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Attempts to formulate realistic models of the development of the human oculo-
motor control system have led to the conclusion that evolutionary factors play a
crucial role. Moreover, even rather coarse simulations of the biological evolutionary
processes result in adaptable control systems that are considerably more efficient
than those designed by human researchers. In this paper I shall describe some of
the aspects of these biological models that are likely to be useful for building robot
control systems. In particular, I shall consider the evolution of appropriate innate
starting points for learning/adaptation, patterns of learning rates that vary across
different system components, learning rates that vary during the system’s lifetime,
and the relevance of individual differences across the evolved populations.
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1. Introduction

There exists a natural concern about the possible adverse effects of using novel view-
ing devices such as night vision goggles for pilots or virtual reality head-mounted
displays in amusement arcades (Sheehy & Wilkinson, 1989; Mon-Williams, Wann
& Rushton, 1993; Kotulak & Morse, 1995). Their recreational use by children is
particularly worrying given the more plastic nature of their visual systems (Rush-
ton & Riddell, 1999). However, the wide ranges of individual differences found in
the oculomotor control systems across the human population, and the possibility
that different subsets within that range may be prone to different problems and
require different remedial actions (Morse & Jiang, 2000), mean that it is empiri-
cally rather difficult to draw reliable conclusions concerning the validity of these
concerns. One can certainly begin to quantify potential problems and corrections
by examining existing users of such devices, but it would clearly be unethical to set
up more widespread tests on children, or to experiment on them with new reme-
dial actions when problems are found. An alternative would be to build sufficiently
realistic models of the relevant parts of the human oculomotor control system, and
subject those to demands of the kind required of humans using different types of
viewing devices. In this way we might be able to identify simple predictors of which
individuals are most likely to experience problems, and determine which corrective
procedures might be most appropriate for each individual with a particular deficit.

To appear in Philosophical Transactions of the Royal Society, 2003



2 J. A. Bullinaria

For this reason, I have recently been involved in formulating increasingly sophis-
ticated models of the development of the human oculomotor control system with
a view to understanding better the problems that may occur under normal condi-
tions, and also as a result of using novel viewing devices (e.g. Bullinaria, Riddell &
Rushton, 1999; Bullinaria & Riddell, 2001). Building a model of the whole visual
system, that takes in real images as its inputs, was not really feasible, nor actually
necessary. Our main concern was to determine how accommodation (eye focusing)
and vergence (eye rotation) are controlled so as to minimize blur and image dis-
parity. As with any system that is required to respond appropriately under varying
conditions to a range of different cues of varying degrees of accuracy, reliability and
availability, and be able to adapt across various different timescales, designing an
efficient oculomotor controller is a difficult task. Nevertheless, there is an enormous
literature on linear control systems models based on empirical human data which
already provide a good account of the performance of the adult oculomotor con-
trol system for unpredictable target sequences (e.g. Schor, Alexander, Cormack &
Stevenson, 1992; Eadie & Carlin, 1995). However, they do not provide an account
of the development of that system in individuals, nor the large ranges of individual
differences that are found in humans. To do this we have had to incorporate the
ability to learn from and adapt to typical visual cues, and take careful account of
numerous maturational factors, such as the eyes growing further apart.

Our models have been set up with general architectures based on known physiol-
ogy, and learn for themselves how to perform the given tasks as best they can from
realistic sequences of visual demands. These models have been rather successful
in that they can simulate adult human performance reasonably well, and also the
developmental progression towards those abilities, yet they remain lacking. A re-
curring feature is that, although the models do learn human-like performance under
normal conditions, the internal processes they develop (that can be deduced from
their operation under various open loop conditions) depend crucially on such details
as their initial conditions and time-dependent learning rates, which are extremely
difficult to determine empirically. These factors will have been constrained by evo-
lution in the human systems, and without simulating this evolutionary process it
seems unlikely that we will be able to produce realistically constrained models, nor
fully understand the normal and abnormal development of those systems (Bulli-
naria & Riddell, 2000). Particularly important are the innate starting points of
the learning process, the advantages of having different learning rates for distinct
components of the system, and the relevance of the critical periods of learning that
are observed in humans. Some preliminary small scale simulations of human-like
evolution of these factors (Bullinaria, 2001a,b) suggest that such an approach will
not only result in improved models of human systems, but also result in much
more efficient systems than researchers can reasonably be expected to design them-
selves. This has led to the suggestion that a similar approach might yield improved
performance for robotic control systems.

