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Catastrophic forgetting is a well-known failing of many neural network systems
whereby training on new patterns causes them to forget previously learned patterns.
Humans have evolved mechanisms to minimize this problem, and in this paper we
present our preliminary attempts to use simulated evolution to generate neural networks
that suffer significantly less from catastrophic forgetting than traditionally formulated
networks.

1. Introduction

Virtually all natural systems gradually forget what they have learned previously,
particularly when they learn new information.  However, with traditional
artificial neural networks, the forgetting is much more catastrophic, and this
proves to be a serious limitation for them (McCloskey & Cohen, 1989; Ratcliff,
1990).  Some relatively complex systems, involving the interleaving of pseudo-
patterns, and/or dual network architectures, have already been shown to deal
with this problem quite successfully (French, 1999).  However, we wish to
explore the possibility of avoiding the problem within much simpler systems.
Natural neural networks, such as human brains, have presumably evolved by
natural selection to minimize the forgetting, and the aim of this paper is to
present a preliminary investigation into using simulated evolution to see how
far we can minimize the problem in artificial neural networks.  The strategy
employed starts by measuring how well traditional networks remember sets of
input-output mappings after being trained on new items, and then explores
systematically whether these can be evolved into better performing networks.

2. Evolving Neural Networks

We simulate evolution by maintaining a population of individual neural
networks, each specified by a number of ‘innate’ parameters, and using an
appropriate fitness measure to determine which to discard and which to use to
create the next generation by genetic cross-over and random mutation.
Repeating this process should result in increasingly fit populations.



For this study, the architecture of the networks and the learning algorithm
were fixed to be standard Multi-Layer Perceptrons with one hidden layer, trained
by gradient descent weight updating (back-propagation) with the Cross Entropy
error measure (Bullinaria, 2003).  The aim was to evolve various neural network
topology and learning parameters to produce systems that suffer minimal
catastrophic forgetting.  Each network was initialized with different random
weights from a different specific range, and then trained on the same set of
initial patterns until it learned all those patterns (i.e. had all output activations
within a particular tolerance of their target outputs), or until it had reached a
maximum number of epochs of training.  It was then trained with a new set of
patterns in the same manner, and re-tested to determine how many of the
original patterns it still remembered.  The fittest individuals were those with the
highest number remembered.  The least fit half of the population was then
removed, and each of the remaining individuals randomly selected a mating
partner to produce one child, thus restoring the population size.  The children
each inherited innate characteristics (i.e. parameter values) from the range
spanned by its two parents, and random Gaussian mutations were added to
allow values outside that range (Bullinaria, 2003).  The initial population had
random innate parameters, and then for each new generation, a new global
random set of training/remembering data was generated, and each individual had
new random initial weights generated from their own innately specified ranges.  

The following Section will make these ideas more concrete by specifying our
simulations in more detail and presenting the results from a systematic sequence
of experiments that explore the issued involved.

3. Simulation Results

For our main study we needed to fix a convenient training set of associated
input and memory patterns, that was small enough for the simulations to run
reasonably quickly, yet large enough to be representative.  After some
experimentation, we settled on random associations of 12 bit random binary
patterns with 6 bits ‘on’.  New random data sets of this specification were
generated for each generation.  Each network was trained on 20 such patterns
until the error on each output bit was less than 0.1, or the maximum of 1000
epochs was reached.   It was then trained on a different set of 4 such patterns,
and the number remembered correctly from the original 20 was measured using a
tolerance of 0.2.  Throughout, all our networks had 50 hidden units, which is
plenty for this task, and we present population averages over 100 individuals.

It is appropriate to start by checking the baseline performances for standard



network training parameters.  For 2500 individuals with different random
training data sets, trained using back-propagation learning rates of 0.2 with
random initial weights uniformly distributed in the range [–1, +1] the mean
remembering rate was 69%.  The associated standard deviation of 5% indicates
the extent of the variance due to some data sets being ‘easier’ than others.

