In: A. Cangelosi, G. Bugmann & R. Borisyuk (Eds), Modeling Language, Cognition and Action,
pp- 375-384. Singapore: World Scientific. 2005.

EMBRYOLOGICAL MODELLING OF THE EVOLUTION OF
NEURAL ARCHITECTURE

CHRIS P. BOWERS & JOHN A. BULLINARIA

School of Computer Science, The University of Birmingham
Birmingham, B15 2TT, UK
{c.p.bowers, j.a.bullinaria}@cs.bham.ac.uk

Attempts in the past to use evolutionary simulations to model the emergence of modular
neural architectures has led to conflicting results. Here, we present some preliminary
work on the use of computational embryogeny to model the evolution of neural
architecture at a less coarse level of description. We believe that such an approach will
lead to much more reliable and biologically realistic simulations of brain evolution.

1. Introduction

The architecture of the human brain, in particular the existence of functionally
specialised neural modules, is becoming increasingly well mapped out.
However, some of the early results from neural computational modelling in this
area (Rueckl, Cave & Kosslyn, 1989) have recently been thrown into doubt by
more detailed evolutionary simulations (Bullinaria, 2001). There remain a range
of feasible computational approaches to understanding neural architecture
(Jacobs, 1999), and we believe the best way forward is to look at the evolution
of these structures at a much lower level of description than is often used.

Embryogeny is the process by which an embryo structure develops from an
initial stem state. This genotype to phenotype mapping process is adaptive in
that the rules of growth are dependent upon the state of the system and vice-
versa, thus forming a dynamical system. The modelling of such processes in a
simulated evolutionary framework is known as computational embryogeny.

In this paper we shall present work in which such an approach is utilised to
grow neural architectures from an initial stem state, based upon a simple model
encapsulating individual cell states and the diffusion of chemicals in a three-
dimensional space. This formulation is sufficiently expressive to account for
features such as topology and connectivity, as well as the initial weight and
learning parameters. A systematic series of computational experiments is carried
out to explore the possibility of using this approach to study the emergence of
neural structures appropriate for the simplified ‘what-where’ task used
previously (Rueckl, et al., 1989; Bullinaria, 2001). The resulting structures are
then compared against a series of more abstract directly coded models of the
type studied previously by Bullinaria (2001), but with a matched evolutionary



regime. In this way we can gain a better understanding of the reliability of, and
the relationships between, models at different levels of description.

2. Modelling the Emergence of Modularity

We ground our work in the simplified ‘what’ and ‘where’ vision tasks, for which
extensive investigations into the internal representations learned by simple
neural networks have already been carried out (Rueckl, et al., 1989), as have a
series of evolutionary simulations (Bullinaria, 2001). These tasks consist of
mapping from a 5x5 binary retinal image, to a set of 9 ‘what’ and 9 ‘where’
binary classification outputs. The problem is to identify 9 different 3x3 sub-
retinal images that are positioned in the 9 different possible locations upon the
5x5 retina, which yield a total set of 81 possible input patterns.

As in the previous work, the basic neural network structure takes the form
of a 3-layer network consisting of 25 input units, 18 output units and various
hidden units (Figure 1). The hidden units are all fully connected to each of the
inputs, but their connectivity to outputs can be described as belonging to one of
three different groups: connected to only the ‘what’ outputs (Hid!), connected to
only the ‘where’ outputs (Hid2), or connected to both (Hid2). In this respect, a
network where all the hidden units belong to the group Hidl2 would be
considered totally non-modular, whereas a network where there are no hidden
units in Hid12 would be considered to have totally modular connectivity.

The analysis of Reuckl et al. (1989) appeared to show a clear advantage for
modular architectures. However, taking a population of networks, and using
simulated evolution by natural selection to determine all the learning and
architecture parameters, the emergent architecture was found to depend on the
learning algorithm cost function used (Bullinaria, 2001). If the most efficient
(cross entropy based) learning algorithm is used, or if the learning algorithm is
allowed to evolve, we always end up with a non-modular architecture. These
conflicting results have led us to look for more biologically realistic approaches
for understanding the emergence of modularity in neural systems.

