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Abstract- Gradient descent training of sigmoidal feed-forward
neural networks on binary mappings often gets stuck with some
outputs totally wrong.  This is because a sum-squared-error cost
function leads to weight updates that depend on the derivative of
the output sigmoid which goes to zero as the output approaches
maximal error.  Although it is easy to understand the cause, the
best remedy is not so obvious.  Common solutions involve
modifying the training data, deviating from true gradient
descent, or changing the cost function.  In general, finding the
best learning procedures for particular classes of problem is
difficult because each usually depends on a number of
interacting parameters that need to be set to optimal values for a
fair comparison.  In this paper I shall use simulated evolution to
optimise all the relevant parameters, and come to a clear
conclusion concerning the most efficient approach for learning
binary mappings.

I.  INTRODUCTION

It is inevitable that the most efficient neural network learning
algorithm for a given problem will depend on the problem
class being considered.  Simple gradient descent based
learning algorithms using sum-squared-error cost functions
work well for a wide range of problems, but are well known
to run into difficulties when used with sigmoidal feed-
forward neural networks that need to learn binary mappings.
This is because the weight updates depend linearly on the
derivative of the output activation function, and for sigmoidal
activation functions that derivative tends to zero as the
sigmoids saturate at either the correct or the maximally
incorrect output.  This means it is theoretically possible for
the network to get stuck with some outputs totally wrong, and
in practice this is actually quite common in realistic
applications.  Early on in training some patterns (e.g. the
most regular or frequent) will dominate the weight changes
and force the other patterns into errors.  By the time the errors
on the dominant patterns have reduced to small values, the
other patterns are stuck.  We could consider abandoning the
sigmoids and use linear output units instead, but then we
would lose the natural interpretation of the outputs in terms of
posterior probabilities (e.g. Golden, 1988; Bishop, 1995).

Perhaps the most obvious solution that keeps the
sigmoids, which dates back to the re-discovery of the back-
propagation learning algorithm, is to simply offset the target
outputs (Rumelhart, Hinton & Williams 1986).  Instead of
using the actual binary targets of 0 and 1, one offsets them

slightly to 0.1 and 0.9 (say) so the sigmoids never saturate
and the weight update signals no longer go to zero when the
wrong target is reached.  We effectively restrict the outputs to
the near linear central region of the sigmoids.  If we then set
output response thresholds at 0.2 and 0.8 (say) it will make
no difference to the binary network responses, but it may
have other side effects, such as slowing down the training,
and destroying the interpretation of the output values.

Another early solution to the problem involves offseting
the sigmoid derivatives (a.k.a. sigmoid prime) directly by
adding a small constant (say 0.1) to them (Fahlman, 1988).
This Sigmoid Prime Offset (SPO) approach will clearly
prevent the weight update signals from going to zero when
the wrong target is reached, but it also means that the learning
algorithm is no longer performing true gradient descent on
the cost function, and it is not obvious what effect that will
have on the speed of learning.

It will obviously be rather important for both of these
approaches to choose good values for the offset parameters,
that are large enough to be sure of preventing the outputs
from getting stuck at the wrong values, but small enough to
result in minimal loss of learning efficiency.  Some degree of
experimentation, and perhaps a liking for round numbers, has
led to offsets of 0.1 being more or less standard for all
problems.  However, it is not clear that these really are the
optimal values, nor is it clear which form of offset is best to
use.  The problem is that the best values of the other learning
algorithm parameters (such as the learning rates and
momentum) and the magnitude of the chosen offset will
depend on each other, and also on the type of offset used.

To complicate matters further, another proposed solution
has been to replace the sum-squared-error gradient descent
cost function with the cross-entropy cost function (Hinton,
1989; Van Ooyen & Nienhuis, 1992).  This is known to be a
more appropriate cost function for classification problems
with network outputs that are to be interpreted as specifying
probability distributions over binary vectors (Hinton, 1989;
Bishop, 1995).  In this case the sigmoid derivative simply
cancels out of the weight update equation, and so we never
have the problem of it going to zero for totally wrong outputs.
However, again we have a problem comparing this against
the two offset approaches because the optimal learning
algorithm parameters are likely to be different.

