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Abstract. The Vehicle Routing Problem with Time Windows involves
finding the lowest-cost set of routes to deliver goods to customers, which
have service time windows, using a homogeneous fleet of vehicles with
limited capacity. In this paper, we propose and analyze the performance
of an improved multi-objective evolutionary algorithm, that simultane-
ously minimizes the number of routes, the total travel distance, and the
delivery time. Empirical results indicate that the simultaneous minimiza-
tion of all three objectives leads the algorithm to find similar or better
results than any combination of only two objectives. These results, al-
though not the best in all respects, are better in some aspects than all
previously published approaches, and fully multi-objective comparisons
show clear improvement over the popular NSGA-II algorithm.

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most important and widely
studied combinatorial optimization problems, with many real-world applications
in distribution and transportation logistics. It has several variants that take
into account different constraints. The variant with Time Windows (VRPTW)
is particularly relevant to practical applications, and considers vehicles with
limited capacity and specific delivery time windows. Its objective is to obtain
the lowest-cost set of routes to deliver demand to customers. Since the problem
was originally formulated as a generalization of the Traveling Salesman Problem,
cost has primarily been associated with the number of routes and travel distance,
but there are several other types of cost [1].

In particular, companies offering transportation services are often more in-
terested in reducing the overall delivery time (or driver salary cost), than the
overall distance traveled (or fuel cost), and there are likely to be trade-offs be-
tween them. For the standard VRP, if one assumes a constant vehicle velocity,
then counting distances and times are equivalent, but that is not true for the
VRPTW because of the time wasted due to arriving before delivery windows.
The optimization process needs to produce a set of non-dominated solutions that
represent the trade-offs between the objectives, rather than a single solution.

Exact methods can be used to find optimal solutions for small instances of the
VRPTW, but the computation time required increases considerably for larger
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instances [2]. We are therefore interested in using heuristics to solve this problem,
in particular, an Evolutionary Algorithm (EA) that automatically generates a
whole population of solutions that cover the full range of trade-offs.

There are many past studies that have solved the VRPTW as a single-
objective problem using heuristics. Bräysy and Gendreau [3, 4] provide an excel-
lent survey of them, and Bräysy et al. [5] focus on evolutionary approaches.

Other studies have considered the bi-objective optimization of the VRPTW,
using an EA to minimize the number of vehicles and the travel distance. Tan
et al. [7] used the dominance rank scheme to assign fitness to individuals, and
designed a problem-specific crossover operator and multi-mode mutation oper-
ator. They also considered three local search heuristics. Ombuki et al. [8] used
a Pareto ranking method to assign fitness and proposed further crossover and
mutation operators. Finally, our own earlier study [9] incorporated a similarity
measure in a Bi-objective Evolutionary Algorithm (BiEA) to select parents for
the recombination process in a way that preserved a higher population diversity
[10], and that enabled a better set of solutions to be obtained.

The work presented here is an improvement of the BiEA proposed in the last-
mentioned study, minimizing not only the number of routes and travel distance,
but also the delivery time. We analyze the results and compare them with those
from previous algorithms, and introduce improved comparisons with the popular
NSGA-II algorithm [6] using fully multi-objective performance metrics.

The remainder of this paper is organized as follows: The next section de-
scribes formally the VRPTW, and Section 3 reviews the two multi-objective
performance metrics that are used to compare algorithms. Our proposed EA
for solving the VRPTW as a multi-objective problem is described in Section 4.
Then Section 5 presents the results from our algorithm, as well as comparisons
with others already published. Finally, we give our conclusions in Section 6.

