
Neural Network Ensembles for Time Series Forecasting

V. Landassuri-Moreno
School of Computer Science

University of Birmingham
Birmingham, B15 2TT, UK

V.Landassuri-Moreno@cs.bham.ac.uk

John A. Bullinaria
School of Computer Science

University of Birmingham
Birmingham, B15 2TT, UK

J.A.Bullinaria@cs.bham.ac.uk

ABSTRACT
This work provides an analysis of using the evolutionary al-
gorithm EPNet to create ensembles of artificial neural net-
works to solve a range of forecasting tasks. Several previous
studies have tested the EPNet algorithm in the classifica-
tion field, taking the best individuals to solve the problem
and creating ensembles to improve the performance. But
no studies have analyzed the behavior of the algorithm in
detail for time series forecasting, nor used ensembles to try
to improve the predictions. Thus, the aim of this work is
to compare the ensemble approach, using two linear com-
bination methods to calculate the output, against the best
individual found. Since there are several parameters to ad-
just, experiments are set up to optimize them and improve
the performance of the algorithm. The algorithm is tested
on 21 time series of different behaviors. The experimental
results show that, for time series forecasting, it is possible
to improve the performance by using the ensemble method
rather than using the best individual. This demonstrates
that the information contained in the EPNet population is
better than the information carried by any one individual.

Categories and Subject Descriptors
I.2.6 [Learning]: Connectionism and neural nets; I.2.8 [Pro-
blem Solving, Control Methods, and Search]: Heuris-
tic methods.

General Terms
Algorithms, Design, Experimentation.

Keywords
Evolutionary Programming, Evolutionary Neural Networks,
Ensemble Neural Networks, Time Series Forecasting.

1. INTRODUCTION
There have been numerous successful applications of Evo-

lutionary Algorithms (EAs) to evolve artificial neural net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

works (ANNs), simplifying the search for optimal network
parameters, weights and architectures. Moreover, there have
been diverse approaches demonstrating that ensembles of
networks can improve the performance over any one indi-
vidual network [17]. Assuming there is more valuable infor-
mation in a whole evolutionary population than in a single
best individual, it is reasonable to predict that the best net-
work evolved will not have the best generalization compared
to an ensemble based on the evolved population [15].

In this context, there have been several studies that test
the performance of the evolutionary algorithm EPNet in the
classification field [14, 15, 16], but it can be argued that the
classification task is easier than prediction. First, extrapo-
lation is more difficult than interpolation, because in predic-
tion one has to assume that, for a given Time Series (TS),
the trends or behaviors of the past will be maintained in
the future [12]. Another reason is that in classification we
generate only one discrete output to say if an input is from
one class or not (or to say how close it is to a given class),
rather than a regression value. If we only need to predict one
step ahead, that will be similar to standard regression, but
typically we need to predict n steps ahead, which is likely
to introduce a bigger error at the end of the task, e.g. when
using predictions already made as an inputs for predicting
future values (see Sec. 2, Multiple-step forecasting).

For this reason, it is easier to find studies using the EP-
Net algorithm for classification than for prediction [13, 14].
To rectify this deficiency, this paper evaluates the perfor-
mance of the EPNet algorithm on 21 different TS, taking
the best evolved individual and comparing it against en-
sembles formed with two linear combination methods. It
is likely that ensembles can achieve better results than the
best individual found in the forecasting task (as happens in
classification), but this needs to be confirmed empirically.

For this work, all the predictions were set to 30 steps
ahead using the multiple step forecasting method (Sec. 2)
and the Normalized Root Mean Squared Error (NRMSE) to
measure the performance. Then the best individual predic-
tion is compared against three main ensemble approaches:
a) Average - the ensemble is formed from the population of
networks in the last generation of the EPNet algorithm and
then the output of the ensemble is calculated as the average
of the outputs of each network (Sec. 5.1); b) Rank-Based
Linear Combination (RBLC) - this uses the population of
the last generation as in the previous method, but then ap-
plies the Rank-Based Linear Combination method (Sec. 5.2)
to calculate the output of the ensemble; c) Ensemble of Best
Individuals - this forms an ensemble from across independent

evolutionary runs, with either Average or RBLC ensemble
output (Sec. 5.3). Also, because each generation of the evo-
lutionary process typically contains both fit individuals and
others that are not so good, we test the results for ensembles
that take only the best individuals per independent run to
form the ensemble, which is clearly rather different to taking
all the individuals in the last generation.

To explore the generality of our findings, TS were stud-
ied belonging to several different dynamics: Chaotic, Quasi-
periodic and Complex, and arising from several different
fields: Physics, Economics, Financial, Hydrological and from
forecasting competitions. In this sense, there is a suffi-
cient range of behaviors and dynamics to test the EPNet
algorithm in a detailed manner. That is motivated by the
fact that in the previous literature, only two TS appear to
have been used to test the algorithm in the forecasting task:
Mackey-Glass and Logistic [13, 14]. Thus, among all the TS
used, there are two main scenarios: well known TS (where
there is previous domain knowledge, which means that we
know some optimal parameters for them), and TS that are
not so common or could be described as “new TS” for fore-
casting (as typically happens in real world scenarios), and
consequently there is not as much information concerning
them as the others. For this reason, in Sec. 3 we present our
analysis of some of the parameter settings needed to perform
the predictions.