Whichever approach is used to avoid getting stuck with
the wrong outputs, one should presumably then continue the
training with the right cost function and no offsets if we want



to recover the interpretation of non-binary output activations
as probabilities.  Once all the output errors are relatively
small, there is much less chance of patterns being forced back
into error and getting stuck again.  The big question is: which
approach provides the most efficient (i.e. fastest) learning to
get us to that final stage, and how do we determine the
appropriate learning and offset parameters?

We are fortunate that increasing computational resources
have, over recent years, rendered it feasible to optimize such
learning parameters using evolutionary strategies (Yao,
1999), and thus ensure than we are comparing each approach
when performing as best they can.  In the remainder of this
paper I shall describe the Target Offset, Sigmoid Prime
Offset, and Cross Entropy approaches in more detail, and
present the results from a series of evolutionary simulations
that optimize each case for a representative pair of binary
mappings.  We end with a clear conclusion concerning which
approach is best.

II.  THE NEURAL NETWORK MODELS

The procedures for training feed-forward neural networks by
gradient descent are now well known (e.g. Hinton, 1989;
Bishop, 1995), so I shall simply summarize my notation here.
We define an appropriate cost or error function E , and
compute a smoothed iterative series of updates
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for each weight wij which reduce that function, where n is the
epoch of training.  Past experience indicates that networks
learn better if they have different learning rates ηL for each
connection layer, and each bias set.  So, to ensure that each
network learns at its full potential, each has five learning
parameters: the learning rate ηIH for the input to hidden layer,
ηHB for the hidden layer biases, ηHO for the hidden to output
layer, and ηOB for the output biases, and the momentum
parameter α.  The initial network weights wij(0) are generated
randomly with a uniform distribution from the range
[-iwL, +iwL].  Naturally, different initial weight range
parameters iwL are allowed for the input to hidden layer
connections, the hidden layer biases, the hidden to output
layer connections, and the output biases.

With the standard sum squared error (SSE) cost function
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the output layer weight derivatives are
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where tj are the binary target network outputs, oj are the

actual outputs, and hi are the hidden unit activations.  The
term in square brackets is the problematic sigmoid derivative
that goes to zero as the sigmoids saturate.  We thus consider
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where spo2 is the sigmoid prime offset that would be zero if
the derivative were performed exactly.  We can also allow the
possibility of a similar sigmoid prime offset spo1 at the
hidden layer.  The second approach we consider is to offset
the output targets and take them to be toff and 1–toff, rather
than 0 and 1, with appropriate outputs beyond these targets
deemed errorless.

The third approach is to employ a better network cost
function.  For the cross-entropy (CE) cost function
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the output layer weight derivatives simplify to
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Clearly, we should need no offsets here, and indeed there is
no place for an spo2, but we can still check to see if there is
any advantage in having a non-zero spo1 at the hidden layer,
or an output target offset toff.

III.  EVOLVING  THE MODELS

The goal here is to optimise our neural network models using
evolution by natural selection.  We can simulate such a
process for the systems discussed above by taking a whole
population of individual instantiations of each model and
allowing them to learn, procreate and die in a manner
approximating these processes in real (biological) systems.
The genotype of each individual will depend on the
genotypes of its two parents, and contain all the appropriate
innate parameters.  Then, throughout its life, the individual
will learn from its environment how best to adjust its weights
to perform most effectively.  Each individual will eventually
die, perhaps after producing a number of children.

For biological evolution, the ability of an individual to
survive or reproduce will depend on a number of factors
which can vary in a complicated manner on that individual’s
performance over a range of related and unrelated tasks (food
gathering, fighting, fleeing, and so on).  For current purposes
it is appropriate and sufficient to assume a simple relation
between our single task performance and the survival or
procreation fitness.  Whilst any monotonic relation should
result in similar evolutionary trends, we often find that, in
simplified simulations, the details can have a big effect on
what evolves and what gets lost in the noise.



A more natural approach to procreation, mutation and
survival will be followed than many evolutionary simulations
have used in the past, such as those described by Yao (1999).
Rather than simultaneously training all members of the
current population and picking the fittest to breed and form
the next generation, the populations will contain competing
learning individuals of all ages, each with the potential for
dying or procreation at each stage.  The alternative earlier
approaches typically set the number of epochs of training per
generation and base the fitness on the remaining error, or
base the fitness on the number of epochs required to reduce
the error to a set value.  Both of these procedures are
problematic in that they involve parameters (the number of
epochs or the target fitness) that are difficult to fix when the
ability to learn is changing from generation to generation.

