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Few people would disagree that the human brain is modular, but there is less
agreement on the reasons why it has evolved to be like that. Recently I re-examined
the Rueckl, Cave & Kosslyn study® which demonstrated the advantages of having
a modular architecture in neural network models of a simplified version of the
“what” and “where” vision tasks. Explicit evolutionary simulations confirmed that
the advantage can cause modularity to evolve, but also demonstrated that simply
changing the learning cost function produced a system that learnt even better than
before, and in which modularity did not evolve. In this paper I attempt to find
a more robust characterisation of the evolution of modularity in terms of gated
sub-networks (i.e. mixtures of expert networks). Once again, a careful analysis
of a systematic series of explicit evolutionary simulations indicates that drawing
reliable conclusions in this area is not as straightforward as it might at first appear.

1 Introduction

The human brain is undoubtedly modular'®, and there are numerous reasons
why it might have evolved to be that way. Given the likelihood of disruptive
interference if two tasks are carried out by a single system, rather than by
two dedicated modules, the evolution of modularity might seem inevitable. In-
deed, in a well known paper, Rueckl, Cave & Kosslyn® demonstrated explicitly
the advantages of having a modular architecture (i.e. specialised sub-sets of
hidden units) in neural network models of a simplified version of the “what”
and “where” vision tasks. There is good corresponding neuroscientific evi-
dence of distinct cortical pathways in the human brain for these two tasks”*.
The implication is that the computational advantages would cause any pro-
cess of evolution by natural selection to result in such a modular architecture,
and hence answer the question of why modularity has arisen. In a recent
study®, I carried out the explicit simulations of that evolutionary process.
As expected, I confirmed that the advantage can indeed cause modularity
to evolve. However, I also demonstrated how simply changing the learning
cost function produced a system that learned even better than before, and
in which modularity did not evolve. In another paper on the same simplified
“what” and “where” vision tasks, Jacobs, Jordan & Barto® showed how a
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Figure 1. Architecture of the basic network model for the “what” and “where” tasks.

network of gated expert sub-networks would learn how to perform the two
tasks in a modular manner. In this paper I attempt to find a more robust
characterisation of the evolution of modularity in terms of these gated sub-
networks (i.e. mixtures of expert networks). Once again, a careful analysis of
a systematic series of explicit evolutionary simulations indicates that drawing
reliable conclusions in this area is not as straightforward as it might at first
appear.

2 The Neural Network Models

The Rueckl et al. study® was based on a standard three layer feed-forward net-
work with sigmoidal activation functions and on-line gradient descent learning.
It mapped a simplified retinal image (a 5 x 5 binary matrix) to a simplified
representation of “what” (a 9 bit binary vector with one bit “on”) and a
simplified representation of “where” (another 9 bit binary vector with one
bit “on”). Each of the 9 training images consisted of a different set of 5
cells “on” within a 3 x 3 sub-retina array, and the 9 positions corresponded
to the possible centres of a 3 x 3 array within the full 5 x 5 array. To en-
able direct comparisons with the previous studies, I used exactly the same 9
input patterns and 9 positions, giving the same 81 retinal inputs for train-
ing on, in my corresponding evolutionary simulations®. Figure 1 shows the
basic network with arrowed lines representing full connectivity, and Nhidl,
Nhidl2, Nhid2 specifying how many hidden units in each block. Rueckl et
al.? compared the fully distributed network (Nhidl = Nhid2 = 0) with the
purely modular network (Nhidl2 = 0). If the maximum number of hidden
units Nhid = Nhidl + Nhidl2 + Nhid2 is fixed, varying the two parame-
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Figure 2. Architecture of the gated network model for the “what” and “where” tasks.

ters Nhidl + Nhidl12 and Nhid2 + N hidl2 enables an exploration of the full
continuum between these extremes.

Jacobs et al.® employed the slightly more complex architecture illustrated
in Figure 2. Here we have an extra input unit specifying the task and just one
final set of 9 output units, and we train on 162 examples (81 for each task).
The system is comprised of three separate fully connected “expert networks”
of the standard form (with 0, Nhidl and Nhid2 hidden units respectively),
each producing either a 9 bit “what” or “where” output depending on the
setting of the task input unit. The novel feature of this architecture is that
the task unit also drives a series of “gating parameters” g; that specify the
extent to which the output layer of constituent network i contributes to the
final output for the given task. If the output vectors of the three sub-networks
are Yo, Y1, y2 then the final output is y = goyo + 91y1 + g2y2- For each
task we constrain Z?:o g; = 1, and so modularity corresponds to having one
gi = 1 and the rest zero for one task, and a different g; = 1 and the rest zero
for the other task. If we have the same g; = 1, and the rest zero, for both
tasks, we have a non-modular architecture with one constituent network doing
everything. If the g;’s do not become binary we have a range of modular and
non-modular possibilities. In the Jacobs et al. study® they set Nhidl = 18 and
Nhid2 = 36 and used an on-line gradient descent algorithm to simultaneously
train the weights and gates. Their simulations showed how the system learns
to use a modular architecture, with the no-hidden layer network handling the
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linearly separable “where” task, and the 36 hidden unit network handling the
harder “what” task.