2 The VRP with Time Windows

Formally, the VRPTW is defined as a set V = {0, . . . , N} of vertices. Vertices in
subset V∗ = V \ {0} = {1, . . . , N} are called customers. Each customer i ∈ V∗ is
geographically located at coordinates (xi, yi), has a demand of goods gi > 0, a
time window [bi, ei] during which it has to be supplied, and a service time si is
required to unload its goods. The special vertex 0, called the depot, is positioned
at (x0, y0), has time window [0, e0 > max {ei : i ∈ V∗}], and demand g0 = 0.
It is from the depot that the customers are serviced by a homogeneous fleet
of vehicles with capacity Q ≥ max {gi : i ∈ V∗}. The problem is to design a
lowest-cost set of K routes R = {r1, . . . , rK}, such that each route begins and
ends at the depot, and each customer is serviced by exactly one vehicle.

The travel between vertices i and j has various associated costs, such as the
distance dij and travel time tij . For the standard benchmark problems to be
considered later, one assumes unit velocity and direct travel, so the times and
distances are both simply taken to be the Euclidean distances. For real-world
problems, however, the distances dij are unlikely to be Euclidean and the travel
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times tij are unlikely to be simply related to the distances. The following will
take care to accommodate those possibilities.

Suppose rk = 〈u(1, k), . . . , u(Nk, k)〉 specifies the sequence of Nk customers
supplied in the k-th route, where u(i, k) is the i-th customer to be visited in route
k, and u(0, k) = u(Nk +1, k) = 0 is the depot. Then V∗

k = {u(1, k), . . . , u(Nk, k)}
is the set of customers in route k, and the total travel distance for that route is

Dk =
∑Nk

i = 0 du(i,k)u(i+1,k) . (1)

In addition to the distances, the times are also needed. Let vehicle k leave the
depot at time 0, a(u(i, k)) denote its arrival time at the i-th customer, and
l(u(i, k)) be the time it leaves. The arrival time at the i-th customer is then

a(u(i, k)) = l(u(i− 1, k)) + tu(i−1,k)u(i,k) . (2)

Arriving after the end of the customer’s time window is simply not allowed. If
the vehicle arrives early at the i-th customer’s location, it has to wait until the
beginning of the customer’s time window before it can start unloading, so the
departure time l(u(i, k)) will be the maximum of the arrival time a(u(i, k)) and
window opening time bu(i,k), plus the unloading time su(i,k). Consequently, the
waiting time w(u(i, k)) involved in serving the i-th customer will be

w(u(i, k)) = max
(

0, bu(i,k) − a(u(i, k))
)

. (3)

Thus the departure time from the i-th customer in route k can be written as

l(u(i, k)) = a(u(i, k)) + w(u(i, k)) + su(i,k) , (4)

and the total time required to complete route rk is the arrival time at the depot

Tk =
∑Nk

i = 0

(

tu(i,k)u(i+1,k) + w(u(i + 1, k)) + su(i+1,k)

)

. (5)

There are three VRPTW objective functions fi that we shall concentrate on
minimizing in this paper, namely the number of routes or vehicles (f1), the total
travel distance (f2), and the total delivery time (f3), computed as follows:

f1(R) = |R| = K , f2(R) =
∑K

k=1 Dk , f3(R) =
∑K

k=1 Tk , (6)

subject to the demands in each route rk not exceeding the vehicle capacity, i.e.

Gk =
∑

i ∈ V∗

k

gi ≤ Q , (7)

and no arrival times after the customer’s window ends, i.e.

a(u(i, k)) ≤ eu(i,k) ∀ i = 1, . . . , Nk , ∀ k = 1, . . . , K . (8)

The simultaneous minimization of all three objectives is not usually possible, so a
set of non-dominated solutions needs to be obtained, each better than the others
on at least one objective. In contrast to single-objective problems, where one can
simply compare the best solutions from the various approaches studied, multi-
objective problems have to compare whole sets of solutions. For this reason, the
definition and use of multi-objective performance metrics is crucial.
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Fig. 1. Representation of MC and MD. Fig. 2. Reallocation mutation operator.