The idea of using evolutionary techniques for creating robotic systems is already
well established in the field of Evolutionary Robotics (e.g. Nolfi & Floreano, 2000).
Evolutionary algorithms have also already shown much promise for generating ar-
tificial neural networks with performance superior to those formulated directly by
human researchers. Factors such as network architecture, learning rules and con-
nection weights have all been successfully optimised by simulated evolution (e.g.
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Yao, 1999). In this paper, however, I would like to concentrate on the effects of
three related factors that appear to be crucial for the human system, and yet have
perhaps not received adequate attention in the field of robotics. First, the so-called
Nature-Nurture Debate and the distinctions between properties that are innate in
each new individual, and those that must be learned from the environment during
an individual’s lifetime. Second, the ranges of Individual Differences and how these
are constrained by evolution and learning. Third, the advantages and disadvantages
of the Critical Periods for Learning that are often observed in human development.
I shall argue that to study these issues properly, it is important that the evolution-
ary simulations are more closely aligned with biological evolution than is commonly
the case.

2. The Baldwin effect

Initially we were primarily interested in how evolution by natural selection has
resulted in the current population of humans, but now we also want to see how it
can improve our artificial systems’ (robots’) abilities to learn from, and act in, their
environment. Inevitably, that interaction between learning and evolution known
as the Baldwin Effect (Baldwin, 1896; Hinton & Nowlan, 1987; Belew & Mitchell,
1996) will be crucial for understanding the processes involved. For present purposes
this interaction occurs in two stages: (1) if a mutation improves the ability of the
learning process to acquire better properties, then it will tend to proliferate in the
population, and (2) if the learning process has an associated cost (e.g. requires
time or energy), then its results will tend to get incorporated into the genotype
and the learned behaviours will become innate. In effect, natural selection will
generate an iterative sequence of adjustments to the innate starting points that
reduces the need for learning. This will result in genetic assimilation of the learned
characteristics, without Lamarckian inheritance. Then any population in a stable
environment, that is able to reproduce accurately, can be expected to evolve so that
its optimal behaviour is completely innate, and learning will no longer be required.
However, if the system really does need to retain the ability to learn, for example
to adapt to the system’s own maturation or degradation (as we generally have in
biological systems), or to adapt to unknown or changing environmental conditions,
or to correct for statistical fluctuations or mutations in the procreation process,
then only partial assimilation will occur. We should still end up with an efficient
learning system, but the appropriate innate properties will no longer generally
correspond to the final learned behaviour. This is where the nature-nurture debate
comes in (Elman et al., 1996). Moreover, if natural selection cannot discriminate
between different genotypes (i.e. different innate properties), then we will be left
with a range of individual differences. I have recently discussed these two issues in
more detail elsewhere (Bullinaria, 2001a). They both have a crucial effect on the
evolution of efficient adaptable control systems.

3. Variable plasticity and critical periods

The third issue I wish to consider here is how evolution might lead to more efficient
systems by allowing the emergence of variable plasticities (i.e. non-constant learning
rates). It is certainly well known that human neural plasticity varies considerably
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Figure 1. The simple feedback control model to be evolved. Learning results in its four
weights/parameters WI, WP, WT, W B being adjusted so that it performs as best it can.

with age, and that there are often ‘critical periods’ during which learning must
take place if the given task is to be mastered successfully (Greenough, Black &
Wallace, 1987; Julesz & Kovacs, 1995). The idea of variable neural plasticity is also
quite common in the field of artificial neural networks where modellers have found it
beneficial to vary their network learning rates during the course of training (Jacobs,
1988). For example, near the end of training it may be useful to decrease the learning
rates to minimize the weight variations seen after each sample in online training,
or to increase them to speed the saturation of sigmoidal activation functions as the
errors become small. Alternatively, if the performance of a task depends crucially
on some lower-level of processing, it may be sensible to delay the learning of that
task until the lower level processes have fully developed. It is not clear to what
extent factors such as these have been responsible for the evolution of the patterns
of age-dependent plasticity found in humans, or if it has been more a matter of
minimising the physical overheads of the plasticity. Given that robotic systems will
generally have overheads somewhat different from biological systems, it is worth
exploring this in some detail.

4. The control model

In this paper I shall discuss the issues introduced above in the context of the results
from a series of explicit simulations of the evolution of some simple adaptable
control systems. The overall aim will be to see what innate systems and learning
strategies evolve naturally, and to explore how different strategies evolve under
different circumstances. These can be expected to inform the issues for biological
systems discussed above, and help us to formulate better adaptable controllers for
our robotic systems.

The control system that will form the basis of the current investigation is shown
in figure 1. It is actually a simplified version of the part of the oculomotor control
system that focuses and rotates the human eye (Schor et al., 1992), though similar
feedback control systems can be applied quite generally (Levine, 1996). The input
will be a natural sequence of target responses that will generally be supplied by
another (probably rather complex) subsystem in the brain/robot. This is combined
with the signal from the feedback loop to provide an error signal. Generally this
will involve some complex computations with variable time delays, saturations and
dead-zones (such as depth of field), although for the current study we shall re-
strict ourselves to a simple difference calculation with constant feedback latency.
The error signal then feeds through a standard integral controller (a leaky inte-



Evolution of Robot Control Systems 5

Response
Response

2 1
Time (secs) Time (secs)

(a) Human-like damped output. (b) Under-damped output.

