
Artificial Bee Colony Training
of Neural Networks

John A. Bullinaria and Khulood AlYahya

School of Computer Science, University of Birmingham
Birmingham, B15 2TT, UK

[j.a.bullinaria,kya020]@cs.bham.ac.uk

Abstract. The Artificial Bee Colony (ABC) is a recently introduced
swarm intelligence algorithm for optimization, that has previously been
applied successfully to the training of neural networks. This paper ex-
plores more carefully the performance of the ABC algorithm for opti-
mizing the connection weights of feed-forward neural networks for clas-
sification tasks, and presents a more rigorous comparison with the tradi-
tional Back-Propagation (BP) training algorithm. The empirical results
show that using the standard “stopping early” approach with optimized
learning parameters leads to improved BP performance over the previ-
ous comparative study, and that a simple variation of the ABC approach
provides improved ABC performance too. With both improvements ap-
plied, we conclude that the ABC approach does perform very well on
small problems, but the generalization performances achieved are only
significantly better than standard BP on one out of six datasets, and the
training times increase rapidly as the size of the problem grows.

1 Introduction

Recently, the study of different insect behaviours, animal colonies and swarms
has led to the introduction of many nature inspired optimization algorithms [6].
Such swarm intelligence algorithms typically involve a group of simple agents
that cooperate with each other locally, either directly or indirectly, and these
simple interactions lead to the emergence of complex intelligent global behaviour
for solving problems. The best known examples are Particle Swarm Optimiza-
tion (PSO), inspired by the social behaviour of flocks of birds, and Ant Colony
Optimization (ACO), inspired by the foraging behaviour of ants.

A more recent, and less well studied, swarm intelligence algorithm is the
Artificial Bee Colony (ABC) originally proposed by Karaboga [7], and inspired
by the foraging behaviour of honeybees. There are many possible applications
of ABC, but this paper will concentrate on their use in optimizing the weights
of artificial Neural Networks (NNs). Of course, there already exist many hybrid
neural network learning algorithms that aim to improve upon standard gradi-
ent descent algorithms such as Back-Propagation (BP), but the advantages of
those approaches are debatable. In particular, Cantu-Paz and Kamath [4] have
shown that most combinations of Evolutionary Algorithms (EAs) and neural



2 John A. Bullinaria and Khulood AlYahya

networks performed no better than simple BP on the classification tasks they
tested. Karaboga and colleagues [9, 11], however, have previously applied ABC
to neural network learning and claimed some success. The aim of this paper is
to explore more carefully how effective ABC really is for training feed-forward
neural networks to perform classification tasks.

In the following sections, we first describe the ABC algorithm and how it can
be applied to neural network training. Then we describe and present results from
a series of computational experiments that explore the power of standard and
improved ABC for neural network applications in comparison with appropriately
optimized BP. The paper ends with our conclusions and a discussion of the
implications.

2 The Standard Artificial Bee Colony Algorithm

The ABC algorithm is a stochastic optimization algorithm inspired by the forag-
ing behaviour of honeybees [7]. The algorithm represents solutions in the given
multi-dimensional search space as food sources (nectar), and maintains a popu-
lation of three types of bee (employed, onlooker, and scout) to search for the best
food source. Comparative studies [8, 10] have indicated that ABC performance
is competitive with other population-based algorithms such as PSO, Genetic
Algorithms (GA) and Differential Evolution (DE).

The general idea of the ABC is that it starts with random solutions and
repeatedly attempts to find better solutions by searching the neighbourhoods
of the current best solutions and abandoning the poor solutions. The current
problem solutions are represented as food sources that are each associated with
an employed bee. An equal number of onlooker bees each choose one of those
food sources to be exploited based on their quality or fitness, using standard
roulette wheel selection [6]. Both onlooker and employed bees continuously try
to locate better food sources in the neighbourhood of their current food source
by changing a randomly chosen dimension of their food source position (i.e.,
a randomly chosen parameter of their solution) by a random amount in the
direction of another randomly chosen food source. Specifically, at each stage, a
randomly chosen parameter xi of food source i is updated by r.(xi − xj) where
r is a random number drawn uniformly from the range [−1, 1], and xj is the
corresponding parameter of a different randomly chosen food source j [11]. If that
update results in a better solution, the existing food source is replaced by the
one at the updated position. Meanwhile, scout bees carry out global exploration
of the search space by randomly choosing new food sources to initialize the
algorithm, and to replace food sources that have been deemed exhausted because
they have failed too many times to lead to improvements.