In my approach, each individual will learn from their own
experience with the environment (i.e. set of training/testing
data) and have their fitness determined each simulated year.
A fitness biased random subset of the least fit individuals,
together with a flat random subset of the oldest individuals,
will then die.  These are replaced by children, each having
one parent chosen randomly from the fittest members of the
population, who randomly chooses a mate from the rest of the
whole population.  Each child inherits characteristics from
both parents such that each innate free parameter is chosen at
random somewhere between the values of its parents, with
sufficient noise (or mutation) that there is a reasonable
possibility of the parameter falling outside the range spanned
by the parents.  There are many other aspects of biological
evolution that could be incorporated into our simulations, but
this simplified approach proves adequate.  A similar regime
has already been employed successfully elsewhere to study
genetic assimilation and the Baldwin effect in the evolution
of adaptable control systems (Bullinaria, 2001a), and the
evolution of modularity in neural network systems
(Bullinaria, 2001b).

In the simulations, each genotype includes all the innate
parameters needed to specify the details of the associated
individual network, namely the architecture, the initial
connection weights, the learning algorithm, the learning rates,
the offsets, and so on.  In real biological evolution, all these
parameters will be free to evolve.  For simulations that are
designed to explore particular issues, it makes sense to fix
some of these parameters to avoid the complication of un-
foreseen interactions (and also to speed up the simulations).
In my earlier study of the Baldwin effect (Bullinaria, 2001a),
for example, it made sense to keep the architecture fixed and
to allow the initial innate connection weights and learning
rates to evolve.  In my study of modularity (Bullinaria,
2001b) it was more appropriate to have each individual start
with random initial connection weights and allow the
architecture and learning rates to evolve.  Here we shall have
a fixed fully connected feed-forward architecture with one
hidden layer and random initial weights, and allow all the

learning algorithm parameters to evolve, i.e. the four learning
rates, the momentum, and the offsets.  Then, since the
appropriate ranges for the random initial weights may well
depend on the evolved learning parameters, and vice versa,
we must allow the four initial weight distributions to evolve
as well.  In total, we thus have up to twelve evolvable
parameters in each genotype: four to control the individual’s
distribution of random initial weights, five to control its
learning rates, and up to three to determine the offsets.  All
the other network parameters, such as the number of hidden
units, were fixed across the whole population.

IV.  SIMULATION  RESULTS

We can clearly expect some degree of problem dependence
with the simulation results, so two representative sets of
training data were used:

‘What’ – A simplified pattern recognition task that maps
simple images (5 × 5 binary matrices) to a representation of
‘what’ (a 9 bit binary vector with one bit ‘on’).  Following
earlier studies (Rueckl, Cave & Kosslyn, 1989; Bullinaria,
2001b), 9 patterns consisting of different 3 × 3 arrays with
5 cells ‘on’ were used as images, and these could appear in
any of 9 positions in the full input array, giving 81 training
patterns in all.

‘QuasiReg’ – A quasi-regular mapping from 9 binary input
units to 9 binary output units.  There were 60 training
patterns in all, 48 regular (permuted identity maps) and 12
irregular (random maps).  The irregular patterns will
naturally be harder to learn than the regulars, and hence
prime candidates for learning problems of the type
discussed above.

Obtaining reliable results relies on fixing all the evolutionary
parameters appropriately according to the details of the
problem and the speed and coarseness of the simulations.  For
example, if all the individuals were able to learn the given
task perfectly by the end of their first year, and we only tested
their performance once per year, then the advantage of those
that learn in two months over those that take ten would be
lost, and our simulated evolution would not be very realistic,
nor would it encourage faster learning.  Since the networks
are allowed to evolve their own learning rates, this had to be
controlled by fixing the number of hidden units at 36 (which
is plenty, but not excessive, for our two tasks), and restricting
the number of presentations of the training data set to two per
simulated year for each individual.  A fixed population size
of 100 was chosen as a trade-off between maintaining genetic
diversity and running the simulations reasonably quickly.
The death rates were chosen to result in reasonable age
distributions, and to prevent the population from becoming
dominated by skilled adults who killed off most of the
children before they had the chance to learn how to perform



well.  This meant about 10 deaths per year due to
competition, and another 3 individuals over the age of 20
dying each year due to old age.  The mutation parameters
were chosen to speed the evolution as much as possible by
maintaining genetic diversity without introducing an
excessive amount of noise into the process.  These parameter
choices inevitably led to coarser simulations than one would
ideally like, but otherwise the simulations would have taken
too long to complete.