Figure 2. Responses (solid lines) resulting from our simplified control system, for two
different parameter sets, when presented with a step in demand (dashed lines).

grator with gain/weight W1 and time constant 77) and a standard proportional
controller (a simple gain/weight W P). The combined outputs from these are added
to a constant bias signal (of strength/weight W B) and a leaky integrator tonic
signal (of gain/weight WT and time constant 77), and fed into the plant (which is
approximated by another leaky integrator) to produce the final response. The bias
provides an appropriate general purpose resting state, while the tonic allows short
time-scale adaptation of the resting state during periods of constant demand. In
the human eye focusing system, for example, we would have blur being processed
to generate signals for the ciliary muscles in the eye appropriate for the distance
of the visual target (Schor et al., 1992). The system can equally well be regarded
as a traditional control system (Levine, 1996), or as a dynamical network of leaky
integrator neurons (Bullinaria & Riddell, 2001). It is simple enough to render the
simulations tractable, yet complex enough to incorporate the essential features of
many real control systems.

Simulating the evolution of this system will involve working with a large num-
ber of copies of the model, each with their own four adjustable parameters/weights
W(t) = {WI(t),WP(t), WT(t), WB(t)} where t is the time/age of the individ-
ual model measured in simulated years. These parameters are learned by a simple
on-line gradient descent algorithm that minimizes a cost function consisting of re-
sponse error and smoothness (overshoot minimization) components, which would
be readily available to the system, for representative sequences of response tar-
gets. The precise formulation of this learning algorithm has been discussed in some
detail by Bullinaria & Riddell (2001), and the error versus smoothness trade-off
set to match human performance. Corresponding to the learnable weights, then,
each instantiation of the model will have four variable learning rates/plasticities
P(t) = {PI(t),PP(t), PT(t), PB(t)}. The model will also have various other pa-
rameters (the time constants 71 and 7r, plant characteristics, feedback time delay,
and so on) which we take to be the same for all instantiations, with values ap-
propriate for human oculomotor control (Schor et al., 1992). Such a system that
has evolved/learned a good set of weights will automatically produce appropri-
ate damped responses to arbitrary discontinuous output requirements, as well as
smooth pursuit of arbitrary continuous output changes (Bullinaria & Riddell, 2001).
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Figure 2 shows typical human-like and under-damped responses to a step change
in the target response.

For the purposes of this paper, I shall assume that all the learning rates in an
individual model vary with age in the same manner, and that this variation de-
pends only on the genotype (innate parameters) of the individual, and not on the
environment that the individual finds itself in. Naturally, it will be important to
relax this condition in the future, but this means that for now we are able to write
P(t) = s(t).P(0), where P(0) are the four initial learning rates, and s(t) is a simple
age dependent scaling factor. Clearly, if there were no plasticity variation we would
have s(t) = 1 for all t. To evolve this function we need a convenient parameteri-
zation. Here we shall use one that involves few additional assumptions, namely set
s(t) to be piecewise linear with parameters S = {s(¢) : ¢t = 1,..., N}. This extends
my earlier study (Bullinaria, 2001b) where I took s(t) to be an exponential function
determined by only two evolvable parameters. That parameterization, however, had
the advantage of allowing a straightforward implementation of control systems that
could evolve appropriate environment dependent plasticity variations.

The part of the current model’s genotype that varies between individuals thus
represents the 8 + N parameters {W(0), P(0),S}. There is clearly nothing in this
approach, apart from the inevitable increase in computational requirements, to
prevent straightforward extensions to more complex control systems that involve
any number of parameters.

5. Evolving the model

Simulating the evolutionary process for our model involves taking a whole popu-
lation of individual instantiations and allowing them to learn, procreate and die
in a manner approximating those processes in real (biological) systems. The geno-
type of each new individual will depend only on the genotypes of its two parents
and random mutation. Then during their life each individual will attempt to learn
from their environment how best to adjust their weights to perform most effec-
tively. Eventually, perhaps after producing a number of children, each individual
dies. Obviously, in nature, or for complete physical robots, the ability of an indi-
vidual to survive or reproduce will depend on a number of factors that are related
in a complicated manner to that individual’s performance on a range of related
and unrelated tasks. For the purposes of our simplified model here, however, it is
reasonable to assume that all other factors are equal across the population, and
consider it to be a sufficiently good approximation to take a simple linear relation
between our single task fitness function and the survival or procreation fitness. In
fact, any monotonic relation should result in similar evolutionary trends, but it is
very easy to lose weak effects in the noise of the rather coarse simulations forced
upon us by current computational resource limitations.