It may be worth noting here that this study not only
tests two representative combination methods (Average and
RBLC) that are not computationally expensive for forming
the ensemble outputs, but also aims to explore the perfor-
mance of the EPNet algorithm for the TS forecasting task,
understand the effect of different ensemble compositions,
and provide a detailed analysis of the crucial parameters
that need to be set appropriately.

The reminder of this paper is organized as follows: In
Sec. 2 is presented the method used to perform the forecast-
ing, and some related technical issues. Sec. 3 then gives an
overview of the EPNet algorithm, and an analysis of some
preliminary experiments to determinate appropriate param-
eter settings for performing successful predictions (Sec. 3.1
and 3.2). Sec. 4 presents our empirical prediction results for
the best evolved individuals, and Sec. 5 gives the correspond-
ing results for the various ensemble approaches. Finally, we
provide our conclusions in Sec. 6.

2. TIME SERIES FORECASTING
For the Time Series (TS) forecasting/prediction task, it

is common to try to use a small subset of the recent TS
information to perform the prediction. This method is called
lagged variables, or shift registers, or tapped delay line. If
we use this approach, we say that we have an Autoregressive
Model and the input space is called an Embedding Space. In
this case, the TS is transformed into a reconstructed state
space using a delay space embedding [1, 8]. This means
that we are aiming to obtain accurate predictions using only
a finite segment of previous values up to the point to be
predicted. Thus we have:

xt+1 = F [xt, xt−k, xt−2k, . . . , xt−(d−1)k] (1)

where d is the number of inputs and k is the time delay.
There is a condition that needs to be satisfied: given an at-
tractor of dimension D, we must have d ≥ 2D + 1 [1]. But
because we do not generally know D nor the delay, we need

Table 1: Multiple-step or closed-loop forecasting
Forecast Inputs

yt+1 xt, xt−1, xt−2

yt+2 yt+1, xt, xt−1

yt+3 yt+2, yt+1, xt

yt+4 yt+3, yt+2, yt+1

to calculate them, e.g. using Average Mutual Information
for the time delay, and False Nearest Neighbour for the em-
bedded dimension. In this work we try both techniques to
calculate them, and perform some experimental analysis as
discussed in Sec. 3.2. Those techniques were obtained from
the package Visual Recurrent Analysis (VRA) [1].

Since there are various different behaviors to test, the
VRA could not obtain accurate values for the inputs and
delays for all TS. For this reason, in Sec. 3.2 is presented a
brief analysis and discussion of some experiments performed
to determine whether it is better to evolve the inputs, or
leave them fixed as in the original EPNet algorithm [14].

The method used to perform the forecasting in this work
is called multiple-step ahead or closed-loop forecasting. The
TS X is [x1, x2, . . . , xt], the number of points ahead to pre-
dict is n, the test set is [xt+1, xt+2, . . . , xt+n], and the fore-
cast in the same interval is [yt+1, yt+2, . . . , yt+n]. Table 1
shows a simple example in which the network has three con-
secutive inputs and the lapse n to predict is set to four.

3. THE ALGORITHM AND PARAMETERS
The EPNet algorithm [13, 14] is based upon the stan-

dard Evolutionary Programming approach, aimed at evolv-
ing ANN architectures and weights at the same time as
obtaining smaller network topologies. It does not have a
crossover operator, nor a genotype to represent the indi-
viduals. Instead it carries out the evolutionary process by
performing only five different mutation operations directly
on the phenotype: (1) hybrid training composed of train-
ing with the Modified Back Propagation (MBP) algorithm
and Simulated Annealing (SA); (2) node deletion; (3) con-
nection deletion; (4) connection addition; and (5) node ad-
dition. The algorithm performs only one such mutation on
the selected individual in each generation.

The first mutation tested is always the partial training
(MBP or SA), whereby the algorithm tries to reduce the er-
ror “considerably” (see Sec. 3.1). If the error can be reduced
considerably, then the training is marked as successful (suc-

cessful training) and the individual is passed to the next
generation. This is the first mutation attempted because
a change in the network’s architecture can produce large
changes in the ANN’s behavior. If the error is not signifi-
cantly reduced, then the other mutation operators take part
in the process, in order starting from (2) node deletion, and
finishing with (5) node addition. Thus the algorithm always
attempts to delete nodes or connections before adding them,
so it encourages the search for smaller architectures.

The training in the EPNet algorithm is only a partial
training, i.e. the networks are not trained until they con-
verge. This is motivated by computationally efficiency, which
lets the evolution advance faster, with the individuals im-
proving their fitness through the generations. For a more
detailed description of the EPNet algorithm see [14].

There are some common parameters that were fixed for

the experiments throughout this study: population size 20,
generations of evolution 300, initial connection density 70%,
initial learning rate 0.2, minimum learning rate 0.1, epochs
for learning rate adaptation 5, number of mutated hidden
nodes 1, number of mutated connections 1-3, temperatures
in SA 5, iterations per temperature in SA 100, 2000 epochs
of training inside the EPNet, and 2000 of further training
at the end of the algorithm. The only stopping criteria was
the number of generations. For all the experiments, 30 in-
dependent runs were performed to ensure statistical validity
of the results. All these parameters were set at convenient
traditional values and are not intended to be optimal.