3 Multi-objective performance metrics

Two existing metrics are particularly applicable to the problem at hand.
The coverage metric MC [11] compares the number of solutions in set B that

are covered by (i.e. dominated by or equal to) solutions in set A to the cardinality
of B. Thus, MC(A,B) maps the ordered pair (A,B) to the interval [0,1], as the
fraction of solutions in set B that are covered by solutions in set A:

MC(A,B) = 1
|B| |{b ∈ B : ∃ a ∈ A, a � b}| , (9)

where the relation a � b means that a is at least as good as b for all the
objectives, and a is strictly better than b for at least one objective.

The convergence metric MD [12] measures the distance between the approx-
imation set A and a reference set R. The convergence MD(A,R) is defined as

MD(A,R) = 1
|A|

∑

i∈A di , (10)

using the smallest normalized Euclidean distance from each point i ∈ A to R

di = min
j ∈ R

√

√

√

√

F
∑

k=1

(

fk(i) − fk(j)

fmax
k − fmin

k

)2

, (11)

where fmax
k and fmin

k are the maximum and minimum function values of the
k-th objective function in R.

The idea is that the algorithm with the best performance is the one which
provides solutions with the largest coverage of the other non-dominated sets and
the minimum distance to the reference set. Figure 1 presents a simple example
with MC(A,B) = 3/5 better than MC(B,A) = 2/6, and the average distance
from points in set A to the reference set smaller than that for the points in B.
So, the algorithm producing A is deemed better than that producing B.

4 Multi-objective EA for VRPTW

Our proposed Multi-Objective EA (MOEA) involves selection, cross-over and
mutation as in most EAs, and uses a simple list-based encoding. The main
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Fig. 3. Exchange mutation operator. Fig. 4. Reposition mutation operator.

novel characteristic is the implementation of a similarity measure to preserve
population diversity. This is based on the Jaccard’s similarity coefficient, which
measures how similar two sets are as the ratio between the number of com-
mon elements and the total number of elements. We adapted this metric to the
VRPTW for our earlier BiEA [9] by treating each solution as a set of arcs, and
used it to calculate the average similarity between each solution in the popu-
lation and every other solution. The MOEA here differs from the BiEA in its
improved mutation stage, and in dealing with more than two objectives.

A dominance depth criteria [6] is used to assign fitness to solutions, by which
individuals are grouped into non-dominated fronts and the relative depth of
the front defines the fitness. Then in the recombination stage, a tournament
selection is used to choose the first parent according to fitness as usual, but the
second parent is selected on the basis of lowest similarity measure. Afterwards,
the recombination process is designed to preserve routes from both parents.

The mutation involves the use of three basic functions: (i) selectRoute()

stochastically selects a route according to the largest ratio between the travel
distance and the number of customers, (ii) selectCustomer() stochastically
selects one customer from a specific route according to the longest average length
of its inbound and outbound arcs, and (iii) insertCustomers() tries to insert
a set of customers, where the lowest travel distance is obtained, into any specific
route, or all existing routes. The last two functions are used by the operators:

• Reallocation - Takes a random sequence of customers from a given route and
reallocates them to other existing routes, as illustrated in Figure 2.

• Exchange - Swaps a sequence of customers between two routes if that is pos-
sible, as illustrated in Figure 3.

• Reposition - Selects one customer from a specific route and reinserts it into
the same route, as illustrated in Figure 4.

Two routes are first chosen using selectRoute(). If they are the same, the
Reallocation operation is performed, otherwise the Exchange operator is. Then
selectRoute() selects another route and the Reposition operator is carried out.
Finally, the parent and offspring populations are combined and fitness levels
assigned, and the individuals with highest fitness form the next generation.
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5 Experimental study

Our study has three purposes: First to determine whether the minimization of
delivery time has any effect on the performance of the algorithm on minimizing
the number of routes and travel distance. Second, to test how well our improved
MOEA performance compares with previous approaches. Finally, to perform a
direct fully multi-objective comparison of MOEA with NSGA-II [6].