Given that, initially at least, we were aiming to replicate effects that arise in
biological evolution, it was appropriate to follow a more natural approach to procre-
ation, mutation and survival than has been used in many evolutionary simulations
in the past (e.g. in Belew & Mitchell, 1996). If, as is often done, we were to train
each member of the whole population for a fixed time and pick the fittest to breed
and form the next generation, there would be no incentive for individuals to learn
as quickly as possible, and efficient learners would not evolve. The natural alterna-
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Table 1. Summary of the evolutionary process

A population of individual models each born with:
An architecture (fixed): As in figure 1
Four initial weights (evolved): W(0) = {WI(0), WP(0), WT(0), WB(0)}
Four initial plasticities (evolved): P(0) = {PI(0), PP(0), PT(0), PB(0)}
A plasticity scale factor (evolved): S = {s(¢t);t =1, ..., N}
Then during each simulated year:
An output scale factor matures between birth and age 10
The plasticities mature: P(t) = {PI(t), PP(t), PT(t), PB(t)} = s(t)P(0)
Good weights are learned: W (t) = {WI(t), WP(t), WT'(t), WB(t)}
The least fit individuals tend to die (with tournament selection)
The oldest individuals tend to die (at a constant rate after age 30)
The most fit individuals tend to procreate (with tournament selection)
The procreation process has:
Children’s innate parameters set randomly in range spanned by two parents
Random variations/mutations may take parameters outside parental range

tive to this generational approach is a steady state strategy in which only a sub-set
of the population is replaced at each time step (Whitley, 1989; Syswerda, 1991).
Here, as in most biological systems, our populations contain competing learning in-
dividuals of all ages, each with the potential for dying or procreation at each stage.
During each simulated year, every individual learns from their own experience with
a new randomly generated common environment (i.e. set of training/testing data)
and has their fitness measured. Random pairs of individuals are then forced to com-
pete, with the least fit dying (i.e. being removed from the population). Additionally,
a random subset of the oldest individuals die of old age. The dead are replaced by
children, each having one parent who is the fittest of a randomly chosen pair from
the remaining population, who randomly chooses their mate from the rest of whole
population. Each child inherits characteristics from both parents such that each
innate free parameter is chosen at random somewhere between the values of its
parents, with sufficient noise (or mutation) that there is a reasonable possibility
of the parameter falling outside the range spanned by the parents. Naturally, the
innate characteristics that enable individuals to acquire good performance most
quickly and reliably will tend to proliferate in the population.

Note that even when the best possible set of innate weights has evolved, the
control system will still generally benefit from being plastic since that will allow each
individual to fine tune its performance after their statistically noisy procreation
process and/or being born into an unpredictable environment. Many biological
systems also need some degree of plasticity to compensate for the changes (e.g.
growing sizes) that naturally take place during their own maturation periods, and
robots will need to compensate for related factors such as plant drift (e.g. gear
wear). For the current study, such changes were simulated by introducing a simple
output scale factor that varies linearly from 0.5 to 1.0 over the first ten years of life
for each individual. (It turns out that the precise details of this variation are not
crucial to the general pattern of results that emerge.) In humans this maturation
might correspond to changes in inter-pupillary distance for the eye rotation system,
or changes in arm length for reaching or pointing. The important consequence is
that the appropriate innate/newborn weights will not be the same as the final adult
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values. However, the pattern of plasticities that evolve will allow the system to
learn most effectively how to optimize its weights throughout its life. The complete
evolutionary process is summarised in table 1.

Ultimately, the simulations might benefit from more realistic encodings of the
parameters, concepts such as recessive and dominant genes, gender differences,
learning and procreation costs, different inheritance and mutation details, different
survival and procreation criteria, more restrictive mate selection regimes, offspring
protection, different learning algorithms and fitness functions, and so on, but for
the purposes of this paper, our simplified approach proves adequate. An important
consideration, however, is that limited computational resources will generally only
permit rather coarse approximations of biological evolutionary processes, and it is
important to fix the various simulation parameters appropriately. For example, if
all the individuals were able to learn how to perform the given task perfectly by
the end of their first year, and we only tested their performance once per year, then
the advantage of those that learn in two months over those that take ten is lost
and the simulated evolution would not be very effective. Since the individuals were
allowed to evolve their own learning rates, this had to be controlled by limiting the
amount of training data each individual experienced in each year. Choosing a fixed
population size of only 100 was a trade-off between maintaining genetic diversity
and running the simulations reasonably quickly. The death rates were set in order to
produce reasonable age distributions, and to prevent the population from becoming
dominated by skilled adults who killed off most of the children before they had the
chance to learn how to perform well. This meant around 10 deaths per year due to
competition, and another 4 individuals over the age of 30 dying each year due to old
age. The procreation and mutation parameters were chosen to speed the evolution
as much as possible without introducing too much noise into the process. Coding
such a system in C typically resulted in around 1,000 simulated years per CPU
hour on an average UNIX workstation. These details were kept constant across all
the simulations I shall now present.

