)).

Lexical Decision

Any complete model of reading should be able to distinguish between words it has
been trained on and words or non-words that it has not seen before, i.e. it should be
able to perform lexical decision. Experiments involving lexical decision are
generally regarded as providing important clues concerning the processes
underlying reading (e.g. Andrews, 1982; Seidenberg et al., 1984, Waters &
Seidenberg, 1985). However, the only decision criterion possible in the current
model is provided by the mean square output activation errors. Figure 17 shows the
distribution of error scores of the network with errcrit = 0.0001 for the training data
set and the three sets of non-words. A similar graph is obtained for the errcrit = 0
case. It is clear that, although the mean error score for the training words is
somewhat less than that for the non-words, there is considerable overlap between
the training words and the non-words and hence the model is unable to perform
lexical decision in this way.

Unlike our model, the Seidenberg & McClelland model had separate sets of
phonological and orthographic output units and it was suggested that the
orthographic errors could be used as a measure of familiarity (Seidenberg &
McClelland, 1989). Unfortunately, it was later shown that this does not work either
(Besner et al., 1990). It seems that a separate lexical/semantic system will be
necessary in order to account for lexical decision.

Interference Effects

Seidenberg & McClelland (1989) illustrated quite well the effect that training on one
word had on the performance on another by considering how the performance of
their trained network on the regular word ‘tint’ varied as further training took place.
They showed that additional training with the regular word ‘mint’” improved
performance, whilst training with the irregular word ‘pint’ worsened performance
and training with the control words ‘rasp’ and “tent” had relatively little effect.
Naturally, since the same basic learning algorithm is involved here, we should
expect to be able to proceed similarly with our networks. The problem with our
model is that its error scores for the regular words ‘mint’, ‘rasp’ and ‘tent’ are
already so low that further training has virtually no effect on the network’s weights
and hence has little effect on the performance on ‘tint’. For the comparison of effects
to be valid we must train on words with well matched and relatively high error
scores. Figure 18 shows that the effect on the word ‘tint’ of training on the irregular
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word ‘pint’ (error 0.00296) was worsened performance, the control word ‘comb’
(0.00296) had little effect and the regular word ‘dint’” (0.00252) improved
performance. It also shows that training on the regular non-word ‘wint’, that
already has a very low error (0.000001), has no effect on the word ‘tint’. Similarly,
because of its relatively low error (0.00022), even training on ‘tint” itself has less
effect than ‘dint’. This confirms our natural intuitions about how the effects of the
different training words reinforce and counteract each other during learning.

By considering the implications of this for a full set of training data, which by
definition contains mostly regular words, it is easy to understand why the model
tends to learn the regular words before the exception words and why it generally
performs better (i.e. has lower output activation error scores) on regular words than
on exception words. It also implies that high frequency exception words should be
learnt faster than low frequency exception words and that we should expect ceiling
effects whereby the performance on the higher frequency exception words
eventually catches up that of the regular words. We will now see that these simple
observations can go a long way to explaining the results of numerous naming
latency experiments.

Naming Latencies

It has been suggested (e.g. Seidenberg & McClelland, 1989; Cohen, Dunbar &
McClelland, 1990) that neural network output activation error scores are correlated
with response times under pressure. The idea is that in more realistic cascaded
processing systems in which the activations build up to some threshold over time,
the higher the outputs (i.e. the lower the errors), the lower the time taken to reach
the threshold (McClelland, 1979; McClelland & Rumelhart, 1981; Norris, 1993). If
this is correct and we can consider our simple feedforward networks to be a
reasonable approximation to these cascaded systems, then it is appropriate to
compare the outputs of our model with the results of numerous naming latency
experiments that exist in the literature (for example, that words are generally
pronounced more quickly the more regular they are and the higher frequency they
are).

Unfortunately, these naming latency experiments are notoriously difficult.
Different experimental conditions often result in a wide variation in naming
latencies for the same words (e.g. Waters & Seidenberg, 1986, experiments 1 and 2)
and there seems to be no simple scale factor between the different set-ups. There is
also a wide variation between individual words and a large overlap in scores
between the various word types (e.g. Waters & Seidenberg, 1986, Appendix A).
Nevertheless, many interesting and statistically significant results have been
obtained. The problem is that it is often difficult to justify general claims about what
exactly is causing the effects. By comparing these experimental results with the
corresponding results from our model, which (by construction) can only capture the
effects of a subset of the processes underlying reading, we can hope to throw further
light on the matter.

There are many problems with relating the models’ error scores to the naming
latencies. Firstly, the way our network model works doesn’t really correspond to
any particular experimental set-up (e.g. it has no time constraints, the model never
makes errors once it has been trained, etc.). Seidenberg & McClelland (1989) were
consequently forced to use a whole series of different linear relations between the
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error scores in their model and the naming latencies to account for the different
experimental results. Secondly, because of the random nature of the training data
presentation, some anomalously high or low error scores can arise simply due to the
presence or absence of particular training patterns within the last few word
presentations or epochs. These priming (or anti-priming) effects are particularly
problematic for the low frequency words, which is where most of the significant
effects occur. Moreover, during training we only have a total of about 400000 word
presentations and the logarithmic relation between the actual word frequencies and
the models’ presentation frequency is likely to diminish many of the frequency
effects found in humans. Unfortunately, the computer time required to do
otherwise is prohibitive.

Perhaps the most fundamental problem we face is to decide on the precise
mathematical relation that should exist between the network output error scores and
the simulated naming latencies. Seidenberg & McClelland (1989) used a simple
linear transformation of the mean squared error. However, in our model the final
error scores vary over several orders of magnitude, whereas in the experiments the
latencies rarely vary by more than a factor of two. (The actual distribution of error
scores for our model is shown on a logarithmic scale in Figure 17.) A simple linear
relation will thus give a very skewed distribution that is not going to be particularly
realistic. The obvious alternative is to use a logarithmic relation, which results in a
more realistic (nearer Gaussian) distribution of errors, though it is difficult to justify
this relation. (Remember, however, that one of the assumptions underlying the
standard analysis of variance is that the distribution of observations on the
dependent variable is near normal within each group.) If one argues that the
naming latency should be given by the time taken for the output activation to build
up to some threshold in a more realistic network architecture and that this is
inversely related to the input into the largest output unit, then we can use the fact
that error = exp(—linput!) for small errors to justify a negative inverse logarithmic
relation between the errors and naming latencies. Perhaps even more justifiably, we
should have the time proportional to the direct sum over input letters of the inverses
of the inputs into the outputs. These relations also result in reasonable latency
distributions when the errors are small, but do not make sense when the errors are
large (e.g. with certain non-words) since the inputs are negative for output
activations less than 0.5. One solution to this, that has been used before (Cleeremans
& McClelland, 1991), is to normalise the outputs by taking their Luce ratios (Luce,
1963), i.e. dividing each output by the sum of all the outputs. These fractions of the
total output give a fairer indication of which output unit is winning, but still require
a logarithmic transformation to give anything like a normal distribution.

Given the problems noted above, it is clear that we will have to restrict
ourselves to looking for general trends rather than expecting to find precise
mappings between the models and particular experiments on humans.
Unfortunately, even the main significant effects are not always independent of the
precise mathematical relations and experiments used. Consequently, for each word
type we will tabulate the simulated latencies for each of four mathematical relations
(namely log error, negative inverse log error, sum inverse inputs and log Luce ratio).
The linear scale factors used for these scores were chosen simply for clarity and are
essentially arbitrary, but are consistent across all data sets. The statistical
significances of the differences (using standard t-tests and analyses of variance) will
also be tabulated in detail to give a clear indication of the subtle differences between
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the different relations and word sets. There are also many other possible variations
on our four relations, but the four will be sufficient to give a fair indication of the
dependencies on the details. We will also restrict ourselves to actually plotting the
results only for the simplest mean log error relation for each word type.

The three main word types we will consider are exception, regular inconsistent
and strange. Each of these types will be compared with regular control words and
with each other. The main differences in humans are found for the low frequency
words so we will begin by plotting (in Figure 19) the evolution during training of
the output activation error scores for the low frequency words of each type. This
shows quite clearly the basic error score hierarchy which we can now refer to in a
detailed examination of each word type. Although it is the final error scores that we
are primarily interested in here, the learning curves provide important additional
information. First, they indicate how the final errors arise as a result of the learning
process and where ceiling effects are playing a crucial role. Secondly, they give an
indication of the results we can expect if the training is stopped early, either due to
developmental problems or because some other (e.g. semantic) route has learnt to
take care of the remaining errors. We will end this section with a discussion of some
of the problems involved in accounting for the naming latency results for unique
words, non-words in general and pseudohomophones.

Exception Words.

Figures 20 and 21 show the learning and error curves for the exception words
and regular control words of Taraban & McClelland (1987). We see that the regular
words are acquired first and that it is only after most of them been learnt (around
epoch 8) that the network starts to make significant progress with the exception
words. Early on in training (e.g. in the first 64 epochs) the random fluctuations
caused by the randomness of the word presentation order obscure the differences
between the high and low frequency words but later we see clearly the superiority
of the high frequency words. We can also see that by the end of training the
differences between the high and low frequency words will be much less for the
regular words than for the exception words.

In humans there is considerable experimental evidence that the pronunciation
latencies are longer for exception words than for regular words and also that there
are significant word frequency effects (e.g. Baron & Strawson, 1976; Glushko, 1979;
Waters & Seidenberg, 1986; Taraban & McClelland, 1987). Figure 22 summarizes the
results of the Waters & Seidenberg and Taraban & McClelland experiments. There
are significant overall type and frequency effects. The type effect for the low
frequency words was larger than that for the high frequency words. The frequency
effect is significant for the exception words but not the controls. The two way
interaction between type and frequency, however, was not significant.

It seems that there is general agreement between our model and what happens
for humans, but there are some interesting differences. Figure 23 shows the mean
logarithm of the error scores for our model, for the same sets of words as used for
Figure 22. The full set of statistical results, shown in Table 13, is more informative.
The results from the two word sets are in general agreement, with the larger data set
sizes of Taraban & McClelland giving slightly more statistical significance than those
of Waters & Seidenberg. There is a clear type effect for all cases. In most cases we
have a significant frequency effect for the exception words but not the controls,
resulting in a significant overall frequency effect. Only for the ‘sum inverse inputs’
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relation do we find no frequency effects at all. We find a significant interaction
effect only for the ‘inverse log error’ relation.