For any evolutionary simulation, the choice of fitness
function is obviously a crucial factor.  Relating it to the
gradient descent cost function was not feasible, because it
prevents fitness comparisons between the sum-squared-error
and cross-entropy cases, and because the target offsets just
grow so large that any output value is deemed errorless.  The
natural fitness measure here is in terms of the total or average
number of network output bits that are significantly wrong
(e.g. more than 0.2 from their binary targets) over the whole

training set.  This works well, but the distribution of errors
actually becomes very skewed over the population, so the
fitness measure was chosen to be 1/log(1+ErrorCount).

Previous evolutionary studies (e.g. Bullinaria, 2001a,b)
have shown that the results of evolution can depend strongly
on the initial conditions, i.e. on the distributions of innate
parameters across the initial population.  In particular, the
populations tend to settle into near optimal states more
quickly and reliably if they start with a wide distribution of
initial learning rates, rather than expecting the mutations to
carry the system from a state in which there is little learning
at all.  Consequently, in all the following experiments, the
initial population learning rates ηL were chosen randomly
from the range [0.0, 4.0], the momentum parameters α
randomly from the range [0.0, 1.0], and the random initial
weight ranges iwL from the range [0.0, 4.0].  The results are
then consistent enough for us to present typical runs, rather
than averages which tend to obscure the interesting details.
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Figure 2:  Evolution of the initial weight ranges and learning rates for the CE cost function and ‘What’ training data.
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Figure 1:  Evolution of the initial weight ranges and learning rates for the SSE cost function and ‘What’ training data.



The starting point is to evolve the standard learning
algorithms with no offsets.  Figures 1 and 2 show how the
initial weight distribution sizes and learning rates evolve for
the ‘What’ task with the SSE and CE cost functions.  Note
the wide differences in the emerging values for the different
network components, and also for the different cost functions.
We see that even after 45000 simulated years, some
parameters are still drifting to ever lower values, but are
already so low that they have very small effect on what the
networks are learning.  It is clear that the common practice of
setting the same initial weight distributions and learning rates
throughout a given network is unlikely to result in the optimal
performances we can arrive at with an evolutionary approach.

Naturally it is the resultant learning abilities that we are
primarily interested in.  In Figure 3 we have plots of the
performance against age for the final evolved populations.
The left graph shows that, as expected, the evolved SSE
population from Figure 1 is unable to learn the task to

perfection.  In fact, a more detailed analysis shows that, by
the simulated age of 30, approximately 96% of the remaining
output unit errors are greater than 0.99, which confirms that
the main cause of the learning problems is the outputs getting
stuck with totally wrong values.  The right graph of Figure 3
shows how the evolved CE population corresponding to
Figure 2 has no such problem, and is typically able to learn
the given task by about 10 simulated years of age.

As discussed above, we can hope to do better, particularly
in the SSE case, by evolving appropriate offsets.  In Figure 4
we can see what the evolutionary pressures do produce in
practice.  For both the SSE and CE cost functions, we find
that the hidden layer sigmoid derivative offsets spo1 and the
output target offsets toff take on very low (effectively zero)
values, indicating that their presence does not help.  In the
SSE case, we see that the other potential offset, the output
layer sigmoid derivative offset spo2, takes on very large
values (around 50 after 45000 simulated years and still
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Figure 3:  Learning of the ‘What’ training data by the evolved populations for SSE (left) and CE (right) cost function.
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Figure 4:  Evolution of the offsets for the SSE (left) and CE (right) cost functions with the ‘What’ training data.



rising).  This was rather surprising given the relatively small
offsets of around 0.1 that are traditionally used (Fahlman,
1988).  What happens is that the offset ends up totally
swamping the sigmoid derivative to result in weight updates
that are good approximations to the standard CE weight
updates, but with the learning rates multiplied by spo2.
Normally, multiplying the learning rates by such large
numbers would be detrimental to learning, but because the
base learning rates ηL are also allowed to evolve, they adjust
themselves in inverse proportion to spo2 to give appropriate
effective learning rates at each stage.  In effect, the SSE cost
function has discovered how to evolve into the better CE cost
function, with its superior learning performance.