3 Learning and Modularity

While a network is learning, a hidden unit that is processing information
for more than one output unit is likely to receive conflicting weight update
contributions for the weights feeding into it, with a consequent degradation of
performance relative to a network that has a separate set of hidden units for
each output unit®. However, employing the extreme version of modularity that
has a dedicated set of hidden units (or module) for each output unit is likely
to be rather inefficient in terms of computational resources, and an efficient
learning algorithm should be able to deal appropriately with the conflicting
weight update signals anyway. Nevertheless, splitting the hidden units up
into disjoint sets corresponding to distinct output tasks, may be an efficient
option.

This compromise certainly appears to be appropriate for the networks
described above. Rueckl et al.” demonstrated how the modular version of
the network in Figure 1 performed better than the fully distributed version.
Then Jacobs et al.® showed how the gated network of Figure 2 could learn
to process two the tasks in a modular fashion with advantages in terms of
learning speed, minimizing cross-talk (i.e. spatial interference), minimizing
forgetting (i.e. temporal interference), and generalisation. In this paper, I
shall explore the idea that such computational advantages are sufficient to
drive the evolution of gates that correspond to modularity. The assumptions
that the two tasks are easily recognised, and that the appropriate gates are
easily operated, will be implicit throughout.

4 Simulating Evolution

Simulating an evolutionary process for the neural network models discussed
above is simply a matter of taking a whole population of individual instantia-
tions of each model and allowing them to learn, procreate and die in a manner
approximating these processes in real (living) systems. I take a more natural
approach to procreation, mutation and survival than many evolutionary sim-
ulations have done in the past!. Instead of training each member of the whole
population for a fixed time and then picking the fittest to breed and form the
next generation, I allow the populations to contain competing learning indi-
viduals of all ages, each with the potential for dying or procreation at each
stage. During each simulated year, each individual will learn from their own

nepw: submitted to World Scientific on January 14, 2002 4




experience with the environment (i.e. set of training/testing data) and have
their fitness determined. Assuming all other factors are equal, the evolution-
ary fitness can be taken to be a simple function of the task fitness used by
the learning algorithm. A biased random subset of the least fit individuals,
together with a flat random subset of the oldest individuals, will then die.
These are replaced by children, each having one parent chosen randomly from
the fittest members of the population, who randomly chooses a mate from the
rest of the whole population. Each child inherits characteristics from both
parents such that each innate free parameter is chosen at random somewhere
between the values of its parents, with sufficient noise (or mutation) that there
is a reasonable possibility of the parameter falling outside the range spanned
by the parents. These simulations could undoubtedly be made more realistic,
but for the purposes of the current study, this simplified approach seems ade-
quate. A similar regime has already been employed successfully elsewhere to
study the Baldwin effect in the evolution of adaptable control systems?.

5 Simulation Results

The simulated genotype of each individual will include all the innate pa-
rameters needed to specify the network details, namely the architecture, the
learning algorithm, the learning rates, the initial connection weights, and so
on. In real biological evolution, all these parameters will be free to evolve.
However, for the purposes of simulation efficiency, it generally makes sense to
be more restrictive. Here it is appropriate to allow the architecture to evolve,
but have each individual start with random initial connection weights. Since
the optimal learning rates will vary with the architecture, we must allow these
to evolve along with the architecture.

It is clearly important to fix the evolutionary parameters appropriately
according to the details of the problem and the speed and coarseness of the
simulations. For example, if all individuals learn the task perfectly by the
end of their first year, and we only test their performance once per year, then
the advantage of those that learn in two months over those that take ten is
lost and our simulated evolution will not be very realistic. Since the networks
were allowed to evolve their own learning rates, this had to be controlled by
restricting the number of training data presentations per year to 10 for each
individual. Choosing a fixed population size of 200 was a trade-off between
maintaining genetic diversity and running the simulations reasonably quickly.
The death rates were set in order to produce reasonable age distributions.
This meant about 5 deaths per year due to competition, and another 5 in-
dividuals over the age of 30 dying each year due to old age. The mutation
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Figure 3. Mean Learning Times for the Basic Networks: (a) SSE, (b) CE.

parameters were chosen to speed the evolution as much as possible by main-
taining genetic diversity without introducing too much noise into the process.
These parameter choices led to coarser simulations than one would like, but
otherwise the simulations would still be running,.