The most obvious difference between our model and humans is the greatly
reduced frequency effect. Given our understanding of the learning curves, it seems
highly probable that it is merely our logarithmic reduction of the word frequencies
in the training data (that we had to use to speed up the training to a feasible level)
that has diminished most of the frequency effects. Clearly, for more realistic results
we need to find some way to proceed with a more accurate representation of the
word frequencies in the training data. The effect of this would be to reduce all the
error scores on the high frequency words and hence bring our model’s performance
(Figure 23) into line with the experiments (Figure 22).

Regular Inconsistent Words.

It is clear from Figure 18 that the learning of the exception words in our model
can have a negative effect on the learning of the similar regular words. In order to
investigate such interference effects in humans, Glushko (1979) carried out
experiments on a class of words (termed regular inconsistent) which are regular, in
the sense of following the main GPC rules, but which are close neighbours of an
exceptional word. A typical example is the word ‘five’ — /fIv/ which is regular but
whose pronunciation may be confused or slowed by the nearby exception word
‘give’ — /giv/. Glushko found that regular inconsistent words do indeed exhibit
longer naming latencies than consistent regular words and this has been interpreted
as evidence against dual route models (e.g. Henderson, 1982). However, later
studies, in particular that of Taraban & McClelland (1987), have failed to reproduce
such effects. The results of these two studies are summarized in Figure 24. The
original Glushko results were split into equal high and low frequency sets on the
basis of the Kucera & Francis (1967) word frequencies used for our model.

Figures 25 and 26 show the learning and error curves during training of our
model for the regular inconsistent words and corresponding control words of
Taraban & McClelland (1987). Figure 25 shows quite clearly how the learning of the
regular inconsistent words (particularly the low frequency ones) has been slowed
compared with their consistent controls. This is also clear from the error scores
shown in Figure 26. Comparison with Figures 19, 20 and 21 indicates that our
model predicts that we should find similar naming latency type and frequency
effects for regular inconsistent words as we get for exception words, but to a lesser
degree.

It would seem, then, that our model agrees with Glushko’s results rather than
Taraban & McClelland’s. The model’s full set of simulated naming latencies and
statistical significances are shown in Table 14. For the Taraban & McClelland word
set, we find no significant effects at all for the ‘sum inverse inputs’ relation and
significant type effects but no frequency or interaction effects for the other three
relations. For the Glushko word set we find different patterns of effects for the
different relations. We get significant type and frequency effects but no significant
interaction effect for the ‘sum inverse inputs’ relation. For the ‘log error’ and ‘log
Luce ratio” relations we get significant type and interaction effects but no frequency
effect. For the ‘inverse log error’ relation the frequency, type and interaction effects
are all significant.

It is clear that, whilst the details of the mathematical relations between the
network output activation error scores and the simulated naming latencies have
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little effect when the differences are large (e.g. between regular and exception
words), they become crucial when the differences are smaller (e.g. between
consistent and inconsistent regular words).

For each case in Table 14, the differences are more significant for the Glushko
word set than for the Taraban & McClelland word set. It thus appears that the
differences between the Glushko and Taraban & McClelland experimental results
may be put down to the particular word sets used. The model clearly predicts that a
regular inconsistent effect should occur in humans. Again we would expect a
frequency effect as well, but this has probably been much reduced by the
logarithmic word frequency compression used by the model. The suggestion by
Seidenberg & McClelland (1989) that Glushko’s results were merely an artefact of
inadvertent intralist priming effects now seems less likely.

Strange Words.

Another interesting class of words (termed strange) are those that contain very
rare spelling patterns (e.g. ‘aisle’ — /II/ and ‘once’ — /w”ns/). Waters &
Seidenberg (1989) have compared the naming latencies of strange words with those
of regular and exception words and found that strange words have an even larger
type effect than exception words. Their results are summarized in Figure 28. For
low frequency words the latencies are significantly longer for the strange words
than for the exception words or regular controls. For the higher frequency words
the differences are not significant.

There are essentially two reasons why we should find longer latencies for
strange word reading: First, the text to phoneme correspondences are not only rare
but also highly irregular so we could expect them to behave like particularly low
frequency and particularly irregular words. Secondly, the low orthographic
redundancy of the rare spelling patterns may result in slower individual letter
recognition and hence a longer naming latency for that reason. Our model can be
expected to exhibit the effects of the first reason but not of the second.

Figures 29 and 30 show the learning and error curves during training of our
model for a set of strange words and the corresponding regular control words. As
for the exception and regular inconsistent words, it is easy to see evidence of type
and frequency effects. However, Figure 19 indicates that the size of the strange
word effect we find in our model is somewhat less than that found in humans, in
particular it is less than (rather than greater than) that for the exception words. It is
possible to understand why: the strange words (because they are strange) experience
less interference than the non-strange exception words do from the regular words
and hence the learning can reduce the errors relatively unimpeded.

The model’s full set of simulated naming latencies and statistical significances
are shown in Table 15. We find highly significant type effects in all cases, but as for
the exception and regular inconsistent words, most of the frequency effects fail to
reach significance. Comparing the Waters & Seidenberg strange word results with
those of the corresponding exception words (in Table 13) we again find that our
choice of mathematical relation between the errors and simulated latencies is crucial.
For the ‘log error’, ‘inverse log error’ and ‘log Luce ratio’ relations the strange word
latencies are similar to, or below, the corresponding exception word latencies. For
the ‘sum inverse inputs’ relation, the strange word latencies are greater than for the
exception words as is found in the experiments.
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Unique Words.

Brown (1987) has suggested that rather than simply distinguishing mono-
syllabic words by how regular they are, it would be more revealing to consider how
many friends and enemies their word bodies have. We then have three classes of
words to compare: Consistent words that have many friends and no enemies (e.g.
‘vent’, ‘bent’, ‘tent’), exception words that have no friends and many enemies (e.g.
‘comb’, cf. ‘tomb’, ‘bomb’) and unique words that have neither friends nor enemies
(e.g. ‘soap’, ‘bulb’).

Figure 32 shows the naming latency results from Brown’s experiment and the
mean log error scores from our model. In the experiment there was found to be a
significant difference between the exception and consistent words but no significant
difference between the unique and exception words. The model’s full set of
simulated naming latencies and statistical significances of the differences are shown
in Table 16. We find a consistent hierarchy of Exception > Unique > Consistent for
all four sets of simulated naming latencies. This is precisely what we would expect
from our consideration of the interference effects during training. All the word type
differences are significant except for that between the unique and exception words
for the “sum inverse inputs’ relation.

In a more comprehensive series of experiments Jared, McRae & Seidenberg
(1990) showed that significant consistency effects do occur in humans, i.e. that the
exception words are slowed relative to unique words. They argued that Brown
failed to find these effects because his exception words were not exceptional enough,
i.e. that the frequencies of the enemies of the exception words were not high enough
relative to the actual exception word frequencies to cause sufficient inhibition. We
have already seen that the word frequency compression used in our model’s
training data collapses all the frequency differences. This problem will have
relatively little effect on the unique words but means that the exception word
enemies in our model will be able to cause inhibition of the exception words.

In conclusion then, our model has effectively corrected for the problems in
Brown’s original experiment and is in general agreement with Jared et al.’s finding
of a consistency effect in humans.

Non-Words.

Numerous experimental studies have found that naming latencies are longer
for non-words than for real words (e.g. Forster & Chambers, 1973; Frederiksen &
Kroll, 1976; Glushko, 1979). Figure 33 summarises the results of Glushko’s
experiments. The word versus non-word and regular versus exception differences
were both found to be significant but there was no significant interaction effect.

Converting our network output error scores into simulated naming latencies is
even more problematic for non-words than we have already found it to be for words
in the training data. The first problem is that the network will not necessarily give a
correct output for the non-words and so the output error scores can become very
large. This should not be too much of a problem for the simple ‘log error’ or ‘log
sum Luce ratios’ relations. However, the assumption of small errors that we used to
justify our ‘inverse log error’ relation becomes invalid, so we will not be able to get
sensible results for that. Also, when the output activations fall below 0.5 (as often
happens for non-words), they correspond to negative inputs, so we cannot use the
‘sum inverse inputs’ relation at all.

To understand what is happening in our model for non-words we need to
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extend slightly our previous discussion of interference effects during training. We
know that the network has learnt the main GPC rules very well, so regular items,
whether words or non-words, will have low output errors and hence low simulated
naming latencies. Exception words will have been learnt correctly but interference
from the regular words will result in increased output errors and hence longer
simulated naming latencies. Non-words derived from exception words will have
their outputs influenced by both the main GPC rules and by the relevant exception
words. As already noted in our discussion of generalization, the resulting
pronunciation will either be regular or analogous depending on the details of the
rule hierarchy learnt by the network. Either way, the outputs will tend to be drawn
between the regular and exception responses and will end up with higher error
scores and hence higher simulated naming latencies than either.

The model’s three remaining forms of simulated naming latencies for the
Glushko experiment are shown in Table 17, along with the statistical significances of
the various type differences. The mean log error scores for the model are shown in
Figure 34. We find highly significant regular versus exception effects for both the
words and non-words, which is easily understandable from our preceding
discussions and consistent with the experiment. (Note particularly that it is very
difficult to explain the regularity effect for non-words in terms of a traditional dual
route model.) The word versus non-word differences are significant for the
exceptions but not for the regulars and this is also apparent from the distributions
shown in Figure 17. This is what we would expect from the above discussion but is
in direct contradiction with the experiment.

It is difficult to see how any model with a good generalization performance
could possibly produce naming latencies for regular non-words that are significantly
different from those of regular words. It is clear that, like the related problem of
lexical decision, the lexical/semantic route must have an important effect here and
we cannot hope to account for the experimental findings until it has been
incorporated into the model.

Pseudohomophones.

A particularly important class of non-words, termed pseudohomophones, are
those which have the same pronunciation as a real word (e.g. ‘kight’, ‘supe’, ‘trax’).
McCann & Besner (1987) showed that such non-words have a significant
pronunciation advantage over matched non-words which do not sound like real
words. This “pseudohomophone effect’ is taken to indicate that some kind of lexicon
must be consulted in the course of assembling a pronunciation. Since our model has
no lexicon we should not expect it to exhibit a pseudohomophone effect.

To test this, the simulated naming latencies of our model were computed for
the same sets of pseudohomophones, control non-words and control words that
were used by McCann & Besner. The results and the statistical significances of the
differences are shown in Table 18. As expected, we find a significant difference
between the control non-words and control words and between the pseudo-
homophones and control words but no significant difference between the pseudo-
homophones and the control non-words. Once again we have evidence that reading
models of this type require a lexical /semantic route in addition to their rule based
route.