The first thing we wanted to explore was the suggestion of French (1991)
that hidden unit activation sharpening could reduce the forgetting by developing
semi-distributed representations in the hidden layer.  The idea is that, at each
epoch of training, the input to hidden weights are modified to bring the NH

highest activation hidden units closer to one, and the NL lowest activations
closer to zero, by a ‘sharpening factor’ of α times the difference.  There are two
variations to consider.  First, when we force NH + NL = NHid  so all hidden
activations get changed, the sharpening factor invariably evolves to zero, as seen
on the left of Figure 1, leaving us with our standard network.  If we let NH and
NL evolved freely, they both evolve very quickly to zero, as seen on the right of
Figure 1, again leaving us with our standard network.  It seems that this kind of
node sharpening does not really help with catastrophic forgetting for our class of
training data.  As a check, these parameters were left free to evolve in all our
subsequent simulations, but in each case they chose to turn off node sharpening.

There are a number of traditional network parameters that one can evolve
with the hope of improving performance.  To get a feel for which are most
effective, we shall consider each in turn before evolving them all at once.  First
we evolve the learning rates.  It is now well established that allowing separate
gradient descent step sizes ηL  for each layer and bias set L is more efficient than
a single parameter to control them all (Bullinaria, 2003).  Figure 2 shows the
evolution of these four parameters for our system, and the associated
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Figure 1: The parameters for hidden unit activation sharpening evolve to zero,
indicating that this is not a good strategy for reducing catastrophic forgetting.



improvement in remembering performance from the baseline 69% up to around
79%.  Note the large differences in size between the four learning rates, and how
far removed they are from the values traditionally used.  

Associated with each learning rate is a random initial weight distribution.
There are several options for specifying and evolving these, such as means and
standard deviations of Gaussian distributions (µL, σL), or as lower and upper
limits of uniform distributions (-lL, uL).  Figure 3 shows how a set of uniform
distributions evolve, and the associated improvement in remembering from the
69% baseline up to around 76%.  It is clear that the sudden improvement in
performance corresponds to a ten-fold widening of the input to hidden initial
weight distributions.

One major advantage of the evolutionary approach is its ability to evolve
simultaneously a number of parameters that interact in a complex manner.
Allowing the learning rates and initial weight distributions to evolve together
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Figure 2: Evolution of the learning rates for the two weight layers and two sets of
biases, and the associated improvement in remembering performance.
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Figure 3: Evolution of the upper and lower limits of the four uniform random initial
weight distributions, and the associated improvement in remembering performance.



leads to rather different patterns of results from when they are evolved
separately.  By coordinating their values, our system was able to improve its
remembering performance up to around 88%.  It is interesting to note that the
improved remembering automatically brings with it faster learning, so there is
no need to build that explicitly into the evolutionary fitness function.

Two more learning parameters that might conceivably affect our results are
the Sigmoid Prime Offset which prevents saturation and poor learning at the
hidden layer, and weight decay regularization which prevents over-fitting of the
training data (Bullinaria, 2003).  We see on the left of Figure 4 that, if we allow
these to evolve, their parameters both take on values that are so low that they
have no significant effect on the learning or remembering.

Another factor, that one might expect to reduce the interference that causes
forgetting, is the connectivity between layers.  We can evolve parameters that
specify the proportion of possible connections that are used by the network, and
do find that proportions significantly less than one emerge as seen on the right
of Figure 4.  There is almost full connectivity between the hidden and output
layer, but only about one third of the input to hidden layer connections are used.
However, there is virtually no improvement in the remembering performance.
As a check, we tried evolving the connectivities with all other parameters held at
the baseline values, but still there was little remembering improvement.

So far, our study has been based on how many of 20 original patterns were
remembered after training on 4 new patterns.  Now we need to explore the extent
to which the number of new patterns affects the results.  Figure 5 shows what
happens with different numbers of new patterns.  Not surprisingly, the baseline
degree of forgetting as a percentage (left bar of each pair) increases with the
number of new patterns.  The important result is that for every case, evolving
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Figure 4: Evolution results in Sigmoid Prime Offset and Weight Decay parameters
both taking on effectively zero values, and non-standard connectivity patterns.



the network parameters, as described above, leads to a massive reduction in the
amount of forgetting (right bar of each pair).

4. Conclusions

Through a systematic series of simulations, we have shown how, compared with
traditionally formulated networks, an application of evolutionary techniques can
significantly reduce the well known problem of catastrophic forgetting in neural
network systems.  We were surprised to find that evolving the learning rates and
initial weight distributions alone could result in remembering performance
increases that evolution of more esoteric factors cannot beat.  
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Figure 5: The more new patterns learned, the less of the original set are remembered,
but in each case evolution results in improved performance over the baseline.