6. Simulation results

Inevitably, starting with random initial populations, and evolving them in randomly
generated environments, will lead to some variability between the results from dif-
ferent runs of the same system. However, the general patterns of results were found
to be quite robust with respect to these randomizing effects, and so I shall present
results from typical runs, rather than averages over many runs which tend to mask
many of the crucial details.

The main simulation results for a typical run of the basic system described
above are shown in figure 3. The initial population’s initial weights W(0) and
learning rates P(0) were assigned random values from the range [0, 20], but only a
relatively small sub-space of those parameters actually correspond to stable control
systems. Any individuals that proved unstable on a small input test sequence were
immediately replaced by new random individuals until the whole initial population
was stable with respect to that test sequence. This ensured diversity in the early
generations by preventing the whole population from being derived from the few
stable individuals in the initial random set. As can be seen from graph (a) in figure 3,
this resulted in the initial population averages of the initial weights starting off quite
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near their final evolved values, though the initial populations did actually have quite
a spread around those mean values. It is a major advantage of the evolutionary
approach that the evolving population naturally tends to keep itself away from the
unstable regions of parameter space, and thus to a large extent obviates the need
for a stability analysis phase of the design process.

The mean learning rates/plasticities of the initial generation were not as con-
strained as the corresponding initial weights, but still they quickly evolved to take
on appropriate values, as shown in graph (b) of figure 3. An important point to
notice is the large variation between the learning rates that emerge for the different
components — for example, there is nearly two orders of magnitude difference be-
tween PT and PI. Using a single learning rate for the whole system, as is common
in neural network modelling, would clearly not be a good strategy in this type of
system. Moreover, determining appropriate different values without employing an
evolutionary strategy would be a formidable task for a human designer.

The evolved parameters have emerged because they result in good values for
the weights throughout the individuals’ lives. All the weights will need an initial
fine tuning to remove the noise introduced by the procreation process, then some
weights (W1 and W P) need to adjust during the maturation period, while others
(WT and W B) need little further change. In figure 3, the plots (¢) and (d) of W P(#)
and WT(t) against age t for our typical evolved population show this quite clearly.
We can also see that, even for individuals of the same age, there is still a fair degree
of variability in the parameter values. Graph (e) shows this variability more clearly
by plotting the standard deviations across the evolved population of the parameter
values at each age, normalised by the corresponding average values. These ranges of
individual differences vary with age and ultimately depend upon the sensitivity of
the fitness function with respect to the corresponding parameters. For the biological
case of oculomotor control discussed earlier, this is particularly important since,
although the individual differences emerge because of their irrelevance to fitness
under normal conditions, they may be crucial to the responses under unnatural
viewing conditions such as the wearing of virtual reality head-mounted displays.
Subjects from some sub-ranges of individual differences may be unaffected, while
others may have serious problems (Morse & Jiang, 2000). For robotic systems, we
may wish to employ the entire range of individuals so that there is a good chance
that at least one of them will be able to deal with any unforeseen circumstances,
or we may wish to constrain the range further by imposing additional performance
or reliability requirements. In either case, a good understanding of the ranges and
causes of individual differences will be of great benefit.

In the final graph (f) of figure 3 we see how the plasticity scale factor s(t) varies
with age t. In particular, we see that the plasticity falls drastically between birth
and the end of the maturation period, thus confirming that critical periods for
learning will arise as a natural consequence of an evolutionary process. There are
two competing factors that determine what is an appropriate plasticity for each age.
In order to survive in competition with fitter adults and/or a hostile environment, a
newborn needs to be able to adapt as quickly as possible to its environment. It also
needs to adapt efficiently to its own maturation. Large plasticities will be beneficial
for both. In adults, however, large plasticities can lead to an unstable learning
system, in which unusual or extreme experiences can potentially result in a large
shift of the systems’ parameters with a serious reduction in overall fitness. Lower
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Figure 3. Evolution and learning in a typical simulation of the basic system. Appropriate
initial weights and learning rates evolve quite quickly (a, b), and these result in good
weights at each age (c, d). The remaining ranges of individual differences (e) vary between
the four weights depending on how crucial each is to the fitness, and on how quickly they
are optimized by the learning. Individuals in the evolved population have plasticities that
fall rapidly between birth and the end of their maturation period (f).
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learning rates in this situation will allow smoother optimal parameter estimation
and more consistently good responses in a varied environment.