5.1 Basic Model

I have already presented the results of the simulated evolution of the basic
model of Figure 1 in detail elsewhere®. However, to help interpret the results
for the gated networks, it is worth summarising here what happens. The net-
work and learning regime are the same as that used by Rueckl et al.? The total
number of hidden units is fixed at 18, and we allow the learning parameters
and the two architecture parameters Nhidl + Nhidl2 and Nhid2 + Nhidl2
to evolve as described above. We find that all the innate parameters soon
settle down to appropriate values. In particular, we end up with Nhid12 ~ 0
which corresponds to a modular architecture. This is exactly what we would
expect given the advantages that Rueckl et al. found for modularity. The
interesting discoveries arose in the process of testing the robustness of this
result. It was natural to try changing the gradient descent cost function from
Sum Squared Error (SSE), as used by Rueckl et al.?, to Cross Entropy (CE),
which is generally more appropriate if the outputs are to be interpreted as
probabilities®>. Doing this resulted in a non-modular architecture evolving
with Nhidl ~ Nhid2 ~ 0, and the individuals learned the tasks significantly
more quickly than before. Moreover, even within the SSE case, it was found
that the evolution of modularity could be rendered less certain simply by
increasing the total number of hidden units available®.
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Figure 4. Evolution of the innate parameters for the Gated Networks.

Further investigation revealed that we could come to a good understand-
ing of what evolves simply by plotting the mean learning times as a function
of architecture. Figure 3 shows contour plots for the SSE and CE cases with
18 hidden units in total. The fastest learners, shown darkest, are found for the
same architectures that emerged from the corresponding evolutionary simu-
lations.

5.2 Gated Model

The evolution of the gated networks is naturally more complex than that of
the basic model. In this case the numbers of hidden units are fixed and the
evolvable architecture parameters are the gates g;. For each of the two tasks,
there are three gates g; constrained to satisfy Z?:o g; = 1. Figure 4a shows
how the population mean gates evolve. We see that the expected modularity
emerges with the 36 hidden unit sub-network performing the “what” task and
the 18 hidden unit sub-network performing the easier “where” task. All the
other gates are very near zero. The learning parameters evolve as appropriate
for their tasks. For example, Figure 4b shows how the learning rates and
momentum evolve for the 36 hidden unit sub-network. Note that the four
learning rates take on very different values - those for the biases (etaBH,
etaBO) are lowest, that for the input to hidden layer (etal H) is several times
higher, and that for the hidden to output layer (etaH O) is several times higher
again. If we had attempted to set these by hand, or forced them to all take
the same value, we may not have allowed each sub-network perform at its
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Figure 5. Mean Learning Times for the Gated Networks: (a) SSE, (b) CE.

maximum efficiency, and the emergent architecture may have been biased.
Unfortunately, with three constituent networks, there are too many free
parameters to allow the plotting of the mean learning times as a function of
architecture as we did in Figure 3. However, such plots are possible if we
restrict ourselves to using just two of the three constituent networks. Nat-
urally, it makes sense to use the two networks that emerged as the most
useful in the evolutionary simulation, namely the sub-networks with 18 and
36 hidden units. Since the gates for each task must sum to one, we now only
have two independent gate parameters which we can conveniently define to be
gatel = gig(where) = 1—gsg(where) and gate2 = g1g(what) = 1— gs¢(what).
Now averaging over many training runs for each gate combination we find the
mean learning time plots shown in Figure 5. Note that, in this case, using
CE rather than SSE as the learning cost function makes little difference. The
fastest learning times are seen at the bottom right corner of these plots, i.e. for
gis(where) ~ 1 and g3g(what) ~ 1, which is what we would expect given the
results of the full evolutionary simulations. Note the presence of local minima
in the top left corner, which corresponds to the modular architecture with the
roles of the two networks reversed, and in the bottom left corner where the
larger network takes on both tasks and we have a non-modular architecture.
It is interesting to observe that if we do not include cross-over mutations in
the the full simulated evolutionary process, that can occasionally swap the
values of pairs of gates, the population can easily get stuck in one of these
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sub-optimal minima. Learning the gates by a gradient descent algorithm also
tends to result in these local minima.

5.8 Pre-Sigmoidal Gated Networks

One could argue that given the way the network is set up, it is inevitable
that binary gates will evolve. If the activation of unit j in the ith constituent
network is a;; and the connection weights into output unit k are w;;, the
final network outputs will be

Yp = Z giSigmoid(Z WikjQij)-
i J

Then, since the target outputs are binary, and the actual outputs take the
form of a weighted average of the Sigmoid(}_; wikjai;) € [0, 1], the final out-
put for a given task can never be better than that of the best sub-network.
Consequently, given the constraint on the sum of the gates, there will always
be a tendency for the gates g; corresponding to the least accurate networks
to decrease, and that of the most accurate network to increase. Once a gate
starts to decrease, the corresponding sub-network gets a smaller contribution
of the error signal and learns less well, so the gate is forced smaller still. Even-
tually the gates end up binary, and the modularity then follows from a simple
consideration of best use of resources.