It is clear from the above description that the standard ABC algorithm has
only three control parameters that need to be set appropriately for the given
problem. First, the bee colony size, equal to twice the number of food sources,
and effectively equivalent to an EA population size. Second, the local search
abandoning limit. Third, the maximum number of search cycles, that is equiva-



Artificial Bee Colony Training of Neural Networks 3

lent to an EA number of generations, and can be defined indirectly by a suitably
chosen fitness-based termination criterion.

3 Training Neural Networks using ABC

Applying the ABC algorithm to training neural networks is relatively straight-
forward. The multi-dimensional search space is the space of network connection
weights and neuron thresholds, and the fitness is a standard measure of network
output performance (such as sum-squared error or cross entropy) on the training
data. However, the main objective here is for the trained network to generalize
to perform well on previously unseen testing data, and it is well known that
learning the training data too precisely can lead to “over-fitting” and unneces-
sarily poor generalization performance [1]. With gradient descent training, such
as BP, that is typically avoided by “stopping training early”, or by adding a
regularization term to the cost function (such as “weight decay”), and optimiz-
ing those with reference to an independent validation dataset [1]. In principle,
similar approaches can be applied to optimize the ABC training, though that
does not appear to have been done in the previous studies.

Karaboga and Ozturk [11] have already tested the ABC approach on nine
PROBEN1 benchmark classification problems [13], and compared their results
with those they obtained using two traditional neural network learning algo-
rithms (BP and Levenberg-Marquardt) and three population based algorithms
(PSO, GA and DE). Overall, the ABC achieved good results. More recently,
further improved results have been obtained with hybrid learning algorithms
involving ABC combined with traditional neural network training algorithms
[12, 14]. The key question to be addressed in this paper is: how can these good
ABC results be reconciled with the earlier negative results that Cantu-Paz and
Kamath obtained for the closely related population-based EAs [4]?

For the purpose of fair comparison, we shall follow as closely as possible
the approaches used in the previous studies in this area. As with the earlier
comparative study of using EAs for NN training [4], the ABC algorithm will
be compared here with standard BP. Following the earlier study of using ABC
for NN training [11], we shall concentrate on standard fully connected feed-
forward classification neural networks with one hidden layer and use sigmoidal
hidden and output activation functions. Sum squared error will again be used
as the training cost function, a simple winner-take-all approach will be used to
determine the predicted output classes during testing, and performance will be
given as percentage correct scores.

An important issue when comparing learning algorithms is that many of the
standard benchmark datasets in the UCI Machine Learning Repository [2] are
actually trivial in the sense that even the simplest low complexity O(nd) al-
gorithms do not perform significantly worse on them than more sophisticated
algorithms [5]. In fact, four of the nine datasets used in the Karaboga and Ozturk
study [11] are trivial in that sense (Cancer, Card, Diabetes and Glass) [5], so we
shall not consider them any further. They will be replaced by the more challeng-



4 John A. Bullinaria and Khulood AlYahya

Table 1. Neural network architectures, numbers of weights, and training, validation
and testing dataset sizes.

Dataset Architecture Weights Train Valid. Test

Thyroid 21-6-3 153 3600 1800 1800
Heart 35-6-2 230 460 230 230
Horse 58-6-3 375 182 91 91
Soybean 82-6-9 631 342 171 170
Gene 120-6-3 747 1588 794 793
Digits 64-40-10 3010 3058 765 1797

ing Optical Digits dataset that has 64 inputs representing pixelated images and
10 output classes for the digits 0 to 9, with 3823 training patterns and 1797 for
testing [2]. The same network architectures were used as in the Karaboga and
Ozturk study [11] for their five remaining datasets. For the new Optical Digits
set, 6 hidden units was nowhere near enough, so 40 were used. Table 1 sum-
marizes the properties of the six datasets studied, showing the corresponding
network architectures, numbers of weights, and dataset sizes.