3. The Embryological Model

Embryogeny is the process by which an embryo develops from a single stem
cell. Computational embryogeny refers to the simulation, within computational
systems, of the kind of embryonic processes observed in nature. The
embryogeny mapping requires that the phenotype consist of discrete processing
blocks (cells). In our model the cell environment will be represented as a three-
dimensional space that can accommodate various levels of proteins and cell
states at any given real valued position.



9 ‘what’ outputs 9 ‘where’ outputs

T N

‘what” only ‘what’ and ‘where’ ‘where’ only
hidden nodes hidden nodes hidden nodes

W

5x5 input retina

Figure 1: The architecture of the basic neural network model for the ‘what’ and ‘where”’ task.

In nature, the functionality of genes is determined by the state of a cell and
the surrounding environment, i.e. by proteins and other chemicals. The function
of a gene may, in turn, be to alter the cell state upon which these genes are
dependent. In order to capture the essence of this process in a computer
simulation, a number of simplifications over real biological systems must be
made to render the computational costs feasible. All cell sizes and shapes are
taken to be identical, and are represented as spheres with diameters in proportion
to the dimensions of the overall space. Direct cell-cell interaction beyond simple
chemical diffusion is prohibited, so there is no cell-adhesion or any other form
of force between cells. If a cell is to divide, or move into the location of an
existing cell, it simply overwrites the existing cell. This is clearly not
biologically plausible, but it is necessary to reduce the computational costs of a
more realistic physical model.

In nature, any limits on the size of the physical system are set by physical
interaction. Since, in our model, no such forces exist, the environment must be
set at some finite size to impose some constraint on the size of the emergent
system. This poses the problem of what to do when a cell attempts to move or
divide outside of this finite environment. A common approach is to cycle around
the edges so that, for example, in two-dimensional space a toroidal shape is
formed, removing the need to worry about finite limitations. However, this can
often introduce unwanted cyclic behaviour, so a different approach is used in
which any cells dividing outside of the modelled space are simply ignored.

The genetic representation of the embryogeny system is based upon a
simplified model of the genetic regulatory network (GRN), using the Operon
model as a basis for individual gene function (Alberts, et al., 1994). Biologists
use this model to describe how groups of individual genes can form complex
GRNs. In our work, a much-simplified version of the Operon model is used in
which a gene has two dependents, an inducer/repressor and a product. If the



inducer/repressor exists, the gene is switched on/off respectively. If the gene is
switched on, it releases a product pre-defined by the gene. This product may
result in the increase or decrease of the concentration of some protein, or it may
lead to some function upon the cell. For example, a gene that promotes axonal
growth may cause an axon head to grow in the direction of the protein gradient
as defined by the product, as long as no repressor protein is present. The GRN
comes into play since the function of a gene may be to produce an inducer or
repressor itself, and in this way a gene can control the expression of other genes
and so form a network of interaction between genes. In our model, there are 34
gene functions consisting of concepts such as cell division and movement,
protein emission, protein absorption, axon growth, etc. These allow the cells to
adapt and change their environment and cell states.

The mapping process starts with an initial stem state, consisting of pre-
determined input and output neurons and a single stem cell. The growth process
is performed in fixed steps, in parallel, across the space, such that the proteins
and genome interact to produce some cell functionality. This interaction is the
critical part of the model which defines what is expressible in the phenotype.

4. Computational Embryogeny

Computational embryogeny creates a complex mapping between genotype and
phenotype spaces that exhibits some key characteristics. First, the mapping is
many-to-many in that a single genotype can form a variety of different
phenotypes dependent upon the environmental conditions. Similarly, a number
of different genotypes can result in identical phenotypes. Second, the
neighbourhood structure is not necessarily preserved by the mapping, in that two
similar genotypes can result in very different phenotypes, or vice-versa.

From these characteristics, it is easy to assume that such a mapping would
be disadvantageous for a simulated evolutionary process, since it would
introduce a hugely rugged landscape. In some respects, this is true. However,
this is based on the viewpoint that the fitness landscape is a fixed entity through
which a population of individuals drift and jump around based on some
heuristics, or search operators, biased toward fitter individuals. These search
operators are, however, more powerful than this viewpoint suggests, since it is
not only the genetic representation that determines the structure of the fitness
landscape, but also the search operators themselves. If the effects of the search
operators can be adapted in some way during the evolutionary process, then this
would effectively cause a restructuring of the fitness landscape. Thus the
analogy of traversing around landscapes begins to break down.