Conclusion.

It is evident that there are a number of fundamental difficulties in relating the
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output activation error scores to simulated naming latencies in simple feedforward
networks. Nevertheless, our model seems to be in broad agreement with many of
the experimental naming latency results for humans. The remaining disagreements
concerning regular non-words and pseudohomophones, however, suggest quite
strongly that an additional lexical/semantic route must be added to our model in
order to be in complete agreement with the experimental results. We shall discuss
this point further in our concluding section.

If we compare our simulated naming latencies with those of the Seidenberg &
McClelland (1989) model, it would appear that their model actually gives more
realistic results than ours (particularly for the frequency effects) despite their much
poorer generalization performance. However, it should be noted that the training of
the Seidenberg & McClelland model was stopped when its performance on the
training data was only 97.3%, at which point several of the words used in the
naming latency test sets had still not been learnt correctly (Seidenberg &
McClelland, 1989, Tables 1 & 2). This is equivalent to stopping the training of our
network near the epoch 128 data point (where the training data performance is
97.6%). 1f we look at the mean error scores at this point on each of Figures 19, 21, 26
& 30, we see that the relations between the different word types and frequencies are
remarkably similar to those of Seidenberg & McClelland and the experiments, with
large type effects for the low frequency words and very little difference between the
high frequency words and the two regular control sets. It is not clear at present
whether this is an indication that the rule based route in humans gives up learning
early and leaves the lexical/semantic route to take care of the difficult words, or
simply that we should not place too much significance on the details of Seidenberg
& McClelland’s simulated naming latency results.

A final complication concerning our model’s reduced frequency effect concerns
our use of the over-training parameter errcrit, which may well be related to the
precision with which real neural computation can be carried out. A non-zero value
for errcrit introduces additional ceiling effects into the learning algorithm and so
varying this will change the extent to which the various type and frequency effects
will remain significant as the training progresses. Since the variations brought about
by changing the word frequency representation and the value of errcrit we use in
our model are so interrelated, a large number of simulations may be required to
investigate these effects properly.

Learning and Developmental Dyslexia

In this section we consider the normal and abnormal reading development in our
model and examine how well it corresponds to that of children.

Normal reading development in children is generally considered to proceed in
stages (e.g. Frith, 1985). The first stage is dominated by a logographic strategy in
which there is instant recognition of whole words. This results in comparable
performance on regular and exception words and virtually no ability in reading
unfamiliar words. In the second stage, an alphabetic strategy is developed in which
words can be pronounced using an increasingly complex hierarchy of text to
phoneme rules. The performance on regular words improves, as does the ability to
read unfamiliar words, but there is a tendency to over-regularize exception words.
Finally, essentially perfect performance is achieved on all word types. In terms of
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the standard dual route model, these stages correspond to acquiring the lexical/
semantic route first, which is later dominated by the acquisition of the phonological
route and finally some combination of both routes is used.

Developmental dyslexia is a term used to describe reading difficulties in
children that are not otherwise disadvantaged (e.g. in terms of intelligence or
opportunity). There is still considerable debate concerning the precise causes of
such disorders and whether or not there is more to dyslexia than a simple slowness
of development. In the developmental framework described above, classic
developmental dyslexia is considered to correspond to a developmental “arrest” at
the first stage (Frith, 1985). Such dyslexics have a much increased word versus non-
word effect but no regularity effect, which is consistent with little or no development
of the phonological route. Since our model only has a phonological route we cannot
hope to account for such symptoms: If we look at all our learning curves (Figures 7,
10, 12, 13 and 15) we see that the ability to deal with non-words always develops at
the same rate as the ability to read regular words and that it is only at a very late
stage that the regularity effect becomes diminished. Although our model cannot
account for the first stage, it seems to provide a reasonably good account of the
second stage of normal reading development.

Another large class of poor readers (that are usually also classed as dyslexic)
show a different set of symptoms. They exhibit a larger regularity effect than
normal readers and are also able to produce acceptable pronunciations for many
unfamiliar words and non-words (Backman et al., 1984; Castles & Coltheart, 1992).
This would appear to indicate an “arrest” during the second stage of development,
though it is not obvious whether such symptoms correspond to an actual disorder of
the phonological route or merely a slowing of the passage through this stage. This is
where our explicit model can be expected to throw some light.

It is dangerous to attempt to compare detailed performances because the effects
in humans are usually obscured by a wide range of compensatory strategies which
are not yet available to our connectionist models. We will therefore concentrate on
exhibiting the possible mechanisms that may account for such symptoms in our
model without attempting any detailed comparison with humans. In fact, we have
already observed symptoms reminiscent of developmental dyslexia several times in
the preceding discussions.

Seidenberg & McClelland (1989) suggested that the deterioration in
performance caused by reducing the number of hidden units might provide an
account for developmental dyslexia in their model. We have already investigated
(in our discussion of the basic model) the dependence of our model’s performance
on the number of hidden units in the network. The resulting final performances for
networks with very small numbers of hidden units (shown in Figure 35) indicate an
inability to deal with exception words relative to regular words, similar to
developmental dyslexics, in our model as well. Of course, it is not being suggested
that developmental dyslexia is caused by the child having less than 30 active
neurons, but rather that it could be caused by some general computational deficit
equivalent to vastly reducing the number of neurons.

Perhaps the most drastic reduction in computational ability was considered
when we removed the hidden units completely and had only direct input to output
connections. It is well known that such networks can only handle linearly separable
problems (Minsky & Papert, 1969) and Figure 36 shows that this affects the networks
ability to handle exceptional words much more than regular words and non-words.
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Again, we are not suggesting that dyslexic children might not have any hidden
neurons, but merely demonstrating that an inability to form adequate internal
representations necessary to deal with non-linearly separable problems will also
result in the preferential inability to deal with exception words compared with
regular words and non-words.

In our discussion of the basic model we noted how the standard back-
propagation learning algorithm could get stuck and fail to acquire the sub-rules and
exceptions once the main rules had been learnt. Figure 37 shows the resulting final
performances which are again similar to those of our developmental dyslexics.
Once again, we are not suggesting that real brains employ a Sigmoid Prime Offset
but rather that their reading difficulties could equally well arise from particular
aspects of the learning process as from general limitations on the computational
resources.

Finally, we need to consider if it is possible to distinguish these three ‘deviant’
accounts of developmental dyslexia from a simple ‘delayed” account. In Figure 38
we show the network’s performance at three points during learning and again we
find a large difference between the regular and exception words. This constitutes
our fourth, delayed, account. Given that each of our four accounts are merely
approximations to more realistic scenarios, and also that human dyslexics tend to
make use of a range of compensatory strategies, it is premature to choose between
them, but it is reassuring to see that our model admits so many possibilities.

In fact, to a certain extent, it is not at all surprising that we get such similar
results for the deviant and delayed accounts. We can actually relate what is
happening in both cases to the same well known problem of ‘over-training’ or ‘over-
fitting” in neural networks that have too many free parameters for the data they are
trying to model (Baum & Haussler, 1989). There is a natural tendency with any
gradient descent learning algorithm (such as back-propagation) for all the hidden
units to start off behaving in the same way. They all begin by learning to model the
main regularities in the training data (i.e. the main rules) and it is only after this has
been achieved that some of them begin to account for the less regular features in the
data (i.e. the sub-rules and exceptions). In many real world situations, the less
regular features in the training data actually correspond to errors (or noise) and (as
we have seen in our model) learning these tends to reduce the generalization
performance. Consequently, there have been numerous procedures proposed to
prevent this second stage of learning from taking place in artificial neural networks.
The obvious approach is simply to stop the training early or, equivalently, to look at
the network’s performance at an early stage of training (e.g. Morgan & Bourlard,
1990; Weigend, Huberman & Rumelhart, 1990). A similar effect is obtained by
reducing the number of free parameters. This can be achieved by directly restricting
the number of connection weights or hidden units, or by various indirect techniques
such as network pruning (e.g. Mozer & Smolensky, 1989; Karnin, 1990), weight
decay (e.g. Hinton, 1987; Krogh & Hertz, 1992) or weight sharing (e.g. Nowlan &
Hinton, 1992). Clearly, in our case, the lack of a Sigmoid Prime Offset has a similar
effect. Looking at the network performance from this point of view, we see that it
may prove very difficult to distinguish between the delayed and various deviant
accounts of developmental dyslexia since they all correspond to the prevention or
reduction of the same second stage of learning.

Another important consequence of this insight is that all the human like
developmental regularity effects will be independent of the details of the network
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architecture and representations. Virtually any system that has an input to output
mapping learnt by a gradient descent algorithm will result in qualitatively similar
performance in this respect. This includes the original Sejnowski & Rosenberg
(1987) NETtalk, the Seidenberg & McClelland (1989) Wickelfeature based model, the
newer Plaut, McClelland & Seidenberg (1992) models and all the corresponding
spelling models.

Damage and Acquired Dyslexia

An important method of constraining cognitive models is to examine their
performance after damage (e.g. Shallice, 1988; Coltheart et al., 1993). In this section
we examine how well our model stands up to these constraints.

Of particular importance for models of reading are two forms of acquired
dyslexia: Patients with phonological dyslexia exhibit a dissociation between word
and non-word naming, for example, W.B. (Funnell, 1983) showed a complete failure
to read non-words whilst maintaining around 90% success on words. Patients with
surface dyslexia exhibit a dissociation between regular and exception word naming,
for examples, M.P. (Bub, Cancelliere & Kertesz, 1985) had 90% success on low
frequency regular words against 40% on low frequency exceptions and H.T.R.
(Shallice, Warrington & McCarthy, 1983) managed 80% on regular words against
35% on very irregular words. Thus there appears to be a double dissociation
between lexical and phonological (or equivalently, exception word and non-word)
reading and, by the standard inference of cognitive neuropsychology, this is taken to
imply modularity of function (e.g. Shallice, 1988). This is, of course, one of the main
reasons why so many people believe in forms of the dual route model of reading.

Nevertheless, it is not totally obvious that we cannot get a double dissociation
in our model. Some small scale studies (Wood, 1978; Sartori, 1988; Bullinaria &
Chater, 1993) have indicated that it is possible to obtain double dissociations in
distributed systems and Dunn & Kirsner (1988) have shown that it is “possible to
posit single processes that mimic both single and double dissociation”. Against this
is evidence that the double dissociations found in the small scale studies are merely
artefacts of the small size that will not scale up and that the counter-examples
constructed by Dunn & Kirsner are too far removed from realistic systems to be of
relevance to real brains (Shallice, 1988; Bullinaria & Chater, 1994). We will keep an
open mind on the matter and examine how our model performs after a range of
different types of damage.