Throughout this study we shall use standard unpaired two-tailed t tests to de-
termine the statistical significances of any performance differences found. Such
tests on the Karaboga and Ozturk [11] results (repeated in Table 2) for each
of their five datasets indicate that BP is significantly better (p < 0.001) than
ABC on one (Gene), significantly worse (p < 0.001) on three (Heart, Soybean,
Thyroid), and not significantly different (p > 0.1) on one (Horse). A potential
problem with these results, however, is that the performance of both algorithms
appear surprisingly poor, particularly for the Thyroid and Soybean datasets, so
the following sections will attempt to optimize the performance of each algo-
rithm, and repeat the comparisons using the improved results.

4 Training Neural Networks using Optimized BP

A common problem with all comparisons against BP is that it is very easy for
BP to perform poorly on the chosen datasets if its learning parameters are not
optimized well, and that can be difficult to do by hand, because the parameters
are not independent, and the best values depend on the properties of the given
dataset. The study of Karaboga and Ozturk [11] simply used the same learning
parameters for all nine datasets, and it is likely that they were far from optimal
for at least some of them. One solution would be to use an evolutionary algorithm
to optimize the key BP learning parameters, such as the random initial weight
range [−ρ, ρ] and the learning rate η. With a fixed, sufficiently large, number of
training epochs for each problem, the evolved learning rate is then able to imple-
ment a form of early stopping and avoid over-fitting, and that consistently leads
to improved performances [3]. However, this evolutionary approach tends to be
rather computationally intensive, and might be regarded as giving BP an unfair
advantage over ABC. Instead, we can abstract a consistent emergent property



Artificial Bee Colony Training of Neural Networks 5

Table 2. Mean neural network Classification Error Percentages (CEP) and standard
deviations (s.d.) for the six datasets using: BP from [11], ABC from [11], Optimized
BP, Optimized ABC, and Optimized Unconstrained ABC.

Dataset BP [11] ABC [11] Opt. BP Opt. ABC Opt. UABC

Thyroid CEP 7.26 6.95 2.06 6.14 1.87
s.d. 0.00 0.01 0.21 0.07 0.14

Heart CEP 21.44 19.48 19.43 19.13 19.49
s.d. 0.55 1.41 0.54 1.34 0.57

Horse CEP 27.84 28.63 28.43 27.69 27.14
s.d. 2.12 2.61 2.70 1.23 1.69

Soybean CEP 61.16 38.63 10.08 13.93 9.91
s.d. 19.18 3.18 1.98 1.13 1.04

Gene CEP 11.37 29.50 13.23 19.55 12.22
s.d. 1.15 1.88 0.57 0.71 0.52

Digits CEP - - 4.32 6.29 4.27
s.d. - - 0.27 0.18 0.34

of the evolutionary approach, namely that very small initial weight ranges and
very slow learning rates tend to work best, and use a standard stopping early
approach to set the number of epochs. The details of the experimental set-up
and analysis were then chosen to provide the closest possible match with the
ABC approach discussed in the next section.

The datasets were each split into standard training, validation and testing
sub-sets (as indicated in Table 1), with the validation set performance used
to determine the optimal stopping point for the training on the training set.
For each training run, for each dataset, the initial network weights were drawn
uniformly from the range [-0.03,0.03] and a maximum of one million epochs
of BP training were applied. Clearly, a learning rate for each training dataset
was required that consistently resulted in achieving the maximum validation
set performance in the allowed number of epochs. These were found by initially
trying a learning rate of 0.000001 in each case, and then increasing that by factors
of ten till it was large enough, giving 0.000001 for Gene, 0.00001 for Heart and
Digits, 0.0001 for Horse, 0.001 for Soybean, and 0.01 for Thyroid. These large
differences serve to emphasise again how important it is to set the learning
parameters differently and appropriately for each dataset. It is quite likely that
the learning could be speeded up in some cases (by using fewer epochs and larger
learning rates), but determining by how much would potentially require more
computational effort overall for no improvement in performance.

As always, the random factors result in fluctuating performances within and
across runs, so there are often no clear optimal stopping points for the training,
and it is not obvious that all runs should be selected for use in computing the
average test set performances. A number of valid model selection approaches were
possible, but it made best sense to choose an approach to averaging that most
closely matched the natural averaging approach for the ABC. An average test set
performance was therefore determined using the network weights corresponding



6 John A. Bullinaria and Khulood AlYahya

to the top ten validation set performances from five BP runs. This was then
repeated ten times to give an indication of the variance of the results. These
results are presented in the “Opt. BP” column of Table 2 for comparison with the
corresponding results from the earlier study [11]. With the optimized parameter
values, BP is now significantly better (p < 0.001) than ABC on three of the
datasets (Thyroid, Soybean, Gene), and not significantly different (p > 0.1) on
the other two (Heart, Horse), despite the fact that BP has been trained on less
data (i.e., not on the subset of the full training data set that was kept aside to
be the validation set). So, at this stage, the empirical results show that ABC is
significantly worse than BP for training neural networks.