The results from the basic system naturally lead to the question of what hap-
pens if an individual does need to be able to learn or adapt later in life, after the
standard learning period is over. For example, a human might need to adapt to new
prescription spectacles, or a robot may need to adjust because a particular compo-
nent invariably wears out and gets replaced after a certain number of years. There
is a traditional saying that ‘old dogs cannot learn new tricks’, but it seems unlikely
that evolution would allow the plasticities to decay away to very small values in
situations where late life adaptation is regularly required. To investigate this, three
representative forms of late life change were inflicted on the model’s output scale
factor. There is no need to specify whether this variation corresponds to an internal
factor (such as the need to compensate for system deterioration or damage) or an
external factor (such as the need to adapt to changes in the operating environment),
since they will have the same effect.

The simplest case to analyse is when there is always the same adaptation needed
at a particular age. To introduce such a requirement, the basic model was modified
so that there was a sudden step in the output scale factor from 1.0 to 0.75 at the age
of 20. (The precise details of this variation are not crucial to the general pattern of
results obtained.) Figure 4 shows how this changes the simulation results from those
of the basic model in figure 3. The most direct consequence is in the graph (c) of
W P(t) where we see that the required step change at age 20 is learned successfully
and quickly. We also see a corresponding local peak in the individual differences
graph (e) bought about by variations in the speed of the adaptation process. The
plot (f) of the plasticity scale factor s(t) shows the same initial fall as before, but
then a peak to give the increased plasticity required at the age of 20. This gives us
confidence that our evolutionary simulations really are picking up the requirement
for plasticity, and not some confounding factor.

Obviously, the need for real late-life adaptation will rarely be so predictable,
and so a second set of simulations was carried out in which the sudden change
in output scale factor occurred at random ages after the end of the maturation
period. Figure 5(a) shows that in this case the previous peak in increased plasticity
becomes spread out over all ages so that each individual is able to adapt whenever it
is required. The plot of W P against age clearly includes some individuals that have
not yet experienced the need to adapt, and some who have successfully adapted.
The level of late life plasticity here is sufficient, but still somewhat lower than the
peak in figure 4(f), suggesting that suffering a slower adaptation when needed is
being balanced against having too much plasticity when it might not be.

The third form of late-life adaptation considered involved the need to respond
to a gradual change in the output scale factor from maturation till death. This
might correspond to gradual plant deterioration in biological or robotic systems.
The simulation results presented in figure 5(b) show that a reduced level of late-life
plasticity is again sufficient to cope with the level of adaptation required here. It
seems safe to conclude that, despite the tendency to evolve plasticities that fall
rapidly between birth and the end of the maturation period, our models can deal
appropriately with the need for late life adaptation.

The third and final situation we shall consider here, that often arises in biological
development, is when one level of processing is highly dependent on signals coming
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Figure 4. Evolution and learning in a typical simulation when late-life adaptation is re-
quired suddenly and predictably at age 20. Again the initial weights and learning rates
evolve quickly and appropriately (a, b) to result in good weights at each age (c, d). Evolu-

tion here produces individuals in the final population with plasticities appropriate for the

learning or adaptation that is forced upon them, with a peak around the age of 20 that
enables them to cope efficiently with the changes required at that age (f).
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(b) Gradual adaptation required from age 10 onwards.

Figure 5. Age dependencies of parameter W P and plasticity when different forms of late
life adaptation are required.

from another sub-system. If the sub-system supplying those signals is not fully
functional, it might be sensible to wait until it is before beginning to learn how to
use its signals. For example, the adult human vergence (eye rotation) system uses
an image disparity signal, and humans have to wait until 12-16 weeks of age before
that signal relatively suddenly becomes available. A robotic system may similarly
have to wait until its sensors have been properly calibrated for its environment. To
simulate such effects in our basic model, the error signal was replaced by low-level
noise for each individual until they reached three years of age.

Figure 6 shows how this affects the standard results of figure 3. The changes
here are rather clear. First, we see in graph (a) that the initial/innate weights W1,
WP and WT all drop to very low values, leaving the system with an appropriate
constant output driven by the bias W B, and no interference from the noisy input
signal. Interestingly, this kind of constant response is actually observed in the ac-
commodation (eye focusing) of new-born humans (Hainline, Riddell, Grose-Fifer &
Abramov, 1992). Naturally, the initial learning rates shown in graph (b) are also
all very low, because learning from noise is obviously not a good strategy, but the
plasticity scale factor s(t) seen in graph (f) evolves to ensure that the plasticities
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Figure 6. Evolution and learning in a typical simulation when there is a dependency on
the development of lower level sub-systems. Here, relatively low values emerge for the
initial weights (apart from the bias W B) and initial learning rates (a, b), so that the
system avoids processing or learning from signals that are just noise (c, d). This results in
a population of individuals with critical periods for learning starting around age three (f),
and a correspondingly different profile of individual differences (e).
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rise quickly to coincide with the onset of the useful input signal at the age of three.
By the age of seven, the system has caught up with the performance levels of fig-
ure 3 as seen by the parameter values in graphs (¢) and (d). In graph (e) we see
that there are increased ranges of individual differences during the learning period,
but once again our biological-style evolutionary approach leads to sensible patterns
of initial parameters and plasticity variations.