The size of the TS was limited to 2000 values and split into
four sub-sets: the first being the “training set” that is used
to perform the learning task with MBP or SA; then there
is a “validation set” that is used to ensure that there is no
over-fitting of the learning, then a “test set inside EPNet” to
simulate a real prediction (multiple step ahead prediction)
and obtain the fitness of the networks, and finally there is
the “final test set”, that is only applied after the whole evo-
lutionary process has been completed, to evaluate the final
individuals and the ensemble methods.

In this study we used 21 different TS from various origins:
Henon, Lorenz, QP2, QP3, and Rossler from [11]; Ikeda,
Dow Jones and Logistic from [1]; Mackey-Glass from [10];
Number of daily Births in Quebec, Daily closing price of IBM

Stock, SP500, Monthly Flows Colorado River, Monthly Lake

Erie Levels, Daily morning Gold Prices, Equipment temper-

ature (degree Celsius of equipment used for radioactive mea-
surement), Seismograph (vertical acceleration, nm/sq.sec) of
the Kobe earthquake, Daily brightness of a variable Star and
Monthly means of daily relative Sunspot numbers from [3];
Santa Fe Competition: D1 and Laser from [7].

Some important preliminary experiments designed to op-
timize the algorithm are now discussed, though full results
for them cannot be presented due to lack of space. After all
these preliminary experiments were performed (Sec. 3.1 and
3.2), we could set all the required parameters and proceed
for each TS to find the best individual results (Sec. 4) and
explore the various ensemble approaches (Sec. 5).

3.1 Setting the successful training parameter
As mentioned above, there is a crucial parameter in the

EPNet algorithm that determines what is called success-

ful training. We have “success” if the training error is de-
creased “considerably”, or “failure” if it is not. In the liter-
ature, this parameter is never discussed in detail (i.e. how
much is “considerably”?), and it can easily be set with incor-
rect/inappropriate values. The EPNet algorithm proves to
be much more robust with regard to its other parameters.

Consequently, our study began by running several exper-
iments with different values for the successful training pa-
rameter: 30%, 50% and 70%. For example, for the value
30% the training is marked as a “successful” if the error is
reduced by 70% or more (a strict value), and for the value
50% it is marked as a “successful” if the error is reduced
by half or more (a more relaxed value). It was found that
this parameter has a large impact on the performance of the
algorithm, because if we use a too relaxed value (e.g. 70%,
with the error only needing to be decreased by 30%) the net-
works enter the training stage and easily achieve a sufficient
reduction of the training error (leading it to be marked as
successful), and thus pass directly to the next generation,

0 50 100 150 200 250 300
0

20

40

60

80

100

120

A
ve

ra
ge

 N
um

be
r

of
 M

ut
at

io
ns

Generations

Mackey−Glass

Hybrid training
Node deletion
Connection deletion
Node addition
Connection addition

Figure 1: Average Mutations for Mackey-Glass TS.
Successful Training parameter set to 70%

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

A
ve

ra
ge

 N
um

be
r

of
 M

ut
at

io
ns

Generations

Mackey−Glass

Hybrid training
Node deletion
Connection deletion
Node addition
Connection addition

Figure 2: Average Mutations for Mackey-Glass TS.
Successful Training parameter set to 30%

without allowing the architectural mutations to take part
in the evolutionary process. That produces networks with
a poor performance at the end of the evolution (i.e. bigger
prediction errors are obtained).

In Fig. 1 is presented the average mutation rates over the
entire evolution (set to 300 generations) for the Mackey-

Glass TS with a relaxed value in the successful training pa-
rameter (set to 70%). There it can be seen that the hybrid
training dominates the evolutionary process, with the other
mutations used only a few times. Conversely, in Fig. 2 it can
be seen how the other mutations are used more frequently if
a strict parameter value is set (i.e. 30%), which shows that
there are more modiffications in the architectures than with
a relaxed value. That is clearly a desirable behaviour if we
want to look for more solutions in the search space.

Analysing this issue for the other TS revealed that the
TS behavior has a big effect on the evolutionary process.
For example, for the Logistic TS the average mutation rates
arising for the three different parameter values (30, 50 and
70%) were similar, using all the mutations in the evolution-
ary process, similar to the pattern of Fig. 2. In other words,
for this TS, this parameter was not so crucial.

On the other hand, for the QP2 and QP3 TS, the aver-
age mutation rates for the three parameter values used were
similar to Fig. 1, where the hybrid training was the mutation
most used in the evolution. Interestingly, for those cases the
average error per generation were decreased continuously in
all the evolutionary process, which suggests that maybe for

these TS more epochs are required in the partial training to
find suitable weights and then give the opportunity for other
mutations to be applied. But even though the behavior was
similar across the three values, the best performance found
was with a value of 30%, i.e. when the training is marked
as successful if the error is decreased by 70%. That demon-
strates the importance of this value and the effect that the
dynamic of the TS has over the evolution.

Summarizing the importance of the “successful training”
parameter (evaluated for TS forecasting), it can be said that
a strict value produces better networks that can reach the
smallest prediction errors, allowing more architecture mod-
ifications and consequently looking for an optimal solution
across a bigger search space.