As always, it is appropriate to test the robustness of our results. Suppose
instead that the sigmoid occurred at the final output, rather than at the
outputs of the constituent networks, i.e.

Yr = Slngld(Z g,(z w,-kjaij)) = SlngId(Z Z(giwikj)a,-j).
i J i
This is now mathematically equivalent to having the gates act as a task de-
pendent modulation of the strengths of the final layer of connection weights.
There is now nothing to force the gates to go binary and the network has a less
restricted choice of best architecture. Indeed, if all the gates are equal, the
sub-networks merge into one big homogeneous network, and there are values
of the gates that render the gated network equivalent to the non-modular op-
timal architecture of our basic Rueckl et al. model. It should not be surprising
then, that evolving this modified system leads to the emergence of somewhat
different architectures to the previous simulations.

Figure 6 shows how the mean learning times depend on the architecture
in this “pre-sigmoidal gate” case. The most obvious thing to notice is that
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Figure 6. Learning Times for Pre-Sigmoidal Gated Networks: (a) SSE, (b) CE.

the difference arising from using CE rather than SSE has returned. In the
SSE case, the fastest learners are in the same modular regime as before, and
this emerges in the full evolutionary simulations as well. However, for CE
we find the optimal gates in the region of gig(where) ~ 1, gsg(where) ~ 0,
gis(what) ~ 0.6, gsg(what) ~ 0.4. In other words, the smaller network alone
deals with the easier “where” task, while both networks effectively merge into
one large network to deal with the harder “what task”. In the full evolutionary
simulations, with all three constituent networks, the results are variable, as we
would expect from the flatness of the learning time landscape. Invariably, the
two networks with hidden units combine themselves together to deal with the
harder “what” task. Sometimes the “where” tasks is dealt with exclusively by
the no hidden layer network, leaving a fully modular architecture. Sometimes,
the 18 hidden unit network helps out with it. Sometimes, the no hidden layer
network also helps out with the “what” task. The conclusion seems to be that
the evolution of modularity due to learning rate advantage is not as inevitable
as is often thought.

5.4  Temporal Cross-Talk

Jacobs et al.® suggested that modularity would minimise the negative effects
of temporal cross-talk, i.e. the interference of learning and performing one task
due to learning a different task at a different time rather than learning the
two tasks at once. To investigate this, they used a different training regime.
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Figure 7. Learning Times in Temporal Cross-talk Simulations.

They compared the standard procedure (i.e. presenting all 162 training ex-
amples in random order) against presenting the examples in blocks with all
81 examples for one task together, and then all 81 examples for the other
task together. Fully distributed networks learned significantly slower with
the blocked training data, but the modular architecture of Figure 2 showed
no difference.

Of all our gated networks, only the Pre-Sigmoidal Gated Networks with
Cross Entropy cost function have evolved non-modular architectures, so it
is only in that case we can expect using the blocked training data to make
a difference. Figure 7a shows the learning times when we use the evolved
learning parameters obtained with un-blocked training data. If we evolve the
network to deal with blocked training data, the learning parameters adjust
appropriately and the architecture dependence on the learning times end up
as in Figure 7b. We actually end up with a less modular architecture in this
case!

5.5 Spatial Cross-Talk

The final factor to consider is spatial cross-talk. If both tasks need to be
performed simultaneously, then it is likely that cross-task between the tasks
in a non-modular system will reduce the performance compared with the
modular case. The gated model of Figure 2 can easily be modified to test this.
All we need to do is remove the task inputs to the constituent networks, extend
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each output layer to 18 units, and have separate gates for the “What” and
“Where” output units®. In this case, with Post-Sigmoidal gates, the gates will
go binary as discussed in Section 5.3 and simple considerations of maximal use
of hidden unit resources will inevitably result in a modular architecture. For
Pre-Sigmoidal gates, we just end up with a re-parameterization of the Rueckl
et al. type networks of Figure 1, and hence the same modularity dependence
on learning algorithm.

6 Conclusions

We have investigated some of the main issues involved in simulating the evolu-
tion of gated networks and the emergence of modularity in them. In some cases
it is easy to force the evolution of modularity simply by restricting the options
open to the evolutionary simulations. In others, the evolution of modularity
depends crucially on the choice between competing non-biologically plausible
learning algorithms. Whilst it is easy to find reasons why modular neural
systems should be superior to their non-modular counterparts, we have seen
that simulating the evolution of such modularity is not as straightforward as
it is often assumed.
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