5 Training Neural Networks using Optimized ABC

In the same way that non-optimized learning parameter values resulted in mis-
leadingly poor BP results, it may be that better optimization of the ABC pa-
rameters can bring that approach back up to, or even beyond, the performance
levels of BP. This is the issue that we address next.

We proceed by investigating how the ABC performance depends on its pa-
rameters, and thus determine the best values that will enable a fair comparison
against BP. A preliminary investigation revealed that the bee colony size and
abandoning limit had very little effect on the results achieved, but the number of
search cycles was extremely important. This is not surprising, since the ABC will
obviously be prone to under- and over-fitting in exactly the same way as gradi-
ent descent algorithms such as BP, and stopping training early (at an optimum
point determined by performance on a validation set) can be expected to lead
to improved generalization performance on the test set. The way to get the best
generalization results is therefore to apply the ABC algorithm for enough cycles
that over-fitting has clearly begun, and then go back and take the solutions (i.e.
network weights) corresponding to the best validation set performances to be the
ones to represent the Optimized ABC. As with the above averaging approach
for BP, we take the average test set performance over the ten sets of weights
corresponding to the ten best validation performances from each ABC run, and
repeat that ten times to estimate the variances. The use of five BP runs to
give the ten best sets of BP weights can now be seen as providing a reasonable
approximation to picking the best weights from whole bee colonies.

For neural network training using ABC, there is another crucial parameter
that can have a big effect on the results, namely the size of the search space,
which here corresponds to the limit on the network weights. It is known that
optimizing the initial random weight range for BP can have a big effect on the
generalization performance [3], so it is not surprising that it also has a big effect
for ABC too. The obvious way to proceed is to start with the default ABC colony
size of 30 and abandoning limit of 1000 used by Karaboga and Ozturk [11], but
to train for a range of search space limits to find the best for each dataset.

Figure 1 shows how the performance varies with search space size, i.e. the
weight range [−ρ, ρ] used to generate the initial solutions and to limit the weights



Artificial Bee Colony Training of Neural Networks 7

Fig. 1. Generalization performance as a function of weight range for the ABC training
algorithm with limited random initial weight range, and the same limited weight range
throughout training.

Fig. 2. Generalization performance as a function of initial weight range for the ABC
training algorithm with limited random initial weight range, but unconstrained weights
at later stages of training.

throughout training. There is inevitable problem dependence, but if the range is
too small or too large, the generalization performance deteriorates in each case.
The study of Karaboga and Ozturk [11] simply used the same range of [−2, 2]
for all the datsets, but that is significantly worse than optimal for four of the
six datasets (Thyroid, Horse, Gene, Digits), and not significantly different for
the other two (Heart, Soybean). The performances of the optimal data points
from Figure 1 are shown in the “Opt. ABC” column of Table 2, and despite
the reduced amount of training data caused by excluding the validation set, no
datasets have reduced performance compared with the original study. However,
even with the optimized weight ranges, ABC is still significantly worse (p < 0.01)
than BP on four data sets (Thyroid, Soybean, Gene, Digits), and not significantly
different (p > 0.1) on the other two (Heart, Horse).

The general pattern found for BP initial weight ranges is that smaller values
tend to result in better generalization until a point is reached when any further
reductions make little difference. The problem the ABC approach has is that



8 John A. Bullinaria and Khulood AlYahya

Fig. 3. Generalization performance as a function of the bee colony size for the UABC
training algorithm with optimal initial weight range and abandoning limit of 1000.