3.2 Whether to evolve the inputs
For some TS there is enough previous domain knowledge

to know many of the different optimal parameters needed
to classify or predict them, e.g. for the Mackey-Glass and
Logistic TS [4, 5, 13, 14] or for the Lorenz TS [2]. But even
then, there are other studies that differ from the standard
parameters, such as [6] for the Mackey-Glass TS. In this
study, we are interested in the optimal number of inputs
and delays to evolve the network’s architectures. But it
is not always possible to obtain this information from the
literature, e.g. to predict a new TS that has never been
studied before and for which there is no previous information
(as is likely to be the case for many real world scenarios).
Therefore a method is required to determine the inputs for
the networks and the delays between them to perform the
forecasting (Eq. 1). Other researchers prefer to evolve the
inputs and delays, such as [9] for the SP500 TS.

Thus, in this section is presented some preliminary experi-
mental results that are focused on determining if it is better
(or not) to evolve the inputs as another parameter inside
the EPNet algorithm. To do this, two experiments were set
up: in the first the inputs were evolved, and in the second
the inputs were fixed during evolution and calculated using
the VRA package mentioned in Sec. 2, with random con-
nections between the inputs and hidden nodes. The experi-
ments analysed in this section were run to 2000 generations
to provide detailed results for the algorithm, i.e. to see if the
parameters converge when allowed more generations. The
rest of the parameters were set as described in Sec. 3

The inputs here were treated as another node in the net-
work, so the mutation of add node or delete node could
be applied to them. Similarly, the connections from in-
puts to hidden nodes were treated as another connection
between hidden nodes, so the mutation add or delete con-
nection could be applied to them. With this configuration,
the delays are implicit in the representation.

From the preliminary experiments it was determined that
for around half of the TS it was useful to evolve the in-
puts, but the other half gave good predictions if the inputs
were calculated and fixed. Our results suggest that more
experimental results would be beneficial here, and that this
topic really needs to be addressed by a more complete re-
search program, which is beyond the scope of this paper.
Nevertheless, it can be said that calculating the inputs and
delays (with the False Nearest Neighbour and Average Mu-
tual Information) does not always give appropriate values
for finding accurate ANNs, and therefore it was generally
better to evolve the inputs and delays.

From those experiments it was also observed that if the in-
puts are fixed, the evolution of hidden nodes or connections
advances faster in some TS, consistent with the fact that
there are fewer parameters to evolve. On the other hand,
if the inputs are evolved, it was found that in some cases
the algorithm found accurate networks faster, even though
they required more computational processing to evolve the
increased number of parameters.

Since architectural modifications generally produce large
changes in evolved networks’ behavior, it might be expected
that the addition or deletion of inputs could have the same
effect on the network’s performance. Sometimes the addi-
tion or deletion of inputs results in significant variation in
the performance of the networks, however those variations
do not usually have a big impact on the evolution, probably
because after addition or deletion the network passes to the
partial training phase which could correct any undesirable
deviation in the networks’ learning. Again, the dynamic of
the TS influences the behavior of the algorithm. The most
important conclusion found was that it is better to evolve
the inputs if there is no previous domain knowledge of the
given TS. Thus, the rest of the experiments performed in
this study were set up evolving the inputs, even for TS where
there is previous information.

4. BEST INDIVIDUAL RESULTS
In this section is presented the results from a set of ex-

periments developed to obtain the best evolved individual
predictions, for 30 independent runs for each TS. The con-
figuration used was that determined in Sec. 3, with the
“successful training” parameter set to 30%, and the inputs
evolved rather than calculated. A robust metric to measure
performance is clearly required. One obvious choice is the
Normalized Root Mean Square Error (NRMSE) defined as:

NRMSE =

√

∑N

i=1 (xi − oi)
2

∑N

i=1 (oi − ō)2
(2)

where xi is the prediction, oi is the actual value and ō is
the mean of the actual values. Other measures, such as
“accuracy” as a percentage, were also tested, but found to
be less informative. For example, for some TS a percentage
accuracy might say that a predictions was close to 100%,
when in reality the NRMSE was high (around or over 0.5)
and the prediction was only following the trend of the orig-
inal data. Therefore NRMSE was used to perform all the
main comparisons in this work.

Table 2 (columns 2-5) shows the best individual NRMSE
results obtained with the independent test set for each TS.
The column “Mean” shows the average of the best individ-
ual NRMSE results from each of the 30 independent runs,
and“Std Dev”shows the corresponding variance across runs.
The column“Min” shows the NRMSE of the best individual
overall, and the column “Max” shows the worst of the best
individuals from the 30 runs. The TS are arranged according
to their dynamics: Chaotic: from Henon to Rossler ; Demo-
graphic: Births in Quebec; Economical/Financial: from Dow

Jones to SP500 ; Hydrological: Colorado River and Lake

Eriel ; Physics: Equipment temperature to Sunspots; and the
last two form the Santa Fe competition.