The effects of damage on existing neural network models of reading have
already been examined. Sejnowski & Rosenberg (1987) examined the effect of
random perturbations of the weights in their original NETtalk model but did not
separately analyse the effects on different subsets of the words. Patterson,
Seidenberg & McClelland (1989) carried out an analysis of the effects of removing
random subsets of the connections and hidden units in the Seidenberg & McClelland
(1990) model and found symptoms similar to certain forms of acquired surface
dyslexia but had “nothing to say about phonological dyslexia”.

There are three basic forms of network (brain) damage we can consider: (1)
Changing the weights (synaptic strengths), e.g. by scaling, reducing, clipping or
adding noise, (2) Removing connections (axons and dendrites), and (3) Removing
hidden units (neurons). By studying the effect of all these forms of damage (six
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types in all) we will get a fair indication of the range of effects available. Of course, a
much larger range of types of damage is possible (e.g. by treating the thresholds
separately from the other weights, by treating the input and output connections
differently, by interfering with the activation functions, etc.). The (relatively minor)
effects of these variations and small scale artefacts are discussed in Bullinaria &
Chater (1994). We will begin by looking at the specific effects of our six types of
damage and then consider the more general implications of what we find. The
results we shall present are all for the Taraban & McClelland (1987) regular and
exception word sets (which each consist of 48 words) and the Glushko (1979) regular
non-word set (of 43 non-words). In each case the degree of damage is increased
from zero to a level where the network fails to produce any correct outputs at all.
Patients with varying degrees of acquired dyslexia will correspond to appropriate
intermediate stages.

First we consider the deterministic weight modifications. Figure 39 shows the
effect of a global reduction of all the network weights by successive applications of
factors of 0.9. (This is equivalent to flattening all the sigmoidal activation functions.)
For each trained network, this process is totally deterministic in the sense that each
application of the process always gives the same result. We invariably find that
initially the network is fairly resilient to damage but eventually the exception word
performance begins to fall off and later the regular word performance falls off as
well. The delay between the loss of the exception words and the regular words can
result in a fairly large dissociation between the two word types. Moreover, the
magnitudes of the largest dissociations are similar to those found in surface dyslexic
patients. For example, at the point where all the weights have been reduced by an
overall factor of 0.4 we have an 86% performance on the regular words but only 36%
on the exception words. Figure 40 shows that we get a similar effect if we globally
reduce all the weights by successive reductions by constant amounts of 0.04, though
the size of the dissociations tend to be slightly smaller in this case. A third
deterministic process of network damage is provided by weight clipping, i.e. by the
imposition of successively smaller maximum allowable weights. Figure 41 shows
the effect of doing this. We find that there is a slight preferential loss of the
exception words over the regular words but nowhere near to the degree found in
real dyslexic patients.

The most obvious form of non-deterministic weight modification damage is to
change each of the weights by random amounts. Figure 42 shows the effect of
adding Gaussian noise to the weights in successive amounts with zero mean and
standard deviation of 0.2. To assess the degree of variability between the different
sets of random weight changes, the process was repeated ten times for each of the
errcrit = 0.0 and 0.0001 networks. The largest dissociation for each case with a
regular word performance better than 70% are shown in Figure 43. Again we find
symptoms similar to surface dyslexia and the degree of variability indicates that
such damage could account for the effects found in real dyslexics.

We now come to the more radical forms of damage, namely the removal
network connections. If this form of damage is localized, it is equivalent to
removing whole hidden units and, by implication, all connections to and from them.
The removal of connections at random corresponds to a more distributed form of
damage. We will consider this first. Our networks contain approximately 132000
connections so we damaged the network by removing successive sets of 6600
connections, i.e. 5% of the total number. Computationally we can implement this by
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simply setting the appropriate weights to zero. Figure 44 shows a typical set of
damage curves. To illustrate the degree of variability between different sets of
removed connections, the process was repeated eleven times for each of the errcrit =
0.0 and 0.0001 networks. The largest dissociation for each case with a regular word
performance better than 70% are shown in Figure 44. Again we find a preferential
loss of the exception words to a degree compatible with real dyslexic patients.

Finally we consider the effect of removing hidden units from our networks.
Computationally this can be simulated by simply setting the appropriate thresholds
to infinity. Figure 46 shows the typical effect of removing successive random sets of
ten hidden units from the network. Again we find a clear dissociation between the
regular and exception words, though the magnitude of the effect is slightly smaller
than for the other forms of damage. Figure 47 shows the degree of variability over
13 different sets of removed hidden units for each of the errcrit = 0.0 and 0.0001
networks. In order to assess the maximum effect size that is likely to result from this
form of damage, an additional damage run was performed with the hidden units
removed by hand rather than at random. This was done by testing the effect of
removing each unit one at a time and then actually removing the units which had
the most detrimental effect on the exceptions and the least effect on the regulars.
After about seven steps of removing about ten units at a time we arrived at the
dissociations denoted by ‘damage run H’ on Figure 47. No doubt even larger
dissociations could be obtained by a more careful and systematic application of this
approach. Of course, the chances of random damage resulting in these optimal
dissociations are pretty negligible, so there is no real point in pursuing this any
further. The important point is that the range of effects produced by random
damage, together with the size of the effect that we now know is possible, leads us
to be quite confident that this form of damage could lead to the effects found in real
dyslexics.

Apart from the effects of network damage we can learn other things from the
removal of hidden units. In particular, by removing each hidden unit in turn, one at
a time, we can get an idea how distributed the internal representations are. In fact,
for both our networks, we found that there was a least one hidden unit that, when
removed, resulted in output errors. Thus, even 300 hidden units (which is at least
ten times the number actually needed to learn the training data) is not enough to
ensure that the network is fully distributed in the sense that no single neuron has a
significant effect on its performance. Nevertheless, looking at damage curves such
as Figure 46, we see that the networks are still remarkably resilient with
performances that degrade gracefully rather than catastrophically.

We have considered six forms of network damage and five of them result in
symptoms compatible with acquired surface dyslexia. The sixth also has more
exception words lost than regular words but to a much lesser extent than is often
found in humans. The symptoms are also very similar to those of developmental
dyslexia that we discussed in the previous section. There we noted that the regular
versus exception dissociation was an almost inevitable consequence of the gradient
descent learning algorithm and relatively independent of the other details of the
model. One can argue that the same is true for acquired dyslexia. Networks with a
reasonably large number of hidden units tend be quite resilient to all forms of
damage (as can be seen from the first few points on all our damage curves) and
consequently the infliction of small amounts of damage will cause relatively minor
perturbations to the output activations. It follows that the outputs which will be
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first affected by damage will be those that already have the highest output activation
error scores since these will already have activations nearer the central region of the
sigmoids where the units of highest activation will cross over and result in the
wrong phonemes being output. Our discussion of the learning interference effects
and the naming latencies for our best model and the developmental accounts in the
previous section have already shown that before damage the error scores are
significantly larger for the exception words than for the regular words.
Consequently, it should be no surprise to find that we always get the errors in the
exception words occurring before those in the regular words and hence that we
always end up with symptoms similar to surface dyslexia.

In some patients, e.g. M.P. (Bub et al., 1985) and K.T. (McCarthy & Warrington,
1986), there are also pronounced frequency effects with most of the errors occurring
on the low frequency exception words and very few on the high frequency words.
This, together with our discussion of the effect of frequency on the error scores
(concerning naming latencies and interference effects during training), is further
evidence that we have a correct understanding of what is happening.
Unfortunately, as noted previously, the frequency effects in our model have been
reduced considerably by the logarithmic word frequency compression in the
training data (that was necessary for us to get the networks trained in a reasonable
time) so most of the frequency effects in our damaged networks fail to reach
significance.

With hindsight, then, it is almost obvious that we would end up modelling
surface dyslexia when we damage our networks. It is almost as obvious that we
cannot hope to model phonological dyslexia, since there is no way that our model
can possibly output the correct phonemes for words without also doing so for
similar non-words. This, together with our previous failure to account for lexical
decision, the pseudohomophone effect and certain types of developmental dyslexia,
suggests quite strongly that our model still needs to be accompanied by a separate
lexical / semantic route which will bring us back towards a variation of the more
traditional dual route models of reading (Coltheart et al., 1993). Phonological
dyslexia will then simply correspond to the almost complete loss of our rule based
route whilst the lexical / semantic route remains virtually intact.

Once we are forced to concede that our model is only the rule based route of a
dual route model, there are some further subtleties that we need to consider.
Shallice & McCarthy (1985) have classified patients that have a severely impaired
ability to read aloud by means of the semantic system, into three broad categories in
what is probably a continuum. First, for Type A patients such as W.L.P. (Schwartz,
Saffran & Marin, 1980) we have:

1. Ability to read nearly all words,
2. Reading speed near normal.

Type B patients such as H.T.R. (Shallice, Warrington & McCarthy, 1983), M.P. (Bub,
Cancelliere & Kertesz, 1985), K.T. (McCarthy & Warrington, 1986) and W.L.P. at
later stages showed the following characteristics:

1. Near normal on regular words, poor on exception words,
2. Most errors are regularizations,

3. Near normal on non-words,

4. Reading speed near normal.
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Finally, Type C patients which are more varied and include J.C. & S.T. (Marshall &
Newcombe, 1973), exhibited the following characteristics:

1. Impaired reading of regular words, even worse on exception words,
2. Errors are not necessarily perfect regularization,
3. Reading is slow, often with corrections.

Understanding these three broad categories is now straightforward. Type A
corresponds to a damaged semantic/lexical route but intact rule based route, Type B
would correspond to a damaged semantic/lexical route with an intermediate degree
of damage to the rule based route and Type C would correspond to severe damage
of both routes. Table 19 summarizes the extent to which our network’s exception
word errors are regularizations for the six different types of damage. With the
exception of the weight clipping case (which we have already determined does not
give the required regularity effect anyway) we find similar regularization effects to
real Type B patients. As we increase the damage the regularization errors get
swamped by more serious errors as found for Type C patients.

Needless to say, real patients do not always have such clear cut symptoms as
we have outlined above and often the data is confused by the patients’” adoption of a
range of compensatory procedures. For example, E.S.T. (Kay & Patterson, 1985) was
faster and more accurate at reading non-words aloud than real words. However, if
we also allow the possibility that the output from a slightly impaired semantic/
lexical route may combine with that from our rule based route either to improve or
impair the overall word reading performance, then virtually any combination of
symptoms is possible.