A further complication is the huge number of possible individuals with
equivalent fitness. The result is that the search space has vast networks of



neutrality, where there are threads, planes, or even higher dimensional structures
of equal fitness. Traditionally, this has been viewed as a bad thing to
incorporate, since it results in convergence of the population or dead time in
terms of evolutionary change. However, such neutral networks have been shown
to be extremely useful with the right kind of algorithm, and evidence suggests
they are also critical to natural evolution (Harvey, 1997). Since there can be no
selection pressure in these neutral areas, neutral evolution has a different
behaviour to that of adaptive evolution, which relies on selection pressure to
drive evolution to fitter individuals. These neutral networks can provide a way
to freely traverse the search space, without selection pressure driving toward
some fixed convergence point. The result is that individuals converge onto the
most optimal neutral network, and then diverge across that network. When an
individual finds a new neutral network within its reach, it jumps across, and the
rest of the population converges on this new network. This results in staggered
jumps in fitness through evolutionary time, and gradual increases in diversity
followed by a sudden drop as the population jumps to the new network (Smith,
Husbands & O’Shea, 2001).

An important point to note here is that, in the absence of selection pressure,
evolution does not simply stop. Since individuals are selected randomly, search
operators are still used to produce new offspring during neutral evolution. The
evolutionary drive is no longer towards fitter individuals, but individuals that
can maintain or improve their fitness through mutations and crossover. In other
words, genetic material that is more susceptible to damage will be less likely to
propagate to the next generation, regardless of its contribution to fitness. It could
be said that adaptive evolution applies evolutionary drive to fitter individuals,
whilst neutral evolution drives towards more evolvable individuals.

To take advantage of these elements, our evolutionary algorithm consists of
the following processes:

* The mutation operator consists of point mutations applied to each allele of
the genome with a given mutation probability, resulting in random
replacement with a value from within the range of validity. Crossover
involves the selection of two random crossover points which may only fall
in between genes. This helps to prevent destruction of genes and ensures the
conservation of genome length.

* Recombination is based on a steady state approach, consisting of the
replacement of the last individual in a linearly ranked population only if its
fitness is equal or less than the individual that replaces it.

* Fitness is defined as the grown network’s performance on the training data
after gradient descent learning using our chosen cost function.



It has been shown that for a complex mapping, optimal neutral evolution will
occur when the population is phenotypically converged. In other words, when
the entire population is drifting on the same neutral network there is more
chance of finding a bridge to an individual/network of higher fitness (Harvey,
1997). However, in order for adaptive evolution to be successful, it must
maintain diversity amongst the population to perform effective search across the
search landscape. Obviously, these are two conflicting ideals, and so the solution
has been to use an algorithm based on an island population model (Gordon,
Whitley & Bohn, 1992). This consists of a number of separate sub-populations
being allowed to evolve and swap individuals. Populations swap individuals
under the following conditions:

* An individual is chosen as a migrant to the receiving population if it is the
best individual from another population having the greatest genetic distance
from the best individual in the receiving population.

* The chosen migrant replaces the individual in the receiving population with
the closest genetic distance.

Genetic distance is measured as the number of differences between two
individuals. This allows a group of individuals to converge on a neutral network,
whilst ensuring different groups are effectively forced to diverge from each
other. The result is a system that can swiftly adapt to suit either neutral or
adaptive evolution, or even a combination of both. An added advantage of the
island model, and one of the more common reasons for its use, is that it is easy
to distribute across numerous machines and so speed up the evaluation time of
the overall population. This is a significant advantage in this case where fitness
evaluation can be particularly computationally expensive.

5. Experimental Details

Our aim for this paper is to extend the previous work on evolving modularity
(Bullinaria, 2001) by allowing the evolutionary process greater flexibility in the
architectures and learning parameters it can express. In particular, we wish to
gain a better understanding of the relationship between modularity and learning
for the simplified ‘what-where’ vision task discussed above.