The actual prediction errors can be best visualized by
comparing the denormalized predictions with the actual tar-
get values. Thus, the predictions of the best individuals

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n

X
(n

)

Henon

Prediction
Original

Figure 3: Prediction to 30 steps ahead for the Henon
TS. Best individual found over 30 runs

0 5 10 15 20 25 30
180

200

220

240

260

280

300

320

340

n

X
(n

)

Births Quebec

Prediction
Original

Figure 4: Prediction to 30 steps ahead for Births in
Quebec TS. Best individual found over 30 runs

over the 30 independent runs for four representative TS are
shown in Figs 3 to 6 using the denormalized predictions and
actual target values. Summarizing the full set of results:
Fairly good predictions are achieved for the Henon TS (Fig.
3) and Births in Quebec TS (Fig. 4). Conversely, for the Dow

Jones, IBM Stock, SP500 and Gold Prices TS, we do not
achieve good predictions at all. These are well known to be
difficult TS to predict, given that they come from complex
economic systems. The predictions there only try to follow
the trend and accurate predictions were not possible, as is
clear from the Gold Prices TS graph (Fig. 5). However, if
it is only required to know the trend, such predictions could
still be useful in a real world scenario, e.g. to know if the
trend will continue upwards or downwards. The remainder
of the predictions were acceptable, in the sense that in the
majority of cases they did obtain a reasonably accurate pre-
diction. Even the Kobe TS (Fig. 6), that gave a NRMSE
of 0.618348 (for best individual over 30 independent runs,
Table 2 column 4), still has an accurate prediction in the
sense that it could be useful in a real world scenario.

5. ENSEMBLE RESULTS
In this section are presented the results from a series of ex-

periments designed to determine whether ensembles formed
from the last population of individuals evolved with the EP-

0 5 10 15 20 25 30
378

380

382

384

386

388

390

392

394

396

398

n

X
(n

)

Gold Prices

Prediction
Original

Figure 5: Prediction to 30 steps ahead for Gold
Prices TS. Best individual found over 30 runs

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

n

X
(n

)

Kobe

Prediction
Original

Figure 6: Prediction to 30 steps ahead for Kobe TS.
Best individual found over 30 runs

Net algorithm for the TS forecasting task are better, or
worse, than the best individuals found (Sec. 4). Two dif-
ferent linear combination methods to compute the ensem-
ble outputs are tested: taking the Average and using the
Rank-Based Linear Combination (RBLC) method. The two
ensemble approaches are compared against each other, and
against the Best individuals. Since 30 independent runs were
performed to test the results statistically, another ensemble
formed of the best individual per run was used to see if the
prediction could be improved further (and to compare that
against the other methods).

When the ensembles are created using all the individu-
als from the last generation of the EPNet Algorithm, there
is a danger that the best possible performance will not be
obtained because the last generation will always contain a
mixture of fit individuals and others that are not so good.
It is possible that the overall performance will be seriously
reduced by large errors being introduced into the ensemble
output by the worst individuals. Since we are always work-
ing with a fitness sorted population, where the first indi-
viduals are better than the last members of the population,
is it straightforward to form ensembles using only the best
evolved individuals. In this way, we carried out experiments
which showed that, overall, the best ensembles with both
the Average and RBLC methods were those created with
only the fittest half of the population. For this reason, the

Table 2: Prediction performances measured as NRMSE on the independent test set

T ime Series
Best individual Ensemble Average method Ensemble RBLC method

Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min Max

Henon 0.636499 0.204336 0.302114 0.956291 0.554292 0.077605 0.405555 0.697547 0.482403 0.125600 0.248148 0.725689

Ikeda 0.909702 0.055751 0.759410 0.992052 0.887642 0.050243 0.764676 0.993704 0.852636 0.069143 0.685461 0.965083

Logistic 7.31E-04 3.01E-04 2.74E-04 1.58E-03 0.000842 0.000451 0.000223 0.002147 0.000590 0.000229 0.000198 0.001055

Lorenz 0.020447 0.012247 2.49E-03 0.062434 0.034556 0.024151 0.004911 0.101607 0.015360 0.012058 0.002231 0.063757

Mackey-Glass 5.03E-03 0.001839 1.88E-03 1.00E-02 0.003825 0.001298 0.002084 0.006607 0.003293 0.000992 0.001891 0.005612

Qp2 0.080269 0.042100 0.018826 0.252037 0.097080 0.041825 0.036019 0.198994 0.063854 0.031575 0.022730 0.138016

Qp3 0.404471 0.128390 0.136128 0.663789 0.536005 0.091588 0.319728 0.733362 0.390987 0.117870 0.116490 0.601360

Rossler 3.92E-03 0.004671 5.51E-04 2.65E-02 0.054942 0.157863 0.000529 0.649472 0.005612 0.014313 0.000457 0.079038

Births in Quebec 0.512206 0.015515 0.487339 0.546592 0.512350 0.013755 0.490407 0.550965 0.500604 0.015007 0.470685 0.534231

Dow Jones 1.091639 0.044362 0.992117 1.161880 1.132410 0.050727 1.075047 1.276407 1.092141 0.040172 1.006429 1.164714

Gold Prices 1.061642 0.120833 0.895633 1.463080 0.667389 0.124511 0.504391 1.082530 0.607098 0.128760 0.437117 1.115892

IBM Stock 0.869855 0.061650 0.784294 1.068950 1.137256 0.171837 0.893250 1.603258 1.021421 0.087460 0.897422 1.219439

SP500 0.642662 0.040994 0.570208 0.733510 0.907062 0.060131 0.829057 1.074574 0.865357 0.055375 0.809707 1.034101

Colorado River 0.821921 0.089596 0.639491 0.998298 0.669257 0.043266 0.603953 0.808359 0.635859 0.027518 0.580866 0.697312