Another possibility we need to consider is that, if our model has to be
supplemented by an additional semantic/lexical route, then there is no real
necessity for our model to learn to cope with all the exception words. The
lexical / semantic route will have to learn the exception words anyway and overall
efficiency might then mean that learning in the rule based route need not proceed
beyond a certain stage (e.g. somewhere between the point where the generalization
performance begins to level off and the point where the exception word
performance becomes significant). Figure 38 shows the performance of our model
near this point. If training does effectively stop here, then our model reduces to an
implementation of the traditional phonological route of a dual route model with
very poor exception word performance and both acquired and developmental
surface dyslexia can be explained in the conventional dual route manner purely by
loss or slow development of the semantic/lexical route.

Finally, it has often been noted that patients can recover remarkably quickly
after suffering brain damage (e.g. Geshwind, 1985). The same is found to be true for
our neural network models. On the removal of one set of 210 of its 300 hidden units
our network’s performance fell to 5.8% of the full training data set, 4.2% of the
regular word set, 4.2% of the exception word set and 11.6% of the regular non-word
set. After just one epoch of retraining, using only the remaining 90 hidden units, the
performance had increased to 87.2% for the full word set, 97.9% for the regular
words, 41.7% for the exception words and 97.7% for the non-words. It then took
over 100 more epochs for the exception word ability to recover to its pre-damage
levels. The interesting point is that the regular word versus exception word
dissociation after a small amount of relearning following damage was actually a lot
larger than at any point on the original damage curves.
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Discussion and Conclusions

By training a simple feedforward neural network on a set of words with their
corresponding pronunciations, we have arrived at a natural implementation of the
rule based route of a dual route model of reading. Unlike in the traditional dual
route model we are automatically able to achieve perfect performance on all words,
including the irregular words, using the rule based route alone. However, because
the network fails on the lexical decision task, cannot reproduce the pseudo-
homophone effect and is unable to account for certain forms of developmental and
acquired dyslexia, we are not able to consider it to be a realistic single route model
on its own.

The model seems to be able to account for most aspects of human reading
ability that we would normally expect of the rule based route of a dual route model.
The network’s generalization ability is comparable with human performance under
time constrained conditions and, like humans, it pronounces certain non-words by
analogy with exception words rather than by the main GPC rules. We find
regularity effects during learning similar to humans and have identified several
possible accounts of developmental dyslexia. When performing normally the
networks’ output activation error scores correlate well with numerous naming
latency experiments on humans. Finally, as a result of several different forms of
network damage we can understand various types of acquired surface dyslexia in
humans. Moreover, it does all this without having to pre-process the training data
by hand (which was necessary for the original NETtalk model of Sejnowski &
Rosenberg, 1987) and without the use of complicated input-output representations
such as Wickelfeatures (as used by Seidenberg & McClelland, 1989).

Despite this success the model is still deficient in several important respects.
First, the model is still relatively small scale. We need to carry out further
simulations with more hidden layers, more hidden units and larger training data
sets. It is reasonable to expect that this will bring us the small improvements
necessary to reach unconstrained human level generalization performance. It will
also allow us to test the model more thoroughly on transcribed continuous speech
containing multi-syllabic words and stress markers. We also have to see how well
the network can cope with more informal speech that contains various errors and
inconsistencies. Finally, we need to find a way of training the network with a more
realistic word frequency distribution. This is necessary to confirm or refute our
suggestion that this is the sole reason for our model failing to reproduce the full
extent of the naming latency and dyslexia frequency effects found in humans.
Carrying out all these improvements requires little more than finding additional
computational resources.

The main fundamental aspect of the model that needs modifying is the use of
the moving window which is psychologically implausible in many respects. There
are at least two ways in which we may be able to improve the model in this respect
without degrading the existing performance too much. The moving window
approach is just one, particularly simple, way of representing the time delayed
context effects in neural networks. In principle we can instead handle the necessary
context information by a series of recurrent connections such as used by Jordan
(1986) or Elman (1990). Thus a sensible next stage of development of our model
might be to re-implement the moving window in terms of recurrent connections.
This should also allow a more realistic study of priming and long range dependency
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effects. There is also mounting evidence (e.g. Hinton & Shallice, 1991; Plaut &
Shallice, 1991; Plaut & McClelland, 1993) that the related introduction of basins of
attraction into the output activation space can also improve performance
considerably. A less drastic alternative is simply to reformulate the network in
terms of a static window, i.e. correlated input and output buffers. This, however, is
more of a re-interpretation than a re-implementation and simply shifts the problem
out of our network and into the operation of the buffers.

Of course, as far as a complete model of reading is concerned, the important
next stage is to combine the current model with a lexical /semantic route. There is
still considerable debate on the details of this route (e.g. Coltheart et al., 1993) and
we shall not pre-judge these issues here. Some important (though small scale) work
has already been done on mapping orthography to semantics to phonology (e.g.
Dell, 1986; Hinton & Shallice, 1991; Plaut & Shallice, 1992). Whether we need a more
direct lexical route as well is not yet clear (hence our continual use of the term
‘lexical / semantic route’). Either way, much more work will be required to scale
everything up and to determine the appropriate way to link together the two routes
of a dual route model and the speech production system.

Adding a lexical/semantic route to our model will not, however, simply result
in a traditional dual route model of the type outlined by Coltheart et al. (1993).
Unlike previously proposed rule based routes that could only produce regular
pronunciations, our neural network rule based route can correctly pronounce all
word types and so there are no longer any conflicts between the outputs of the
lexical/semantic route and the rule based route. This results in a simplification of
the traditional dual route model in that we no longer have to postulate a separate
sub-process to reconcile the conflicting outputs from the two routes for exception
words. The two routes now each produce their share of activation into the phoneme
output system which simply adds it up until the required threshold is reached. We
have already seen that the rule based route alone can account for most of the
regularity, consistency and frequency effects found in humans. (The extent to which
there is also a contribution to the frequency and other effects from the semantic/
lexical route will depend on the details of that route. There is no reason to suppose
that they will conflict to any large degree with those from the rule based route.)
There were only two major naming latency problems remaining, namely regular
non-words and pseudohomophones. The difference between regular words and
regular non-words is now easily explained by the fact that the real words have
output contributions from two routes whereas the non-words get a contribution
from the rule based route alone.

Explaining the pseudohomophone effect really requires a more complete
model of the two routes and whatever ‘speech production system’ accepts their
outputs. However, a few possibilities can be suggested at this stage. The basic effect
is that non-words that sound like real words are pronounced faster than matched
non-words which do not (McCann & Besner, 1987). First, it is possible that the
speech production system is better at processing phoneme strings it knows (i.e. real
words) than phoneme strings it does not (i.e. non-words). This training data versus
generalization performance difference could arise naturally in virtually any neural
network implementation. The same effect could also occur within the rule based
route itself since, in a network with recurrent connections, the context information
may be circulated to some extent in terms equivalent to output phoneme strings.
(Note, however, that there is no evidence of this occurring in the recurrent networks
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tested thus far.) A third, more circuitous possibility, is that the partially activated
phoneme outputs from the rule based route could feed back into the semantic/
lexical route which, by some process of pattern completion, could then itself
contribute towards the phonemic outputs. There is already experimental evidence
that the spelling to sound to meaning route plays a role in normal human reading
(e.g. Van Orden, Johnston & Hale, 1988; Coltheart, Laxon, Rickard & Elton, 1988).
The conflicting lexical decision evidence that this would produce is also consistent
with the experimental finding that humans are slower to identify pseudo-
homophones as non-words than non-pseudohomophones (McCann, Besner &
Davelaar, 1984). Note that all three of these possible pseudohomophone effect
explanations are consistent with the rule based and semantic/lexical routes being
totally modular.

Finally, we need to reconsider the way that our model deals with homographs.
Originally we assumed that suitable context information would feed into our rule
based system from ‘somewhere else’ and we showed that this was sufficient to
resolve the ambiguities. Now that we have a separate semantic/lexical route that
also provides phonemic activation, there are other possibilities. The simplest
explanation is that the ambiguity results in the homophone outputs from the
rule based route having similar low levels of activation for all the possible
pronunciations leaving it for the semantic/lexical route to push the appropriate
one across the threshold first. This is consistent with experimental evidence of
particularly long naming latencies for isolated homographs (Seidenberg, Waters,
Barnes & Tanenhaus, 1984). Again, we require no direct interaction between the
two routes.

In conclusion then, it seems fair to say that a class of neural network models
have been presented which, given their simplicity and room for improvement,
appear to provide a promising basis for the rule based route of a realistic dual
route model of reading.
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Non-word

wosh

mune

mone

wone

zute

tolph

fues

tuel

Wrong Outputs

w*S
w0S
wuS

myn
mynl
myUl
mynn

mwAn
mwA
mwnn

wOnn
WWA

wOAN
wAnn
wwnn

zyt
myt
zUk

t01
tlf
tALS
tALf
tolf
tOLff

fyez
fyz

tUUL
tUel

Frequency

PPN

PRRPRRRRL PR RPRPRPFPW NNW RPRRPRWW

N W

= W

Likely reason

confusion with ‘wash’

problem with u -> yU

problematic analogy
with 'one'
problematic analogy

with 'one'

problem with u -> yU

too many sub-rules
at once?

problem with u -> yU

problem with u -> yU

Table 1. The most common non-word pronunciation errors from nine successful runs and
the likely reasons for those errors.
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Regular  Exception  Control Total

Non-recurrent

40 93.0 95.3 85.0 89.8
80 95.3 90.7 95.0 94.0
120 93.0 93.0 93.7 93.4
Average 93.8 93.0 91.2 92.4
Recurrent
40 95.3 97.7 90.0 93.4
80 93.0 97.7 95.0 95.2
120 93.0 97.7 91.2 93.4
Average 93.8 97.7 92.1 94.0

Table 2. Comparison of non-word performances by matched recurrent and non-recurrent
networks with 40, 80 and 120 hidden units.
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errcrit = 0.0001

Regular  Exception  Control Total
Correct 97.7 100.0 95.0 97.0
Regular 97.7 62.8 91.2 85.5
Competitor 0.0 27.9 10.0 12.0
errcrit = 0.0

Regular  Exception  Control Total
Correct 97.7 100.0 98.7 98.8
Regular 97.7 65.1 93.7 87.3
Competitor 4.7 11.6 10.0 9.0
Average