Although the embryogeny model is capable of expressing any of the
parameters required for describing and evaluating the performance of a neural
network, in our study it does not specify values for all the network weights and
biases, only the ranges for their random initial values. As with most biological
networks, the actual values are learned from appropriate training data. In our
experiments, we use an online gradient descent algorithm, based on either the



Figure 2: (a) The initial stem state of the model. (b) A typical fully grown evolved neural network.

Sum Squared Error (SSE) or the Cross Entropy (CE) cost function.

The types of architectures that can be found by our evolutionary system are
extremely flexible, encapsulating all forms of connectivity, including lateral and
recurrent connections. The learning algorithm must account for this possibility,
and so a windowed propagation approach is used whereby neural activations can
only propagate through a single neuron per iteration. This means that several
iterations of the training algorithm are required before activation at the input
neurons finally reaches the output neurons, but recurrent looping and output
settling problems are eliminated.

The embryogeny process requires a stem state from which to start. This
stem state consists of a set of predefined input and output neurons on opposing
faces of the three-dimensional environment with a single stem cell positioned at
the centre (Figure 2a). The input neuron positioning is consistent with the
problem description forming a 5x5 array, whilst the two groups of output
neurons are arranged in 3x3 arrays to minimise the connectivity radius required
to connect to all 9 outputs. For simplicity, we took the dendrite lengths and
overall environment size to be measured in units of cell widths. This removes
any need to assign definitive sizes, rather than just proportionality ratios
between different aspects of the model. The network growing process is allowed
a fixed number of growth steps sufficient to allow any cell to re-position itself to
any location in the environment.

Our modeling approach is also flexible enough to accommodate the idea,
and consequences for modularity, of constraints on neural connectivity,
including those discussed by Jacobs and Jordan (1992). By constraining the
distance from which an axon head can create a synaptic connection to a neuron,
it is possible to effectively constrain the number of neurons a particular neuron
can connect to. This is represented in Figure 3.



Dendrite distance \ . O
O SReN
P ®-

Source neuron .

Axon head

Figure 3: The effect of dendrite distance on connectivity. Only cells within the dendritic radius
create synaptic connections with the source neuron.

6. Simulation Results

We now present our results from a series of simulated evolutionary processes
obtained for various dendrite distances, and for both the SSE and CE learning
algorithm cost functions. Figure 4a shows the hidden to output connectivity plot
for CE, where pHidl, pHid2, and pHid12 specify the proportion of hidden units
connected to each output block. Each point in the plot represents an optimal
network found by an evolutionary process. For larger dendrite distances, the
results agree with those of the coarser evolutionary simulations discussed above
(Bullinaria, 2001), with networks tending to be located in the pHid12=1 region,
indicating that non-modular fully distributed networks are preferred.

However, if we reduce the dendrite distance, and so constrain the
connectivity, the results show a distinct difference, with far fewer neurons
connected to both output blocks. Two points can be made from these results.
First, for larger dendrite distances, the results show non-modular networks
emerging, and so, even with greater expressivity in terms of network structure
and learning parameters, non-modular networks are still found to be optimal.
Second, it is possible to encourage the emergence of less distributed and more
modular architectures, simply by decreasing the allowable dendrite distances.

Figure 4b shows the average performance rates throughout the evolutionary
process. We see that for shorter dendrite distances it takes more evolutionary
time to find an optimal solution. Thus, although we can force less distributed
and more modular architectures on networks trained with CE, the evolutionary
progress is worse than for networks that use a fully distributed approach.

If we look at the connectivity plot results for the corresponding SSE
simulations (Figure 5a), we see that for longer dendrite distances the network
connectivity behaves much like those for CE. However, finding optimal
networks for smaller dendrite distances becomes extremely hard, and this is
reflected by the lack of plotted points representing optimal networks with



A dendritic distance = 4.0
i — dendritic distance = 5.0
038 — dendritic distance = 6.0
0.15 1
@
o 0.6 g
o i
e 5 01
e =
04 w
P 0.05
0.2 dendritic distance = 4.0
u dendritic distance = 5.0
A dendritic distance = 6.0
0 T T T 0 T T T
-1 -0.5 0 0.5 1 0 50 100 150 200
pHid2 - pHid1 Generations

Figure 4: (a) Connectivity plot of optimal networks and (b) average evolutionary learning curves for
the CE based learning algorithm.