Lake Eriel 0.697431 0.130573 0.548006 1.138210 0.834949 0.097537 0.677836 1.076927 0.781777 0.079763 0.637406 0.946411

Equipment Temp. 0.803416 0.108539 0.540734 1.057860 0.873240 0.117517 0.708384 1.100276 0.766290 0.098556 0.559897 0.965825

Kobe 0.794816 0.110117 0.618348 1.019470 0.907487 0.107310 0.723403 1.105762 0.785307 0.105720 0.607867 0.989435

Star 0.024374 0.005112 0.016734 0.036160 0.024645 0.006535 0.012370 0.036240 0.021938 0.005182 0.012842 0.033448

Sunspot 0.683762 0.063064 0.533456 0.798159 0.758341 0.067267 0.619330 0.921413 0.680211 0.062338 0.491676 0.765263

D1 1.180132 0.207090 0.731355 1.532210 1.129695 0.122540 0.849833 1.351434 1.025955 0.183861 0.648052 1.443262

Laser 0.086133 0.036005 0.042059 0.202223 0.077413 0.033201 0.034756 0.164771 0.066214 0.031229 0.030088 0.146956

ensembles presented in the next two sections (Sec. 5.1 and
5.2) were created with only the half of the population (the
best individuals of the final generation). Taking exactly half
the population does not represent the optimal ensemble size
for each problem instance, but if we want to optimize the
correct number of networks in each ensemble, the compu-
tational cost will be increased, e.g. using the evolutionary
algorithm to find the best combination of networks to form
the appropriate ensemble for each problem.

5.1 Ensemble with Average
In this section, the output of the ensembles is calculated

as the average of the outputs from each constituent network.
This method may not prove to be optimal, but it is the sim-
plest way to calculate the output of the ensemble, and was
used as an initial test. The results presented here correspond
to the NRMSE on the final independent test set. As noted
above, the ensembles were created using only the fittest half
of the population of the final generation, so any very poor
performance individuals did not affect the outcome.

Table 2 (columns 6-9) shows the prediction results for the
ensembles formed by the Average method. Comparing the
corresponding mean values in Table 2 (i.e. columns 2 and 6)
suggests that the ensemble with the Average method per-
forms better than using the Best individual for 7 of the 21
TS. Statistical significance of these differences was tested us-
ing the standard t-test (two-tailed with unequal variances).
Table 3 shows, for each TS, the t-test p values for the three
main comparisons of this study: comparing the Best individ-
ual to the ensemble formed with the Average method, com-
paring the Best individual with the RBLC ensemble (next
section), and comparing the two ensemble methods against
each other. At 0.1 level of significance, the Average method
ensemble is significantly better than the Best individual for
3 of the 21 TS, is significantly worse for 9 TS, which means
that the best individual gave better results in more cases

than the Average method. For the rest of the cases (9 TS)
there were not significance in the results.

5.2 Ensemble with Rank-Based Linear Com-
bination

In this section are presented the results for ensembles
formed from the fittest half of the population using the
Rank-Based Linear Combination (RBLC) method [15]. The
main new aspect here is the calculation of a weight wi for
the ith individual network in a population sorted by fitness
(with the best-fitness individual at the top, i.e. at i = 1):

wi =
exp(β(N + 1 − i))

∑N

j=1 exp(βj)
(3)

which is used to give more importance to better individuals.
This is achieved by calculating the ensemble output O as
the weighted average of the network outputs oi:

O =
N

∑

j=1

wjoj (4)

The β parameter was chosen after some preliminary exper-
iments trying different values (0.1, 0.25, 0.5 and 0.75) for
each TS. On average it was found that a value of 0.25 was
better for the Mackey-Glass TS; 0.5 for Henon, Lake Eriel

and Laser TS; and the rest had a better performance with
a value of 0.75. Thus, the β parameters of this section and
Sec. 5.3 were set up with those values to calculate the net-
works’ weights in the ensemble approach. Note that the β

parameter was optimized for each TS using standard model
selection techniques because it was expected that different
values would be appropriate for different TS. If the size of
the ensemble or the constituent individuals change, it is pos-
sible that those optimized values will need changing.

Table 2 (columns 10-13) shows the prediction results ob-
tained for ensembles formed using the RBLC method. In

Table 3: Significance of differences between Best in-
dividual, Average ensemble, and Rank-Based Linear
Combination ensemble, indicated by t-test p values