Regular  Exception  Control Total
Correct 97.7 100.0 96.9 97.9
Regular 97.7 64.0 92.5 86.4
Competitor 2.3 19.8 10.0 10.5
Overlap

Regular  Exception  Control Total
Correct 97.7 100.0 95.0 96.4
Regular 97.7 55.8 88.7 82.5
Competitor 0.0 7.0 6.2 4.8
Humans

Regular  Exception  Control Total
Correct 93.8 95.9
Regular 93.8 78.3 88.6 87.3

Table 3. The percentage performances on non-words for our two best neural networks and
for humans.
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errcrit = 0.0001

Regular
Correct 97.7
Regular 97.7
errcrit = 0.0

Regular
Correct 97.7
Regular 97.7
Average

Regular
Correct 97.7
Regular 97.7
Humans

Regular
Correct 93.8
Regular 93.8

Table 4. The percentage performances on non-words for our two best neural networks after

Exception

100.0
81.4

Exception

97.7
83.7

Exception

98.8
82.6

Exception

95.9
78.3

Control

97.5
95.0

Control

%.2
91.3

Control

96.9
93.1

Control

88.6

Total

87.3

only 32 epochs of training (which is near the point of best generalization performance).
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.716781
.000004
.000010
.000000
.000001
.000000
.000104
.000000
.000119
.000000
.000000
.000000
.000000
.000000
.612665
.000000
.037212
.000000
.000000
.000000
.000245
.001704
.000000
.003740
.008135
.021952

Q X O
~

«
N

N
Q.
N

+»n 3 XRT OS>S =X Q
FI'MTW'GIOBEF'W

ks ks

N X =< W 30T OS> —RAULr-T5QH~HDQOANOTQOAQ
|
(SRR R OR O R OO R ORI O IO RO RO RICS BUC IO IO IO BGOSR OS RGOS IO RO I O I O

Table 5. The network’s default outputs for individual letters and the corresponding output
activation error scores.
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|CaC|
| CeC|
|CiCl
| CoC|
| CuC|
|CyC|

| CaCel
| CeCel
|CiCel
| CoCel
| CuCel
| CyCel

| CaCCel
| CeCCel
|CiCCel
| CoCCel
| CuCCel
| CyCCel

Table 6. The vowel sounds in different contexts provided by the generic consonant ‘C" and
The symbol ‘o’ indicates that no output activation was greater than

word end marker ‘1.

' Yo
ece
oie
' Yo
eoAe
oo

oo
oFe
oTe
o(e
oyUo

oTe

e e
egee
oFee
' Yo1
LAY X )
eyes

0.1. The errors shown are those for the main vowel.
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(SRS

(SESESRSESNS]

(SRS

.000000
.000000
.000000
.000000
.000000
.000000

.000000
.000731
.000000
.000000
.187645
.000000

.000153
.000000
.436654
.000016
.000704
.707352



ai
au
aw
ay
ed
ee
el
eu
ew
ey
ia
ie
oa
oe
o1
00
ou
oW
oy
ue
ui
uy

<O=C<0O0O

(SIS IR OIS A IO IO B IO I O B RO I O O RO I O I O IO I O RO RO

.000000
.290617
.000000
.000000
.337276
.000000
.310957
.000972
. 720870
.000005
.921550
.164641
.000000
.000000
.001049
.010405
.000009
.111659
.405144
.024988
.194051
.000000

Table 7. The outputs produced by the double vowels.
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|CaiCl oA e A 0.000000
| CauCl o* e x_ 0.000000
| CawC | o¥ e x_ 0.000000
| CayCl oAe __ O A __e___ 0.000000
| CeaCl ofe __® E___eo___ 0.000000
| CeeCl ofe __® E___eo___ 0.000000
|CeiCl = __® E_______ 0.048072
| CeuCl ole __o U___eo___ 0.000121
| CewC| ole o U___eo___ 0.000000
| CeyCl oFe __ o E___e_ 0.000788
|CiaCl = __® E_______ 0.023315
|CieCl ofe __® E___eo___ 0.000011
| CoaCl e(e __® Q___eo___ 0.000000
| CoeCl e(Qe __® 0___eo___ 0.000000
| CoiCl oY e Y__ 0.000010
| CooC| ole o U___eo___ 0.000000
| CouCl ol e W_______ 0.000001
| CowC| oly e W_______ 0.000014
| CoyCl oYe e Y___e___ 0.016019
| CueCl ol e U_______ 0.001308
| CuiCl ol e U_______ 0.000006
| CuyCl ole o U___eo___ 0.719078
|CaiCel oAe O A ___e_____ 0.000000
| CauCel o*e e ¥ e _ 0.178426
| CawCe | oke __e ¥ e _ 0.005579
| CayCel 1.V __® A __z ___ 0.000000
| CeaCel oFe __® E___eo 0.000000
| CeeCel ofe __® E___eo_ 0.000000
|CeiCel ofe __® E___eo_____ 0.084257
| CeuCel ole e U___eo_ 0.121183
| CewCel ole e U___eo 0.049362
| CeyCel ece __® e___o 0.000468
|CiaCel oEAe e FE A e 0.000128
|CieCel ofe __® E___eo_ 0.000003
| CoaCe e(e __® O___eo_____ 0.000000
| CoeCel e(e e 0___eo_____ 0.000000
|CoiCel oYe __e Y___e_____ 0.000002
| CooCel olJe o U___e_____ 0.000000
| CouCel ole o W___e_ 0.000277
| CowCe e(Qe __ e 0___eo_____ 0.048315
| CoyCel oYe e Y___e_____ 0.002022
| CueCel oUEe __eo U E o ____ 0.558707
CuiCel oUle __ o U T o ___ 0.555042
| CuyCel oTe o T e ____ 0.007322

Table 8. The outputs produced by double vowels sandwiched between generic consonants
‘C” and word end markers “|’. The error scores are those for the double vowels.
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ca ka k_a_ 0.000000
ce S S___ 0.000000
ci S S___ 0.026705
co k k___ 0.000000
cu kA k_A_ 0.000000
ch S S___ 0.587988
ck k k___ 0.000421
ght t . o 0.000000
ng N N___ 0.157011
ph f f___ 0.510399
qu kw k_w_ 0.003288
sh S S___ 0.000000
th T T___ 0.0000006
lh h __h_ 0.000000
lw w __W_ 0.000000
ly y __y_ 0.000050
| ch C __C___ 0.000025
| kn n n 0.000485

Table 9. Over powering the main consonant GPC rules. The errors for the cvowel
combinations are for the ‘c’ sound only.
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| Cook | euk o _u___k___ 0.000001
| CooCl oo o U___eo 0.000000
| Cooke | oUk o U___k_____ 0.745265
| CooCel oo __ o U___ e 0.000000
| CurcCl ecre __®_e_r_e___ 0.000000
| CurCel ecre __ e e r_e_____ 0.000000
| CorCl Or o O_r_____ 0.000000
| CorCel oQre __® O_r_e_____ 0.000000
|ColCl o(Qle __® O_1l_e___ 0.000001
|ColCel eQole __® o_l_e_____ 0.000410
| Cothl o*T o _* T 0.079397

Table 10. Owver powering the main vowel GPC rules. The errors are those for the main
vowels.
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Ipint| pInt _p_I n_t___ 0.001230
lpinCl pin _p_i_n_____ 0.111940
Ipi1Ctl pli t _p_i___t___ 0.027702
|Cintl| eint __e_in_t___ 0.000218
Ip1CClI pil N o 0.000027
|CiCtl oiet __e_i_e_t___ 0.000001
|CinCl ein __® in_____ 0.000001
|CiCCl oie __e_i_e_____ 0.000000
Imint| mint _m_i_n_t___ 0.000021
lgivel giv g i_v_____ 0.000060
lgiCel gle g I e ____ 0.055663
|Civel olv o I v_____ 0.000007
|CiCel oJe __ o J o 0.000000
ldivel dIv Iv 0.000028

Table 11. Building up pronunciations for exception words. The errors are those for the
main vowels.
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short vowel long vowel

generic set data generic set
ax 100.0 100.0 97.6 100.0 76.2
eb,ef,ek,ex 100.0 100.0 56.3 100.0 62.8
el 100.0 93.8 56.3 50.0 20.0
1x 100.0 100.0 99.2 100.0 75.0
0C,0X 100.0 100.0 89.9 100.0 92.5
uf,ux 100.0 100.0 91.4 100.0 98.8

Table 12. The networks’ ability to deal with the ‘final e’ rule in terms of percentages
correct. 'Generic’ refers to the generic constant C, “set’ refers to the full set of 40 different
initial consonant clusters and ‘data’ indicates the percentage of the training data that
follows the ‘e rule’ for that vowel.
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Taraban & McClelland Waters & Seidenberg
(4 x 24 words) (4 x 10 words)

HF E score = 6.45 score = 6.61

HF C score = 4.13 score = 4.89

LF E score = 7.09 score = 7.36

LF C score = 4.35 score = 5.01
type(HF) t = 10.11 p < 0.00001 t = 3.86 p = 0.00114
type(LF) t = 8.98 p < 0.00001 t = 4.62 p = 0.00021
= freq(E) t = 3.83 p = 0.00037 t = 3.12 p = 0.00590
§ freq(O) t = 0.63 p = 0.52562 t = 0.19 p = 0.84987
freq F = 5.08 p = 0.02646 F = 1.67 p = 0.20398
type F =175.90 p < 0.00001 F = 36.25 p = 0.00001
intn F = 1.22 p = 0.27178 F = 0.87 p = 0.35599

HF E score = 5.20 score = 5.42

HF C score = 3.15 score = 3.82

LF E score = 6.51 score = 7.20

% LF C score = 3.39 score = 3.97
g type(HF) t = 9.49 p < 0.00001 t = 3.18 p = 0.00522
[ | type(LF) t = 7.81 p < 0.00001 t = 4.09 p = 0.00068
O] freq(E) t = 3.28 p = 0.00195 t = 2.55 p = 0.02018
9‘ freq(O) t = 1.07 p = 0.28808 t = 0.24 p = 0.81470
=~ freq F = 11.55 p = 0.00099 F= 4.25 p = 0.04651
T type F =129.48 p < 0.00001 F = 26.63 p < 0.00001
intn F = 5.62 p = 0.01985 F = 3.04 p = 0.08943