smaller values will lead to an over-restricted search space if the weights are
constrained to stay within that range throughout training. However, it is a simple
variation of the standard ABC (that we shall call Unconstrained ABC, or UABC)
to define an initial weight range, but allow the ABC algorithm to take the weights
outside that range. Doing that leads to the improved pattern of performances
shown in Figure 2. Now the performance is fairly level for small weight ranges,
and the range [−0.03, 0.03], that we used for the BP runs, is small enough to
work well for all the datasets. Smaller values tend to increase the number of
training cycles without significant performance improvement, so there is no point
in using a smaller range. The optimized performances using this approach and
initial weight range are given in the “Opt. UABC” column of Table 2. This
shows significant performance improvement (p < 0.01) over the restricted weight
range approach (in the “Opt. ABC” column) for four of the datasets (Thyroid,
Soybean, Gene, Digits), and no significant difference (p > 0.1) for the other
two (Heart, Horse). Comparing the optimized UABC results with the optimized
BP results shows no significant difference (p > 0.1) for five of the six datasets
(Thyroid, Heart, Horse, Soybean, Digits), but UABC is now significantly better
(p < 0.01) than BP for the Gene dataset.

It was stated above that the bee colony size and abandoning limit had little
effect on the results obtained by ABC for neural network training, but we now
need to check that claim more carefully, in case their optimization can lead to
further improvements in performance. First, Figure 3 confirms that, as long as
the colony size does not fall below about 10, it makes no significant difference
to the final performance what the colony size is. Obviously, larger colonies will
inevitably result in longer compute times per cycle, and that tends to not be
fully compensated by a reduction in the number of cycles required, so there is
an overall advantage in keeping the colony size reasonably low. The default size
of 30 used above is well within the range of good values, but not so high as to
have serious adverse computational resource implications.

The effect of varying the abandoning limit is shown in Figure 4. As long as
it is not below about 30, it makes no significant difference what the limit is. In



Artificial Bee Colony Training of Neural Networks 9

Fig. 4. Generalization performance as a function of the abandoning limit for the UABC
training algorithm with optimal initial weight range and bee colony size of 30.

fact, for the default limit of 1000, or more, the scout bees are virtually never
employed, and that has no adverse effect on performance.

Thus, we have now fully optimized the ABC algorithm parameters, and the
results shown in Table 2 are the best possible without further modification of
the algorithm itself. The ABC has achieved neural network generalization per-
formance significantly better than BP on the Gene dataset, but the results for
the other five datasets studied are not significantly different to those obtained
using standard BP with appropriate learning parameter values.

6 Conclusions and Discussion

This paper has investigated the use of the ABC algorithm for training neural
networks, and shown how it can be optimized to give better results than those
found in previous studies. However, in most cases, the best ABC generalization
performance levels obtained are not significantly different to standard BP that
has been properly optimized for the given problems.

One could argue that ABC algorithms are relatively minor extensions of
standard EAs: they both involve populations of solutions, the generation of new
solutions based on existing solutions, and the discovery of better solutions by
iteratively using fitness based selection to determine which “offspring” should
replace which existing solutions. The obvious question to ask, then, is whether
the offspring generation and selection inspired by bees perform any better on
the application of interest (i.e. neural network training) than those inspired by
evolution by natural selection. We have seen that the scout bee component of
the ABC algorithm is redundant in this case, in that no decrease in performance
results from setting the abandoning limit to values so high that the scout bees
never become involved after the initial solution set generation. Thus there is
effectively no further wide-scale random exploration of the search space during
training. This means that all the offspring are generated by changing the value
of a single randomly chosen parameter (i.e. network weight) by an amount that
depends on the difference between that value and the corresponding value of



10 John A. Bullinaria and Khulood AlYahya

another individual. That is exactly how a basic EA cross-over and mutation
would optimize its genotype [3], so it is not surprising that we have come to
a similar conclusion to that of the earlier study of Cantu-Paz and Kamath [4]
which showed that weight optimization using EAs gave results that were not
significantly better than standard BP.

This paper has shown that the optimized ABC and BP results are not signif-
icantly different for five of the six datasets studied, but we are still left with
the question of how the ABC performs significantly better than BP on the
Gene dataset. With BP learning, the weight update sizes depend on the back-
propagated output errors and the chosen value of the learning rate parameter.
With ABC optimization, the potential weight update sizes depend on the weight
differences between individuals, and that means the algorithm can effectively
generate its own learning rates for each weight during training [11]. For example,
about half way through training on the Gene dataset, the mean standard devia-
tion across individuals of the input to hidden unit weights is around 0.05, while
that of the hidden to output weights is around 3.3. This means that there will
be something like a factor of 66 difference in the average effective learning rates
for the two sets of weights. Similar large differences in BP learning rates across
network components have been found in evolutionary neural network studies to
lead to significant improvements in performance for some datasets [3], so it is a
reasonable hypothesis that this is why ABC is performing better here than BP
with a single learning rate throughout the network.