T ime Series Best − Ave. Best − RBLC Ave. − RBLC

Henon 4.64E-02 9.57E-04 0.010384

Ikeda 0.112892 8.73E-04 0.029085

Logistic 0.267784 4.50E-02 0.009011

Lorenz 6.62E-03 1.10E-01 0.000341

Mackey-Glass 5.10E-03 0.000042 0.079705

Qp2 0.126211 9.33E-02 0.001023

Qp3 3.02E-05 0.673310 1.98E-06

Rossler 0.087325 0.542900 0.098793

Births in Quebec 0.969946 4.66E-03 0.002513

Dow Jones 1.60E-03 0.963541 0.001227

Gold Prices 5.40E-02 1.46E-01 0.002000

IBM Stock 2.13E-02 0.767294 0.007049

SP500 1.76E-02 0.453915 0.000815

Colorado River 0.592142 7.20E-02 0.024526

Lake Eriel 0.365550 9.12E-03 0.070344

Equipment Temp. 2.01E-02 0.170784 0.000336

Kobe 1.74E-04 0.734197 4.06E-05

Star 0.858921 7.19E-02 0.080948

Sunspot 4.26E-05 8.27E-01 1.87E-05

D1 0.256745 3.47E-03 0.013110

Laser 0.333520 2.58E-02 0.183671

this case, performance improvements are seen for 16 of the
21 TS when compared against the mean values for the Best
individuals shown in Table 2 (i.e. comparing columns 2 and
10). As before, the significance of these differences are shown
in Table 3 as t-test p values. At 0.1 level of significance, the
RBLC ensembles are significantly better than the Best indi-
viduals for 10 of the 21 TS, and significantly worse only for
the Lake Eriel TS.

Finally, we compare the two ensemble methods. The mean
results in Table 2 (i.e. columns 6 and 10) and the final col-
umn in Table 3 show that the RBLC method has improved
performance over the Average method on all 21 TS; though
only 16 of these improvements are significant at 0.05 level,
and 12 at 0.01 level.

5.3 Ensemble of best individuals from inde-
pendent runs

We have seen that ensembles formed from the fittest half
of the evolved populations can improve upon the perfor-
mance of the best individuals in the evolved populations
for some TS. It is conceivable that the more diverse en-
sembles generated by taking individuals from across multi-
ple runs will provide even more performance improvements.
Consequently, for each TS we created a further ensemble
comprised of the best individual from each of the 30 inde-
pendent runs, and tested them using both the Average and
Rank-Based Linear Combination (RBLC) methods. Table
4 presents the NRMSE prediction results obtained for each
method.

Note that, because the ensemble here is already using
all the individual evolutionary runs, it is not possible to
give the same statistics as in the Tables 2, nor perform the
significance t-tests. However, the NRMSE columns in Ta-
ble 4 can still be directly compared against the mean and
best (i.e. Min) results from the other approaches (Table 2

Table 4: Performance of the ensembles composed
from the best individuals from 30 independent runs.
Errors on the independent test set

T ime Series Average NRMSE RBLC NRMSE

Henon 0.312337 0.285958

Ikeda 0.767174 0.596142

Logistic 1.96E-04 8.92E-05

Lorenz 0.011636 9.69E-04

Mackey-Glass 1.42E-03 1.24E-03

Qp2 0.020087 0.019774

Qp3 0.299935 0.124260

Rossler 1.84E-03 4.05E-04

Births in Quebec 0.484020 0.476418

Dow Jones 1.064933 0.988405

Gold Prices 0.946449 0.888813

IBM Stock 0.837004 0.793824

SP500 0.620128 0.571701

Colorado River 0.701466 0.622002

Lake Eriel 0.474379 0.461984

Equipment Temp. 0.679475 0.569733

Kobe 0.713617 0.566432

Star 0.016177 0.014455

Sunspot 0.629409 0.543307

D1 0.724425 0.591681

Laser 0.026967 0.019909

columns 2, 4, 6, 8, 10 and 12), to give an indication of the
power of the approach. The ensemble of best individuals
with Average is seen to improve the prediction for all TS
over the mean Best individual results, and is better than
the Min Best individual results for 7 TS. It is better than
the mean for 19 TS compared with the standard ensemble
with Average from Table 2 column 6, and is better than the
Min result for 14 TS. The ensemble of best individuals with
RBLC shows improvement for all 21 TS compared with the
mean and 16 TS against the Min Best individual results (Ta-
ble 2 columns 2 and 4); improvement for 20 TS compared
with the mean, and 18 TS compared with the Min, against
the standard ensemble with Average (Table 2 columns 6 and
8); and improvement for all 20 TS compared with the mean,
and 13 TS compared with the Min, against the standard
ensemble with RBLC (Table 2 columns 10 and 12).

The ensemble of best individuals with RBLC also shows
improvement for all 21 TS over the ensemble of best indi-
viduals with Average (Table 4). Consequently, it can be
concluded that the RBLC method is better than the Aver-
age method in almost all cases considered.

6. CONCLUSIONS
This paper has explored the Time Series (TS) forecast-

ing improvements obtainable by using ensemble approaches
in conjunction with a popular evolutionary algorithm for
evolving Artificial Neural Networks (ANNs). We first pre-
sented an analysis of the various parameters used in the
EPNet Algorithm to evolve ANNs for TS forecasting. The
algorithm was found to be not as sensitive to variations of
some parameters, like the population size or initial learning
rate, as others, in particular the successful training param-
eter. It was shown how important it is to set this with an
appropriate value. Then, variations of the algorithm were

compared, in particular the differences in results obtained
by using fixed calculated input architectures compared to
when they are evolved. It was determined after some pre-
liminary experiments that calculating the Average Mutual
Information for the time delay and False Nearest Neighbour
for the embedded dimension was not the best option for all
TS. For this reason the main experiments presented in this
work were performed evolving the inputs and delays.

After setting those details, the best individual evolved
ANN results were compared against those of ensembles of
evolved individuals. In some cases it seemed that the en-
sembles worked better, but it was found that the best re-
sults were not achieved if the entire population of the last
generation of the EPNet Algorithm was used to form the en-
sembles. Instead it was better to only use the fittest half of
the population, discarding the worst individuals in the pop-
ulation to avoid the introduction of unnecessary noise/error
into the prediction of the ensembles.