To carry out controlled experiments, we used the standard benchmark set of
Solomon [13] that includes 56 instances of size N = 100 categorized as clustered
(C1, C2), random (R1, R2), and mixed (RC1, RC2). Tan et al. [7] found that
categories C1 and C2 have positively correlating objectives, but the majority of
the instances in categories R1, R2, RC1 and RC2 have conflicting objectives.

We ran our algorithm and NSGA-II 30 times for each problem instance. The
parameters of our algorithm were set to values that have proved to work well
in preliminary testing: population size = 100, number of generations = 500,
tournament size = 2, crossover rate = 1.0, and mutation rate = 0.1.

5.1 Minimization of the delivery time

The first aim was to analyze the performance of our MOEA with different ob-
jective settings, to test the effect of the additional delivery time objective. The
number of routes (R), travel distance (D) and delivery time (T) were first set
to be minimized in pairs, giving three objective settings (RD, RT and DT), and
then all three of them were minimized together (RDT).

To use the coverage metric, for each setting and instance, the outcome set of
non-dominated solutions after each of the 30 repetitions was recorded. Then, for
each given instance and ordered pair of settings X and Y, MC(Xi, Yj), ∀ i, j =
1, . . . , 30 were computed for the three-objective space, that is 900 MC values. The
average of these MC values over the instances in each category are presented in
Table 1, and in brackets are the numbers of instances for which the result is sig-
nificantly better than the reverse case (determined by a t-test at 0.05 significance
level). For categories C1 and C2, despite all four settings having a high coverage
of each other, DT and RDT have a higher coverage of RD and RT. Otherwise,
the coverage of RT, DT and RDT by RD is low (≤ 14%), and the coverage of
RD, DT and RDT by RT is nearly zero. The most interesting cases are settings
DT and RDT, as their coverage of RD and RT is much higher. Between them,
the coverage of DT by RDT is significantly larger than the inverse case in more
instances than the inverse case, despite similar average coverages.

To apply the convergence metric, for each instance and objective setting,
the overall non-dominated solutions were extracted from the 30 non-dominated
sets, and composite non-dominated reference sets R in the three-objective space
were generated. Then, for each setting X, MD(Xi,R) was computed for all i =
1, . . . , 30. The averages of these MD values over the instances in each category
are presented in Figure 5. It can be seen that, in general, solutions from settings
RD and RT are the farthest from the reference set, while those from DT and
RDT are the nearest.
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Table 1. Coverage metric values, averaged over instance categories, for solutions ob-
tained with MOEA settings RD, RT, DT and RDT. In brackets are the numbers of
instances for which the result is significantly better than the reverse case.

Obj. Covers C1 C2 R1 R2 RC1 RC2

RD
RT 0.87 (6) 0.64 (3) 0.04 (6) 0.01 (1) 0.05 (4) 0.02 (2)
DT 0.82 (1) 0.72 (0) 0.08 (1) 0.11 (4) 0.14 (0) 0.08 (0)
RDT 0.82 (1) 0.72 (1) 0.08 (1) 0.11 (3) 0.13 (0) 0.08 (1)

RT
RD 0.68 (0) 0.55 (1) 0.01 (2) 0.00 (0) 0.01 (2) 0.01 (0)
DT 0.68 (0) 0.63 (0) 0.03 (0) 0.04 (0) 0.06 (0) 0.02 (0)
RDT 0.68 (0) 0.62 (0) 0.04 (0) 0.03 (0) 0.07 (0) 0.03 (0)

DT
RD 0.91 (2) 0.90 (3) 0.31 (11) 0.14 (5) 0.36 (8) 0.21 (6)
RT 0.97 (5) 0.92 (4) 0.49 (12) 0.42 (11) 0.46 (8) 0.48 (8)
RDT 0.91 (2) 0.88 (2) 0.43 (4) 0.40 (4) 0.42 (2) 0.42 (3)