7. Robustness of the results

As with all modelling endeavours, it is important to test the robustness of the
results with respect to the implementational details. The choice of representation
for the parameters is often a crucial factor. For the current study, the weights and
learning rates are reasonably straightforward, but the encoding of the plasticity
scale factor s(t) is something we need to be particularly careful about. If each point
{s(t): t =1,..., N} defining the piece-wise linear function were simply allowed to
evolve in isolation in the same manner as the initial weights and learning rates, we
would actually end up with the rather noisy results shown in figure 7. We get the
same general pattern of critical periods for learning, but there is a noticeable lack
of smoothness.

Biological systems will generally have their plasticity controlled by physical or
chemical processes which are likely to contribute to smoothing of the plasticity time
variations, and they also have overheads that will discourage plasticity when it is
not necessary. In our simplified models, or artificial systems, the plasticity is more
likely to be just another software parameter with no additional constraints, unless
we build some in explicitly. As we have already noted, there are individual perfor-
mance advantages that should keep the curves smooth, and reduce any unnecessary
plasticity, but these are rather weak and tend to get lost in the noise of our rather
coarse simulations. We see from figure 7 that this is particularly apparent in indi-
viduals over the age of about ten. The weakness is partly due to the error signals
being relatively low anyway after the maturation period is complete, and partly
because it will be relatively unimportant if the fitness starts decreasing again after
a number of children have already been produced, or if the majority of individuals
normally die before reaching that age.

Fortunately, we can compensate for these limitations by introducing some simple
variations into the plasticity scale factor mutations. First, we can prevent unneces-
sary plasticity, which will quite likely have an intrinsic cost in biological systems, by
allowing mutations which set random points s(t) to zero. Then, since it is unlikely
to be efficient for any system to have s(t) varying wildly with age, it is reasonable
to encourage smoothness of s(t) by allowing mutations which swap the values of
random adjacent points s(¢) and s(t + 1). The standard procreation processes will
then tend to convert them to local average values after several generations. It was
these natural mutations which turned noisy and relatively inefficient results like
those of figure 7 into the smooth and efficient results seen in figures 3, 4, 5 and 6.
They clearly do not prevent high plasticity or sharp variations in plasticity when
they are needed, but they do discourage them when they are not.

Another detail that one should always check for is any significant dependence
on the evolutionary initial conditions. Such dependencies on initial conditions are
well known to be widespread in systems, such as neural networks, which learn how
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Figure 7. Plasticity scale factors arising in typical runs that employed a slightly different
implementation to that used for figures 3 and 6. Although the general patterns of age
dependence are the same, they are considerably noisier.

to perform (e.g. Kolen & Pollack, 1991). Here we started with a diverse population
of initial weights and learning rates because an earlier systematic study of a similar
control system (Bullinaria, 2001a) indicated that this approach tends to lead to the
fastest and most reliable evolution. Figure 8 demonstrates how this factor affects the
results by plotting the initial (newborn) and final (adult) distributions of a typical
parameter as the system evolves. Graph (a) shows the situation for the approach
described above — the initial weights quickly settle around an appropriate value
but have quite a wide distribution as a result of all the noise in the procreation
process. Learning, which is available from the outset, allows individuals to adjust
their weights during their maturation period so they end up with the somewhat
narrower distribution of appropriate adult values.

In graph (b) we see that starting with very low (near zero) initial weights and
learning rates tends to result in good general purpose weights evolving very quickly,
and then the ability to adapt the weights to coincide appropriately with maturation
emerges somewhat later (after about 30000 years in this particular simulation).
Graph (c) shows that starting the evolution with a wide distribution of learning
rates, but low initial weights, results in the initial weights being much slower to
evolve to sensible values because the individuals are able to cope reasonably well
by learning from any initial weights. In this case it takes some time for the cost of
learning to cause the initial weights to drift into their optimal values (about 10000
years in this particular simulation). This last case provides a clear and explicit
demonstration of how the genetic assimilation of learned behaviour (i.e. learned
parameter values) can occur automatically, without Lamarckian inheritance, to
reduce the inherent costs of learning (i.e. periods of poor performance).