HF E score = 5.78 score = 6.86

L HF C score = 4.52 score = 4.79

LF E score = 6.38 score = 6.21

LF C score = 4.86 score = 5.04
&= | type(HF) t = 2.75 p = 0.00839 t = 2.93 p = 0.00886
o [ type(LF) t = 4.67 p = 0.00005 t = 2.13 p = 0.04721
freq(E) t = 1.50 p = 0.14123 t = -1.10 p = 0.28625
freq(O) t = 0.82 p = 0.41699 t = 0.37 p = 0.71506
freq F = 2.67 p = 0.10581 F = 0.21 p = 0.64654
% type F = 23.81 p < 0.00001 F = 13.13 p = 0.00089
= intn F = 0.82 p = 0.41699 F = 1.02 p = 0.31809

HF E score = 8.08 score = 8.18

HF C score = 7.07 score = 7.30

LF E score = 8.40 score = 8.54

LF C score = 7.21 score = 7.42
type(HF) t = 7.63 p < 0.00001 t = 3.73 p = 0.00152
type(LF) t = 8.71 p < 0.00001 t = 5.46 p = 0.00003
freq(E) t = 3.37 p = 0.00154 t = 2.52 p = 0.02148
% freq(C) t = 0.8 p = 0.37905 t = 0.44 p = 0.66679
Wi freq F = 5.91 p = 0.01700 F = 2.45 p = 0.12646
8 type F =133.69 p < 0.00001 F = 41.08 p < 0.00001
| intn F = 0.78 p = 0.37870 F = 0.63 p = 0.43435

Table 13. Simulated naming latencies for the exception words and their controls. For each
word set and mathematical relation is shown the mean scores and the statistical
significances.
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Taraban & McClelland Glushko
(4 x 24 words) (4 x 20 words)

HF RI score = 5.26 score = 5.46

HF C score = 4.57 score = 4.05

LF RI score = 5.67 score = 6.29

LF C score = 4.39 score = 3.76
type(HF) t = 2.08 p = 0.04271 t = 5.17 p < 0.00001
type(LF) t = 3.20 p = 0.00247 t = 6.76 p < 0.00001
= freq(RI) t = 0.99 p = 0.32521 t = 2.29 p = 0.02763
§ freq(RI) t = -0.56 p = 0.57871 t = -1.00 p = 0.32150
freq F= 0.18 p = 0.67136 F= 1.31 p = 0.25580
type F = 14.40 p = 0.00026 F = 72.40 p < 0.00001
intn F = 1.27 p = 0.26326 F = 5.81 p = 0.01831

HF RI score = 4.06 score = 4.10

HF C score = 3.46 score = 3.10

LF RI score = 4.81 score = 5.46

§ LF C score = 3.35 score = 2.95
o type(HF) t = 2.20 p = 0.03320 t = 4.72 p = 0.00003
= type(LF) t = 3.29 p = 0.00192 t = 5.68 p < 0.00001
2 freq(RI) t = 1.59 p =0.11863 |t = 2.95 p = 0.00540
Q | freaO t = -0.47 p = 0.6419 |t = -0.95 p = 0.34825

S

- freq F = 1.57 p = 0.21286 F = 6.12 p = 0.01558
I type F = 15.63 p = 0.00015 F = 51.39 p < 0.00001
intn F = 2.09 p = 0.10411 F = 9.00 p = 0.00272

HF RI score = 4.91 score = 4.83

ik HF C score = 4.63 score = 4.03

LF RI score = 5.49 score = 5.76

LF C score = 5.12 score = 4.76
[ type(HF) t = 0.66 p = 0.51279 t = 2.27 p = 0.02891
jou type(LF) t = 0.88 p = 0.38458 t = 2.65 p = 0.01164
freq(RI) t = 1.36 p = 0.17926 t = 2.30 p = 0.02642
freq(O) t = 1.19 p = 0.240006 t = 2.23 p = 0.03104
freq F = 3.27 p = 0.07392 F = 10.27 p = 0.00198
% type F- 1.19 p = 0.2781 |F = 12.16 p = 0.00081
= intn F = 0.03 p = 0.86153 F = 0.14 p = 0.69967

HF RI score = 7.56 score = 7.64

HF C score = 7.25 score = 7.12

LF RI score = 7.84 score = 8.09

LF C score = 7.06 score = 6.96
type(HF) t = 1.79 p = 0.07938 t = 3.91 p = 0.00036
type(LF) t = 4.09 p = 0.00017 t = 6.10 p < 0.00001
freq(RI) t = 1.45 p = 0.15411 t = 2.40 p = 0.02117
g freq(C) t = -1.07 p = 0.29210 t = -1.25 p = 0.22037
n freq F = 0.14 p = 0.70927 F = 1.50 p = 0.22389
type F = 17.82 p = 0.00000 F = 52.40 p < 0.00001
intn F = 3.21 p = 0.07658 F = 7.18 p = 0.00902

Table 14. Simulated naming latencies for the regular inconsistent words and their controls.
For each word set and mathematical relation is shown the mean scores and the statistical
significances.
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Seidenberg & McClelland | Waters & Seidenberg
(4 x 23words) (4 x 11 words)

HF S score = 5.27 score = 5.77

HF C score = 4.22 score = 4.75

LF S score = 5.92 score = 7.23

LF C score = 4.64 score = 4.84
type(HF) t = 2.96 p = 0.00488 t = 1.95 p = 0.06490
type(LF) t = 4.25 p = 0.00011 t = 4.57 p = 0.00018
= freq(S) t = 1.97 p = 0.05476 t = 3.52 p = 0.00215
§ freq(O) t = 1.25 p = 0.21716 t = 0.13 p = 0.89080
freq F = 5.17 p = 0.02540 F = 4.35 p = 0.04337
type F = 25.08 p < 0.00001 F = 21.31 p = 0.00004
intn F = 0.23 = 0.63182 F = 3.44 p = 0.07085

HF S score = 4.05 score = 4.45

HF C score = 3.23 score = 3.72

LF S score = 4.65 score = 3.98

§ LF C score = 3.51 score = 3.84
o type(HF) t = 3.28 p = 0.00202 t = 1.55 p = 0.13638
F type(LF) t = 3.85 p = 0.00037 t = 4.33 p = 0.00032
] freq(S) t = 1.88 p = 0.06661 t = 3.98 p = 0.00073
Q | frea® t = 1.25 p=0.21717 |t= 0.21 p = 0.83310

S

v freq F = 5.10 p = 0.02635 F = 9.58 p = 0.00359
I type F = 25.64 p < 0.00001 F = 20.11 p = 0.000006
intn F = 0.69 p = 0.40791 F = 7.88 p = 0.00767

HF S score = 6.33 score = 6.63

w HF C score = 4.94 score = 4.72

LF S score = 6.72 score = §8.28

LF C score = 5.21 score = 4.86
[ type(HF) t = 2.43 p = 0.01904 t = 3.01 p = 0.00698
jou type(LF) t = 3.04 p = 0.00402 t = 3.57 p = 0.00193
freq(S) t = 0.65 p = 0.51613 t = 1.72 p = 0.10152
freq(O) t = 0.58 p = 0.56724 t = 0.20 p = 0.84026
freq F = 0.75 p = 0.38617 F = 2.40 p = 0.12939
% type F = 14.66 p = 0.00024 F = 21.46 p = 0.00004
= intn F = 0.02 p = 0.87476 F = 1.76 p = 0.19270

HF S score = 7.64 score = 7.93

HF C score = 7.08 score = 7.26

LF S score = 7.91 score = 8.59

LF C score = 7.30 score = 7.34
type(HF) t = 2.85 p = 0.00004 t = 2.69 p = 0.01389
type(LF) t = 4.57 p = 0.00004 t = 5.97 p < 0.00001
freq(S) t = 1.74 p = 0.08881 t = 3.50 p = 0.00226
g freq(C) t = 1.67 p = 0.24950 t = 0.31 p = 0.75577
n freq F = 4.09 p = 0.046006 F = 5.30 p = 0.02657
type F = 24.48 p < 0.00001 F = 34.94 p < 0.00001
intn F = 0.07 p = 0.79185 F = 3.21 p = 0.08079

Table 15. Simulated naming latencies for the strange words and their controls. For each
word set and mathematical relation is shown the mean scores and the statistical
significances.
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Brown
(3 x 21 words)
Unique score = 5.57
Exception score = 6.52
Consistent score = 4.26
Exc/Ung t = 2.51 p = 0.01625
g Ung/Con t = 6.5 p = 0.00083
Exc/Con t = 4.26 p < 0.00001
Unique score = 4.39
Exception score = 5.63
Consistent score = 3.27
<3
= Exc/Ung t = 2.87 p = 0.00650
= Ung/Con t = 3.27 p = 0.00224
n Exc/Con t = 6.84 p < 0.00001
Wl
Unique score = 5.63
Exception score = 6.12
B Consistent score = 4.77
% Exc/Unq t = 1.206 p = 0.21583
Ung/Con t = 2.08 p = 0.04418
2 Exc/Con t = 3.5 p = 0.00098
w
Unique score = 7.74
Exception score = 8.19
% Consistent score = 6.95
§ Exc/Ung t = 2.40 p = 0.02110
et Ung/Con t = 4.37 p = 0.00009
§ Exc/Con t= 7.32 p < 0.00001

Table 16. Simulated naming latencies for Brown’s Unique, Exception and Consistent
words. For each mathematical relation is shown the mean scores and the statistical
significances of the differences.
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Glushko
(4 x 43 words)

Reg NW score = 4.90

Reg W score = 4.81

Exc NW score = §8.11

Exc W score = 6.71
NW/W (Reg) t = 0.24 p = 0.80850
[£3) NW/W (Exc) t = 4.07 p = 0.00011
Reg/Exc (NW) |t = 6.84 p < 0.00001
Reg/Exc (W) t = 7.72 p < 0.00001
NW/W F = 93.04 p < 0.00001
Reg/Exc F = 8.05 p = 0.00511
intn F = 6.09 p = 0.01456

Reg NW score = 6.70

Reg W score = 3.76

Exc NW score =33.08

Exc W score = 5.85
M~ NW/W (Reg) t = 1.71 p = 0.09143
& NW/W (Exc) |t = 3.79 p = 0.00028
Q Reg/Exc (NW) [t = 3.58 p = 0.00578
. Reg/Exc (W) t = 6.44 p < 0.00001

—

I NW/W F = 14.88 p = 0.00016
Reg/Exc F = 16.73 p = 0.00007
intn F = 10.83 p = 0.00121