Comparisons were then made between two approaches
for combining the outputs of the ensemble constituents: a
simple Average versus a Rank-Based Linear Combination
(RBLC) method. It was found that, overall, the RBLC en-
sembles were better than Average ensembles. On the other
hand the Average ensembles only improved a few TS and the
RBLC improved around the half of them at 0.1 level of sig-
nificance when they are compared with the best individual.
Finally, when ensembles of best individuals from indepen-
dent runs were tested, further improvements over nearly all
the previous results were achieved.

The diversity of information in the ensembles is thus seen
to provide better TS forecasting results than individual so-
lutions, as long as appropriate individuals and output com-
bination methods are used. There remain many further pos-
sible variations of the approaches studied in this paper. For
example, more carefully optimized values for the various pa-
rameters (e.g. β), or inclusion of more than one individual
from each independent run in the ensembles of best individ-
uals approach. It is hoped that a more exhaustive study,
including the evolutionary optimization of such details, will
be presented in a longer future publication.

In summary, a detailed analysis of building ensembles
from the evolved populations of the EPNet Algorithm was
carried out on 21 TS with different dynamics and from dif-
ferent fields, and improved results were obtained for almost
all of them. Thus, evolving ANNs and using ensembles with
the EPNet algorithm for the TS forecasting task seems to
be as successful as analogous ensemble EPNet approaches
for classification tasks [15], demonstrating that the ensem-
ble has more valuable information than a single individual
for the TS forecasting task.

7. ACKNOWLEDGMENTS
The first author would like to thank CONACYT for the

support of his graduate studies through a scholarship.

8. REFERENCES
[1] J. Belaire-Franch and D. Contreras. Recurrence plots

in nonlinear time series analysis: Free software.
Journal of Statistical Software, 7(9), 2002.

[2] R. J. Frank, N. Davey, and S. Hunt. Time series
prediction and neural networks. Journal of Intelligent

and Robotic Systems, 31:91–103, 2001.

[3] Hyndman, R.J. (n.d.). Time series data library.
http://www.robhyndman.info/TSDL, Accessed on
January 2009.

[4] H. A. Mayer and R. Schwaiger. Evolutionary and
coevolutionary approaches to time series prediction
using generalized multi-layer perceptrons. Proceedings

of the 1999 Congress on Evolutionary Computation,

CEC 99, 1:275–280, 1999.

[5] R. Mikolajczak and J. Mandziuk. Comparative study
of logistic map series prediction using feed-forward,
partially recurrent and general regression networks.
Proceedings of the 9th International Conference on

Neural Information Processing, 2002. ICONIP ’02.,
5:2364–2368 vol.5, Nov. 2002.

[6] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf,
J. Kohlmorgen, and V. Vapnik. Predicting time series
with support vector machines. In ICANN ’97:

Proceedings of the 7th International Conference on

Artificial Neural Networks, pages 999–1004, London,
UK, 1997. Springer-Verlag.

[7] Santa Fe Competition. The Santa Fe time series
Competition Data. Stanford Psychology, Stanford
University. http://www-psych.stanford.edu/∼andreas
/Time-Series/SantaFe.html, Accessed on January,
2009.

[8] F. Takens. Detecting strange attractors in turbulence.
In Dynamical Systems and Turbulence, Warwick 1980,
volume 898, pages 366–381, Berlin, 1981. Springer.

[9] F. E. H. Tay and L. J. Cao. ǫ-descending support
vector machines for financial time series forecasting.
Neural Processing Letters, 15(2):179–195, 2002.

[10] E. A. Wan. Time series data. Department of
Computer Science and Electrical Engineering. Oregon
Health & Science University. http://www.cse.ogi.edu/
∼ericwan/data.html, Accessed on 19 March, 2008.

[11] E. Weeks. Chaotic time series analysis. Physics
Department, Emory University. http://www.physics.
emory.edu/∼weeks/research/tseries1.html, Accessed
on January, 2009.

[12] A. S. Weigend and N. A. Gershenfeld, editors. Time

series prediction: Forecasting the future and

understanding the past. Addison Wesley, 1994.

[13] X. Yao and Y. Liu. Epnet for chaotic time-series
prediction. In SEAL’96: Selected papers from the First

Asia-Pacific Conference on Simulated Evolution and

Learning, pages 146–156, London, UK, 1997.
Springer-Verlag.

[14] X. Yao and Y. Liu. A new evolutionary system for
evolving artificial neural networks. IEEE Transactions

on Neural Networks, 8(3):694–713, 1997.

[15] X. Yao and Y. Liu. Making use of population
information in evolutionary artificial neural networks.
IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 28(3):417–425, Jun 1998.

[16] X. Yao and Y. Liu. Ensemble structure of evolutionary
artificial neural networks. Proceedings of IEEE

International Conference on Evolutionary

Computation, 1996, pages 659–664, 20-22 May 1996.

[17] G. P. Zhang and V. L. Berardi. Time series forecasting
with neural network ensembles: An application for
exchange rate prediction. The Journal of the

Operational Research Society, 52(6):652–664, 2001.