RDT
RD 0.89 (3) 0.91 (3) 0.32 (11) 0.16 (6) 0.38 (8) 0.23 (7)
RT 0.97 (6) 0.93 (3) 0.52 (12) 0.44 (11) 0.49 (8) 0.44 (8)
DT 0.89 (2) 0.89 (1) 0.44 (5) 0.43 (5) 0.46 (6) 0.41 (3)

C1 C2 R1 R2 RC1 RC2
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Fig. 5. Convergence metric values, averaged over instance categories, for solutions ob-
tained with MOEA settings RD, RT, DT and RDT.

Even though DT and RDT produce similar results for the convergence metric,
we can conclude that, considering both metrics, setting the MOEA to minimize
all three objectives does lead to better non-dominated solutions. Consequently,
the solutions from the RDT case will be used for all the following analyses.

5.2 Comparison with previous studies

Although previous studies have considered the VRPTW as a multi-objective
problem, they have not presented their results in a multi-objective manner, and
have only shown averages of their best results. So the averages of our best re-
sults are now compared with those previous studies, before performing proper
multi-objective comparisons with NSGA-II. Table 2 presents the average num-
ber of routes and travel distances from MOEA, and those from three previous
multi-objective studies. For each instance, all the solutions in the resulting non-
dominated set are taken from all repetitions, and the average for each objective
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Table 2. Numbers of routes (upper figures) and travel distances (lower figures), aver-
aged over categories, for the best solutions found in past studies and by our MOEA.

Algorithm C1 C2 R1 R2 RC1 RC2 Accum.

Tan et al. [7] 10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ombuki et al. [8] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

BiEA [9] 10.00 3.00 12.50 3.18 12.38 4.00 430.00
830.64 589.86 1191.22 926.97 1349.81 1080.11 56125.35

MOEA 10.00 3.00 12.83 3.82 12.63 4.38 446.00
828.38 589.86 1191.30 916.32 1349.24 1060.80 55829.68

% diff. R 0.00 0.00 2.67 20.00 2.02 9.38 3.72
% diff. D 0.00 0.00 0.33 2.61 0.00 3.46 0.16

is computed. Then, these are averaged over each category. For each algorithm
and category is shown the average number of routes (upper figure) and the aver-
age travel distance (lower figure). The last column (Accum.) presents the total
average number of routes and travel distance for all 56 instances. The last two
rows show the percentage difference between the results from MOEA and those
from the method that obtained the lowest value for each objective.

For categories C1 and C2, that do not have conflicting objectives, our MOEA
achieved similar results to the previously published studies. The lowest number
of routes for the other categories, as well as the accumulated, was obtained by our
BiEA [9], but MOEA found solutions with lower travel distances for categories
R2, RC1 and RC2, and accumulated. Solutions from Tan et al. [7] have the
lowest travel distance for category R1, where results from MOEA are 0.33%
higher, and Ombuki et al. [8] obtained the shortest distances for categories R2
and RC2, and accumulated, where results from MOEA are 2.61%, 3.46%, and
0.16% higher, but have smaller numbers of routes. Finally, travel distances from
MOEA for category RC1 are the shortest. These results show that, overall,
MOEA’s performance is comparable to the previously published algorithms.

5.3 Comparison with NSGA-II

Simple averages as in Table 2 are often misleading, so our results are now ana-
lyzed using the multi-objective coverage and convergence performance metrics to
compare the non-dominated solutions from MOEA with those from NSGA-II [6].
For a fair comparison, the NSGA-II implementation used the same solution rep-
resentation, with the same crossover and mutation operators, as MOEA. The dif-
ference lies in the fact that MOEA makes use of solution similarity, while NSGA-
II utilizes the crowding distance which does not involve any routing information
at all. The coverages MC(MOEAi, NSGA-IIj) and MC(NSGA-IIj , MOEAi) were
determined as described above, and then the convergences MD(MOEAi,R) and
MD(NSGA-IIi,R) were computed using a combined reference set R of solutions
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Table 3. Coverage (upper figure) and convergence (lower figure), averaged over in-
stance categories, for solutions obtained with NSGA-II and MOEA. In brackets are
the numbers of instances which are significantly better than the other approach.