One might wonder if the ability to learn or adapt will still evolve in the absence
of the strong driving force that results from the need to compensate for maturation.
Graph (d) in figure 8 arises in the case where there is no maturation, and the initial
population has very small values for both the initial weights and learning rates. Not
surprisingly, the initial and adult weight values are now both distributed around
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Figure 8. The variability across the population of the newborn and adult values of the
weights W I throughout the evolutionary process. Graph (a) corresponds to the basic
model described above. Then graph (b) shows what happens if the initial population all
have very small initial weights and learning rates, rather than a wide range of values. If
the initial population has very small values for the initial weights, but a large distribution
of learning rates, we end up with the situation in graph (c). Finally graph (d) shows what
happens when the system has no maturation to compensate for.

the same appropriate values, but still the ability to learn evolves to enable the wide
initial weight distribution to be narrowed quickly so that all individuals are close
to the most appropriate weight values for good performance.

In the above we have seen how the evolutionary initial conditions affect the
speed of evolution, but they have little effect on the final evolved population. In
more complex systems, however, there may be many local maxima in the fitness with
respect to the system parameters, and the evolutionary initial conditions may also
affect where the population ends up. In particular, we may not necessarily arrive
at the most fit system possible. A preliminary investigation into this problem has
already been carried out (Bullinaria, 2001a). The simple control system of figure 1
was augmented by an additional open loop input that injects an approximate burst
signal into the system whenever there is a step change in required response. Such
an approach is often used by biological systems to get them into the range where a
feedback signal is available. In human oculomotor control, for example, there is a
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point at which the disparity between the images from the two eyes becomes too large
to allow the computation of an error signal, but some estimation of object distance
generates an open loop signal that brings the system into range. For robots, an
object might be too far away for a particular sensor to provide a reliable feedback
signal, but some other information may be available to provide an appropriate open
loop signal. In simulations of this situation, particular properties of the environment
allowed the parameter determining the strength of the open loop signal, and the
bias parameter, to be able to compensate partially for each other. Their evolved
values tended to depend on the starting points of the evolution, and have much
larger ranges of individual differences than usual. Such compensatory effects are
likely to become increasingly common as we scale up to systems of ever increasing
complexity and redundancy.

Making sure that the population starts and remains diverse enough to explore all
the potential local fitness maxima will be an additional challenge for this approach
if we are aiming to create the best possible artificial systems. With biological sys-
tems modelling, on the other hand, we may have to constrain carefully the diversity
in order to take account of known evolutionary history. For example, the accom-
modation and vergence systems in human oculomotor control are both feedback
control systems like figure 1, one primarily driven by blur, and the other primarily
driven by disparity. However, blur and disparity both depend on the distance of
the visual target and are consequently highly correlated. This makes it potentially
useful for cross-links to develop (or evolve) between the two systems, especially if
one happens to be faster or more reliable than the other under certain conditions.
It is quite likely, though, that accommodation evolved much earlier than vergence
(Horridge, 1987; Fernald, 2000), and so there may be more of a natural tendency
for accommodation to drive vergence than vice versa. We know empirically that
there are actually wide ranges of individual differences in these cross links in hu-
mans, and that they are likely to be crucial when it comes to problems arising from
using non-standard viewing devices. Clearly we must exercise some care to deal
appropriately with these issues.

The fact that we need not, and probably should not, constrain our evolved
robotic systems to match known biological evolutionary history, is one area where
our robotic systems have the potential for performing even better than the corre-
sponding human systems.

8. Conclusions

In this paper I have demonstrated how allowing populations of simple adaptable
control systems to evolve by natural selection can produce individual systems that
are able to perform and adapt efficiently under a range of conditions. A Baldwin
(1896) type interaction between learning and evolution results in the emergence of
appropriate innate values for each parameter in the system, along with appropriate
(different) learning rates for each parameter. We also observe a natural propensity
for the evolution of leaning rates (plasticities) that vary sensibly with age, quite
independently of any physical overheads of the plasticity. These are able to cope well
with normal maturation, when late-life adaptation is required, and when there are
dependencies on the prior development of other sub-systems. Ranges of individual
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differences arise naturally, and we can see how these relate to the redundancy in
the corresponding parameters.

This whole approach was originally motivated by the need to build realistic
models of human/biological systems, consistent with the well known ‘critical peri-
ods’ of human brain development, nature versus nurture distinctions, and patterns
of individual differences. However, all the indications are that such an evolutionary
approach will also prove a profitable strategy for obtaining improved performance
in systems for larger scale real world applications requiring adaptable controllers
— such as robotics. By appropriate weakening of the constraints of biological evo-
lution, or enforcement of additional performance or reliability constraints, we may
even be able to use this approach to produce systems superior to those found in
nature.
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