1 0.2
I dendritic distance = 4.0
— dendritic distance = 5.0
08 015 | —dendritic distance = 6.0
o 0.6 %
3 T o1
4 5
0.4 ]
0.05
02 dendritic distance = 4.0
M dendritic distance = 5.0
] A dendritic distance = 6.0 0
-1 05 0 05 1 0 50 100 150 200
pHid2 - pHid1 Generations

Figure 5: (a) Connectivity plot of optimal networks and (b) average evolutionary learning curves for
the SSE based learning algorithm.

dendrite distance of 4.0. This is confirmed in Figure 5b where we can see that
the learning behaviour during evolutionary time is similar to CE except that, for
smaller dendrite distances, optimal networks are never actually found and
evolution gets stuck on poorly performing networks.

Using more directly encoded representations, the CE cost function always
produced non-modular optimal networks, whilst SSE tended to produce modular
optimal networks, as Bullinaria (2001) found. When comparing this with our
embryological modelling results for CE, it is clear that the behaviour is similar
until the networks connectivity is constrained by short dendrite distances.
Comparison of the results for SSE show the greatest differences, since our work
suggests that, under a more expressive representation, non-modular networks are
optimal in this case too. This appears to be at odds with all the previous work
(Rueckl et al., 1989; Bullinaria, 2001). Moreover, constraining the connectivity



by restricting the dendrite distances has a serious effect for SSE networks, in
that it results in a failure of the evolutionary algorithm to find networks of any
description that can learn to perform the given tasks.

7. Conclusion

We began by reviewing the Rueckl et al. (1989) and Bullinaria (2001) studies
into the emergence of modularity in neural systems, and argued that performing
more detailed simulations was a sensible approach to gaining a better
understanding of the problem. After an outline of a computational embryogeny
approach to evolving networks that grow and learn to perform two distinct tasks
(the ‘what’ and ‘where’ tasks studied previously), we found that the emerging
architectures always take on a distinctly non-modular form, unless restrictions
are imposed on the dendritic distances. This ties in with the work of Jacobs and
Jordan (1992) on the consequences of a natural bias to short neural connections.
We clearly have much more work to do to explore fully all the relevant issues,
but we believe we have a promising approach for studying the evolution of
neural architectures.

References

Alberts, A., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J.D. Molecular
Biology of the Cell. 3 edition, Garland. 1994

Bullinaria, J.A. Simulating the Evolution of Modular Neural Systems. In
Proceedings of the Twenty-third Annual Conference of the Cognitive
Science Society. 146-151. Mahwah, NJ: Lawrence Erlbaum. 2001.

Gordon, V., Whitley, D. & Bohn, A. Dataflow Parallelism in Genetic
Algorithms. In Manner, R. & Manderick, B. (Eds), Parallel Problem
Solving from Nature 2, 553-542. Amsterdam: Elsevier. 1992.

Harvey, I. Artificial Evolution for Real Problems. In Evolutionary Robotics:
From Intelligent Robots to Artificial Life. 187-220. AAIL 1997.

Jacobs, RA. Computational Studies of the Development of Functionally
Specialized Neural Modules. Trends in Cognitive Science, 3, 31-38. 1999.
Jacobs, R.A. & Jordan, M.I. Computational Consequences of a Bias Toward
Short Connections. Journal of Cognitive Neuroscience, 4:323-336. 1992.
Rueckl, J.G. Cave, K.R. & Kosslyn, SM. Why are “What” and “Where”
Processed by Separate Cortical Visual Systems? A Computational

Investigation. Journal of Cognitive Neuroscience, 1, 171-186. 1989.

Smith, T. Husbands, P. & O’Shea, M. Neutral Networks and Evolvability with
Complex Genotype-Phenotype Mapping. European Conference on Artificial
Life. 272-281. Springer. 2001.