Algorithm C1 C2 R1 R2 RC1 RC2

NSGA-II
0.81 (0) 0.87 (2) 0.14 (0) 0.37 (4) 0.13 (0) 0.35 (0)

25.06 (0) 4.88 (0) 51.56 (0) 49.81 (0) 72.21 (0) 67.17 (0)

MOEA
0.93 (4) 0.88 (2) 0.78 (12) 0.41 (5) 0.80 (8) 0.45 (7)

12.20 (3) 5.07 (0) 27.89 (12) 50.67 (0) 33.91 (8) 65.86 (1)

obtained from both algorithms. Table 3 shows the average MC (upper figure)
and MD (lower figure) over the instances in each category, and the number of
instances significantly better than the other algorithm (in brackets).

Both algorithms show similar coverage for categories C1 and C2, but MOEA
has significantly higher coverage of NSGA-II in more instances. For C1, solutions
from MOEA are closer to R on average, and for three instances are significantly
better than NSGA-II. For C2, solutions from NSGA-II are are closer to R on
average, but no instances have significant differences. For all instances in cate-
gories R1 and RC1, solutions in the non-dominated sets found by MOEA have a
significantly higher coverage of those obtained by NSGA-II, and are also signifi-
cantly nearer to R. For category R2, MOEA has a significantly higher coverage
in five instances, and NSGA-II is significantly higher in four, while both show
similar distances to R. Finally, for category RC2, MOEA has a significantly
higher coverage in seven instances, despite both algorithms having similar aver-
age distance to R. Overall then, it can be concluded that our new MOEA, with
its similarity-based second parent selection, performs significantly better than
NSGA-II, and this is particularly clear for categories R1 and RC1.

6 Conclusions

We have proposed and analyzed the performance of our new Multi-Objective
EA (MOEA) for solving the multi-objective VRPTW, which is an improvement
of our earlier Bi-objective EA (BiEA) [9] that introduced similarity-based selec-
tion to enhance solution diversity. This involved improved mutation operators,
improved analysis using fully multi-objective performance metrics, and perfor-
mance testing for a third objective, namely the delivery time (T), in addition to
the previously studied number of routes (R) and travel distance (D).

We tested four different objective settings: first minimizing pairs of objec-
tives (RD, RT and DT), and then all three at once (RDT). The coverage and
convergence performance metrics were used to evaluate the algorithm, showing
that settings DT and RDT have a higher coverage of RD and RT, and their solu-
tions are closer to a composite reference set, indicating that the minimization of
the delivery time improves the algorithm’s performance. Moreover, RDT covers
DT in more instances, which implies that even better results can be obtained by
considering the minimization of all three objectives at the same time.
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Averages of the non-dominated sets found by our MOEA with setting RDT
were compared with previous studies, and, although not better in all respects,
MOEA is better in some, and competitive on average. Significantly, using fully
multi-objective coverage and convergence metrics to compare the MOEA against
the well-known evolutionary multi-objective optimizer NSGA-II showed that the
solutions found by MOEA are better for almost all instance categories.

Given the promising performance of our algorithm, we are now looking at the
possibility of optimizing even more objectives (such as route balance [1]), and
pursuing the comparison of our results with other multi-criterion optimization
methods and further multi-objective performance metrics.

7 Acknowledgments

The first author acknowledges support from CONACYT (Scholarship 229168).

References

1. Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems.
Eur. J. Oper. Res. 189(2) 293–309 (2008)

2. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Oper. Res. 40(2) 342–354 (1992)
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