Another important issue is the increased computational cost of using ABC
rather than BP. With ABC updating random network weights one at a time,
by amounts involving a random factor, it will inevitably become less computa-
tionally efficient as the network sizes increase. Of course, BP also becomes more
computationally costly as the network size grows, but to a much lesser extent
than ABC. This differing dependence on network size makes fair comparisons of
the two approaches difficult, because past empirical results have shown that the
generalization performance usually improves with more hidden units, as long as
appropriate regularization (such as stopping early) is used (e.g., [3]), and using
much larger networks than the current study will not only pose problems with
getting the experiments completed in a reasonable time, but will also put ABC
at a considerable compute time disadvantage compared with BP. If equal fixed
maximum compute times were enforced for both algorithms, it is quite likely
that BP would end up being able to use significantly more hidden units, and
thus achieve better generalization performances than the ABC in that way.

There clearly remains considerable scope for future work in this area, but,
unfortunately, most of it will be extremely computationally expensive. First, of
course, the investigation of a wider range of datasets, with many more runs per
dataset, will provide a more reliable indication of the patterns of results that can
be expected more generally. Then, the application of an evolutionary approach
to the optimization of the BP learning parameters, including the evolution of
different learning rates for different layers of weights, should allow closer to opti-
mal BP performance than is feasible with parameters set “by hand” [3], and also



Artificial Bee Colony Training of Neural Networks 11

allow testing of the above hypothesis concerning the superior ABC performance
on the Gene dataset. Finally, testing how the generalization performances and
run times depend on the number of neural network hidden units will address the
computational cost issue noted above. Ultimately, it will be the results of this
future work that will determine whether the ABC is a worthwhile algorithm for
training neural networks.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford, UK: Oxford
University Press (1995)

2. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. Univer-
sity of California, http://www.ics.uci.edu/~mlearn/MLRepository.html (1998)

3. Bullinaria, J.A.: Using evolution to improve neural network learning: Pitfalls and
solutions. Neural Computing and Applications 16 209-226 (2007)

4. Cantu-Paz, E., Kamath, C.: An empirical comparison of combinations of evolution-
ary algorithms and neural networks for classification problems. IEEE Transactions
on Systems, Man, and Cybernetics-Part B: Cybernetics 35 915-927 (2005)

5. Duch W., Maszczyk T., Jankowski N.: Make it cheap: learning with O(nd) com-
plexity. Proceedings of the World Congress on Computational Intelligence, 132-135
(2012)

6. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Sussex, UK:
Wiley. (2007)

7. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Technical Report TR06, Computer Engineering Department, Erciyes University,
Turkey (2005)

8. Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm.
Applied Mathematics and Computation 214 108-132 (2009)

9. Karaboga, D., Akay, B., Ozturk, C.: Artificial Bee Colony (ABC) optimization
algorithm for training feed-forward neural networks. Proceedings of the 4th In-
ternational Conference on Modeling Decisions for Artificial Intelligence, 318-329
(2007)

10. Karaboga, D., Basturk, B.: On the performance of Artificial Bee Colony (ABC)
algorithm. Applied Soft Computing 8 687-697 (2008)

11. Karaboga, D., Ozturk, C.: Neural networks training by Artificial Bee Colony
algorithm on pattern classification. Neural Network World 19 279-292 (2009)

12. Ozturk, C., Karaboga, D.: Hybrid Artificial Bee Colony algorithm for neural net-
work training. Proceedings of the IEEE Congress on Evolutionary Computation,
84-88 (2011)

13. Prechelt, L.: PROBEN1 – A set of benchmarks and benchmarking rules for neu-
ral network training algorithms. Technical Report 21/94, Universitat Karlsruhe,
Fakult at fur Informatik, Germany (1994)

14. Qiongshuai, L., Shiqing , W.: A hybrid model of neural network and classification
in wine. Proceedings of the 3rd International Conference on Computer Research
and Development, 58-61 (2011)