Reg NW score = 7.46

Reg W score = 7.36

Exc NW score = 8.69

Exc W score = 8.18
NW/W (Reg) t = 0.69 p = 0.48737
NW/W (Exc) t = 2.99 p = 0.00365
Reg/Exc (NW) |t = 6.21 p < 0.00001
g Reg/Exc (W) |t = 7.16 p < 0.00001
wn NW/W F = 80.56 p < 0.00001
Reg/Exc F = 7.24 p = 0.00781
intn F = 3.10 p = 0.08001

Table 17. Simulated naming latencies for the Glushko non-words and their controls. For
each mathematical relation is shown the mean scores and the statistical significances of the
differences.
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McCann & Besner
(3 x 80 words)
Pseudohomophones score = 5.96
Control Non-words score = 6.46
Control Words score = 5.10
= Pseudohs/NonWords t = -1.35 p = 0.17968
Pseudohs/Words t = 2.72 p = 0.00732
NonWords/Words t = 4.76 p < 0.00001
Pseudohomophones score = 16.75
Control Non-words score = 17.75
e Control Words score = 3.95
]
Q Pseudohs/NonWords t = -0.10 p = 0.91992
:1__ Pseudohs/Words t = 2.30 p = 0.02257
— NonWords/Words t = 1.67 p = 0.09639
I
Pseudohomophones score = 7.92
Control Non-words score = 8.00
g Control Words score = 7.46
Pseudohs/NonWords t = -0.53 p = 0.59930
§ Pseudohs/Words t = 3.32 p = 0.00113
§ NonWords/Words t = 4.04 p = 0.00008

Table 18. Simulated naming latencies for the McCann & Besner pseudohomophones,
control non-words and control words. For each mathematical relation is shown the mean
scores and the statistical significances of the differences.
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Regular Non- Exception Regularization

Words Words Words Errors
Scaling 91.7 95.3 54.2 77.3
Reduction 89.6 86.0 68.7 80.0
Clipping 91.7 79.1 81.2 11.1
Noise 91.7 88.4 47.9 72.0
Connections 91.7 83.7 39.6 69.0
Units 91.7 93.0 47.9 64.0

Table 19. The percentage of exception word errors that are reqularizations for our six types
of network damage. Each case corresponds to the plotted run at the nearest data point to a
regular word performance of 91.7%.
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output - phonemes (nphonemes)

hidden layer (nhidden)

input - letters (nchar e nletters)

Figure 1. The Basic Model Network Architecture with one output phoneme per word
presentation.
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Figure 2. Comparison of the training data learning curves for two techniques used to
prevent the output activations becoming stuck hard wrong. SPO refers to using a Sigmoid
Prime Offset. Target means setting the targets to 0.1 and 0.9 instead of 0.0 and 1.0. In each
case we have 40 hidden units and a window size of 7 characters.
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Figure 3. Comparison of the generalization performance curves for two techniques used to
prevent the output activations becoming stuck hard wrong. SPO refers to using a Sigmoid
Prime Offset. Target means setting the targets to 0.1 and 0.9 instead of 0.0 and 1.0. In each
case we have 40 hidden units and a window size of 7 characters.
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Figure 4. The variation of the training data learning curves with the number of hidden
units. Each network has a window size of 13 characters, errcrit = 0.01 and a single context
flag to resolve the homograph ambiguities.
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Figure 5. The variation of the generalization performance curves with the number of hidden
units. Each network has a window size of 13 characters, errcrit = 0.01 and a single context
flag to resolve the homograph ambiguities.
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Figure 6 The variation of the number of non-word errors with the number of hidden units.
Each network has a window size of 13 characters, errcrit = 0.01 and a single context flag to
resolve the homograph ambiguities.
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Figure 7. The learning curves for a typical run of the basic network with 120 hidden units,
a window size of 13 characters, errcrit = 0.01 and a single context flag to resolve the
homograph ambiguities.
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Figure 8. The variation of the training data learning curves with the over-learning

parameter errcrit. Each network has a window size of 13 characters, 120 hidden units and a
single context flag to resolve the homograph ambiguities.
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Figure 9. The variation of the generalization performance with the over-learning parameter
errcrit. Each network has a window size of 13 characters, 120 hidden units and a single
context flag to resolve the homograph ambiguities.
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Figure 10. The learning curves for a typical run of the basic network with no explicit

blanks, 120 hidden units, a window size of 13 characters, errcrit = 0.01 and a single context
flag to resolve the homograph ambiguities.
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input - letters (nchar ¢ nletters)

Figure 11. The Basic Model Network Architecture with two output phonemes per word
presentation.
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Figure 12. The learning curves for a typical run of a network with no hidden units, a
window size of 13 characters, errcrit = 0.01 and a single context flag to resolve the
homograph ambiguities. The data points after epoch 512 are averages over several epochs
since there is much variation from epoch to epoch.
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Figure 13. The learning curves for a typical run of the basic network with the extended

training data set of 13891 words including many multi-syllabic words but no homographs.
The network had 160 hidden units, a window size of 17 characters and errcrit = 0.01.
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Figure 14. The Basic Model Network Architecture with one output phoneme per word
presentation and recurrent connections.
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Figure 15. The learning curves for a typical run of the basic two phoneme output model

with 300 hidden units, a window size of 13 characters, errcrit = 0.0 and a single context flag
to resolve the homograph ambiguities.
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Figure 16. The final distribution of weights for a typical run of the basic two phoneme
output model with 300 hidden units, a window size of 13 characters, errcrit = 0.0 and a
single context flag to resolve the homograph ambiguities.
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Figure 17. The final distribution of output error scores for the training data and the various
non-word sets. The bins follow a logarithmic scale with the highest numbered bins
corresponding to the lowest error scores.
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Figure 18. The effect on the output error score for the word ‘tint’ of extra network training
on the words ‘pint’, ‘comb’, ‘dint’ and ‘wint’.
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Figure 19. The evolution during training of the output activation error scores for the low
frequency exception, strange, reqular inconsistent and reqular words.
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Figure 20. The learning curves of the (Taraban & McClelland) high and low frequency
exception words and the corresponding regular control words.
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Figure 21. The evolution during training of the output activation error scores for the
(Taraban & McClelland) high and low frequency exception words and the corresponding
regular control words.
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Figure 22. The naming latencies for humans on the Taraban & McClelland and Waters &
Seidenberg high and low frequency exception words and the corresponding regular control
words.
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Figure 23. The network’s mean log error scores on the Taraban & McClelland and Waters
& Seidenberg high and low frequency exception words and the corresponding regular
control words.
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Figure 24. The naming latencies for humans on the Taraban & McClelland and Glushko
high and low frequency regular inconsistent words and the corresponding regular control
words.
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Figure 25. The learning curves of the (Taraban & McClelland) high and low frequency
regular inconsistent words and the corresponding reqular control words.
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Figure 26. The evolution during training of the output activation error scores for the
(Taraban & McClelland) high and low frequency regular inconsistent words and the
corresponding regular control words.
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Figure 27. The network’s final mean log error scores on the Taraban & McClelland and
Glushko high and low frequency regular inconsistent words and the corresponding regular
control words.
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Figure 28 The naming latencies for humans on the Waters & Seidenberg high and low
frequency strange words and the corresponding regular control words.
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Figure 29. The learning curves of the (Siedenberg & McClelland) high and low frequency
strange words and the corresponding regular control words.
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Figure 30. The evolution during training of the output activation error scores for the
(Seidenberg & McClelland) high and low frequency strange words and the corresponding
regular control words.
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Figure 31. The network’s final mean log error scores on the Seidenberg & McClelland and
Waters & Seidenberg high and low frequency strange words and the corresponding regular
control words.
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Figure 32. The network’s final mean log error scores on Brown’s unique, exception and
consistent words compared with the corresponding naming latencies for humans.
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Figure 33. The naming latencies for humans on the reqular and exceptional Glushko non-
words and the corresponding control words.
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Figure 34. The network’s final mean log error scores on the regular and exceptional Glushko
non-words and the corresponding control words in the training data.
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Figure 35 The final network performance when the number of hidden units is very low. The
corresponding learning curves are shown in Figures 4 and 5.
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Figure 36. The final network performance for the standard one hidden layer network and
the corresponding network with only direct input to output connections. The corresponding
learning curves are shown in Figures 12 and 15.
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Figure 37. The final network performance when trained with a Sigmoid Prime Offset
(SPO), reduced targets of 0.1 and 0.9, and neither. The corresponding learning curves are
shown in Figures 2 and 3.
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Figure 38. The network’s performance at three stages during training. The full learning
curves are shown in Figure 7.
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Figure 39. The effect of damage on our errcrit = 0.0 network by global weight scaling, i.e.
by the scaling of all weights by successive factors of 0.9.
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Figure 40. The effect of damage on our errcrit = 0.0 network by global weight reduction, i.e.
by the reduction of all weights by successive amounts of 0.04.
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Figure 41. The effect of damage on our errcrit = 0.0 network by global weight clipping, i.e.
by the imposition of successive maximum allowable weights equal to 0.9 of the previous
maximum.
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Figure 42. The effect of damage on our errcrit = 0.0 network by adding Gaussian noise to
the weights, i.e. by successive applications of random changes to the weights with zero mean
and standard deviation of 0.2.

85



100
80
)
(8]
o
S 60 -
(]
(=]
[\
-
& 40
2
Y
—e—— Regulars (0.0001)
20 - —#&— Exceptions (0.0001)
—o—— Regulars (0.0)
—0oO——  Exceptions (0.0)
O 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Damage Run

Figure 43. An illustration of the range of variations in the size of dissociation for different
sets of random noise. Plotted are the best dissociations found for each damage run of the
errcrit = 0.0 and 0.0001 networks with the regqular word performance better than 70%. For
clarity the runs are ordered according to the exception word performances.
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Figure 44 The effect of damage on our errcrit = 0.0 network by the removal of connections,
i.e. by the successive removal of random sets of 6600 connections (out of the total set of
~132000 connections).
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Figure 45. An illustration of the range of variations in the size of dissociation for different
sets of removed connections. Plotted are the best dissociations found for each damage run of
the errcrit = 0.0 and 0.0001 networks with the regular word performance better than 70%.
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Figure 46 The effect of damage on our errcrit = 0.0 network by the removal of hidden units,
i.e. by the successive removal of random sets of ten hidden units (out of the total set of 300

hidden units).
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Figure 47 An illustration of the range of variations in the size of dissociation for the
removal of different sub-sets of hidden units. Plotted are the best dissociations found for
each damage run of the errcrit = 0.0 and 0.0001 networks with the regular word
performance better than 70%. For the final case (denoted H) the removed units were chosen
by hand rather than at random.
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