We clearly need to check that this result is not dependent
on the particular training set used.  The set of simulations
corresponding to Figures 1 to 3 were therefore repeated with
the ‘QuasiReg’ task.  Similar patterns emerged for the
evolution of the initial weights and learning rates, and

Figure 5 shows the learning performance for the individuals
in the evolved populations.  Again the CE cost function
results in all the individuals learning the task easily, but the
SSE population is unable to learn the task to perfection.  Here
approximately 92% of the remaining output unit errors are
greater than 0.99 at the simulated age of 30, so again the main
cause of the learning problems appears to be outputs getting
stuck with totally wrong values.

As before, we can hope to improve the learning by
allowing appropriate offsets to evolve.  The results shown in
Figure 6 are not as clear cut as we had for the ‘What’ training
data in Figure 4, but the same general pattern emerges.  The
target offset toff and hidden layer sigmoid derivative offset
spo1 take on effectively zero values indicating that they are
not useful, while the output layer sigmoid derivative offset
spo2 takes on the ever increasing values that allows the SSE
cost function to evolve into the better performing CE cost
function as we found previously.
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Figure 5: Learning of the ‘QuasiReg’ training data by the evolved populations for SSE (left) and CE (right) cost function.
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Figure 6: Evolution of the offsets with SSE (left) and CE (right) cost functions for the ‘QuasiReg’ training data.



The final situation we need to consider is that in which we
do not allow the evolution of sigmoid derivative offsets, and
thus prevent the ability of the SSE networks to evolve into
CE networks.  Will significant target offsets evolve in this
situation?  Not surprisingly, simulations of the CE case result
in the target offsets evolving towards zero values as before.
For the SSE case we obtain the problem dependent results
shown in Figure 7.  For the ‘What’ task we find that toff
evolves to take on values around 0.1, which is exactly the
value traditionally used (Rumelhart, Hinton & Williams
1986; Rueckl, Cave & Kosslyn, 1989; Bullinaria, 2001b).
Learning in this case takes around 15 simulated years, as
shown on the left in Figure 8, which is significantly slower
and less reliable than the CE case seen in Figure 2, and the
SSE case with evolved SPO shown on the right in Figure 8.
For the ‘QuasiReg’ task, on the other hand, Figure 7 reveals
that a significant toff does not evolve.  This is presumably
because it does not offer sufficient improvement over the no

offset case.  Even carrying out the evolution with toff fixed at
the ‘standard’ value of 0.1 fails to produce a population that
can successfully learn the task.

V.  CONCLUSION

This paper has demonstrated how an evolutionary approach
can be used to generate efficient neural network learning
algorithms by discovering appropriate initial weight
distributions and learning parameters.  Explicit simulations
for two representative binary mappings were carried out for
both the SSE and CE cost functions.  The evolved CE
networks learned quickly and reliably, while the SSE
networks ran into a well known problem in which some
outputs get stuck with totally wrong values.  The same
evolutionary approach enabled the optimization of two
common techniques for avoiding such problems in SSE
networks, namely the introduction of target offsets and/or
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Figure 7: Evolution of target offsets for SSE when SPO is not available for the ‘What’ (left) and ‘QuasiReg’ (right) tasks.
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Figure 8: Learning of the ‘What’ training data by the evolved SSE populations for zero SPO (left) and large SPO (right).



sigmoid derivative offsets.  Not surprisingly, for the CE case,
evolution caused the unnecessary offset parameters to
approach zero.  For the SSE networks, evolution failed to
produce offsets in the range traditionally used, but rather
generated values that transformed the networks into
increasingly good approximations of the CE networks that
have no such learning problems.

This study has two clear conclusions.  First, appropriate
evolutionary strategies provide an extremely powerful
approach for optimizing neural network systems.  Second,
when performing gradient descent training of neural networks
on binary mapping, it is better to employ the CE cost function
rather than using approaches that attempt to fix the problems
inherent in using the SSE cost function.
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