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Abstract

A neural network model is presented which is an abstraction of many
real world adaptable control systems that seems to be sufficiently
complex to provide interesting results, yet simple enough that
computer simulations of its evolution can be carried out in weeks
rather than years.  Some preliminary explorations of the interaction
between learning and evolution in this system are described, together
with some suggestions for future research in this area.

1.  Introduction
The idea of evolution by survival of the fittest is now widely accepted.  However,
whilst it is clear that many human abilities have become innate as a result of
evolution, others still need to be learned or modified during an individual’s lifetime,
so the nature-nurture debate rages on in many areas.  It has been known for some
time that there will be an interaction between learning and evolution (commonly
called the Baldwin Effect [1, 2, 4]), but realistic explicit simulation is difficult due to
the enormous computational resources required.  Training a non-trivial fully
dynamical neural network takes time, and consequently, training a changing
population of such neural networks over many generations with reasonable
procedures for procreation, mutation and survival is still barely feasible.  In this
paper I shall present a neural network model that is an abstraction of many real
control systems (e.g. reaching, pointing, oculomotor control) which seems to be
sufficiently complex to provide interesting results, yet simple enough that computer
simulations of its evolution can be carried out in weeks rather than years.  A range of
preliminary explorations of the Baldwin effect in this system will be described,
together with some suggestions for future research in this area.

2.  The Simplified Control Model
The simplified generic control system that will form the basis of the study presented
in this paper is shown in Figure 1.  Its inputs are fairly accurate near cues and less
accurate far cues.  The network’s response to these cues is generated by an initial
approximate open loop signal based on the far cues, followed by a more accurate
closed loop signal based on the near cues.  These signals feed into integral and
proportional controllers, the outputs of which are added to bias and tonic signals, and



fed into the plant to produce the required response.  The bias provides an appropriate
resting state, and the tonic allows short time-scale adaptation of the resting state
during periods of constant demand.  The whole system can be regarded as a fully
dynamical network of leaky integrator neurons.  In the human accommodation (eye
focussing) system, for example, we have blur and proximal cues being processed to
generate appropriate signals for the ciliary muscles in the eye [3].  The model has
five adjustable parameters (weights WO, W C, WP, WT, and bias WB) which are
learnt by a simple gradient descent algorithm that minimizes a cost function
consisting of response error and regularization (smoothing) components which will
be readily available to the system.  Corresponding to these learnable weights, each
instantiation of the model has five fixed initial weights (iWO, iWC, iWP, iWT, iWB)
and five fixed learning rates (eWO, eWC, eWP, eWT, eWB).  The model also has
various other parameters (neuron time constants, plant characteristics, feedback time
delay, and so on) which we take to be the same for all instantiations.  Such a system
that has learnt/evolved a good set of parameters will produce appropriate damped
responses to arbitrary discontinuous output requirements (steps) and smooth pursuit
of arbitrary continuous output changes (ramps) as illustrated in Figure 2.

3.  Evolving the Model
To simulate an evolutionary process for our model we take a whole population of
individual instantiations of the model and allow them to learn, procreate and die in a
manner approximating these processes in real (living) systems.  The genotype of
each individual will depend on the genotypes of its two parents, and contain the
initial weights and learning rates.  Then during its life the individual will learn from
its environment how best to adjust its weights to perform most effectively.  Each
individual will eventually die, perhaps after producing a number of children.

In realistic situations, the ability of an individual to survive or reproduce will rely
on a number of factors which can depend in a complicated manner on that
individual’s performance on a range of related tasks (food gathering, fighting,
running, and so on).  For the purposes of our simplified model, we shall consider it
to be a sufficiently good approximation to assume a simple linear relation between
our single task fitness function and the survival or procreation fitness.  In fact, any
monotonic relation will result in similar evolutionary trends.

We shall follow a more natural approach to procreation, mutation and survival
than many evolutionary simulations [2].  Rather than training each member of the
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Figure 1:  Simplified control model with five learnable parameters.



whole population for a fixed time and picking the fittest to breed and form the next
generation, our populations contain competing learning individuals of all ages, each
with the potential for dying or procreation at each stage.  During each simulated
year, each individual learns from their own experience with a new randomly
generated common environment (i.e. set of training/testing data) and has their fitness
measured.  A biased random subset of the least fit individuals, together with a flat
random subset of the oldest individuals, then die.  These are replaced by children,
each having one parent chosen randomly from the fittest half of the population who
randomly chooses their mate from the rest of whole population.  Each child inherits
characteristics from both parents such that each innate free parameter is chosen at
random somewhere between the values of its parents, with sufficient noise (or
mutation) that there is a reasonable possibility of the parameter falling outside the
range spanned by the parents.  Ultimately, our simulations might benefit from more
realistic encodings of the parameters, concepts such as recessive and dominant
genes, learning and procreation costs, different inheritance and mutation details,
different survival and procreation criteria, more restrictive mate selection regimes,
offspring protection, different learning algorithms and fitness functions, and so on,
but for the purposes of this paper, our simplified approach seems adequate.

4.  The Baldwin Effect
Since the Lamarckian idea of inheriting acquired characteristics is now known not to
happen in real biological systems, it is commonly assumed that lifetime learning and
evolution are independent processes.  However, they are actually tied together by the
so-called Baldwin effect [1].  This synergy comes about in two stages:

1. If a mutation (e.g. a change in learning rate or initial weight) can be used by the
learning process to allow the system to acquire better properties, then it will tend
to proliferate in the population.

2. If the learning has an associated cost (e.g. requires time or energy), then its
results will tend to be incorporated into the genotype and the learned behaviours
will become innate.

Put another way, evolution first creates a population that can learn good properties,
and then removes the need for learning whenever it is possible to do so.  In this way
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Figure 2:  Typical system responses to arbitrary step and ramp stimuli.



we have genetic assimilation of the learnt behaviour.  Although this “new factor in
evolution” dates back to the nineteenth century, it was not until the work of Hinton
and Nowlan [3] that it became widely known to the connectionist community [2].
They demonstrated explicitly, for a particular simplified system, that the ability to
learn a behaviour was able to improve the rate of evolution of that behaviour,
without the learnt characteristics being passed between generations in the genotype.
Their task, however, involved a very localized fitness function that was particularly
difficult for evolution to search on its own.  They noted that “for biologists who
believe that evolutionary search space contains nice hills (even without the
restructuring caused by adaptive processes) the Baldwin effect is of little interest”.
This, of course, depends on what interests you.  It might be of little interest if you
just want to demonstrate that learning can speed evolution, but there remains much
of interest if you wish to explore genetic assimilation, the nature-nurture debate,
individual differences, and such like.

In this paper I wish to begin to explore the Baldwin effect in its broadest sense.
As with any modelling endeavor, there are numerous system design choices that can
potentially have crucial consequences for the results, and in any complete study
these will have to be explored systematically.  Many of these details will, as in real
systems, ultimately be determined as a result of the evolutionary process itself.  For
the purposes of this preliminary study, however, we shall concentrate on exploring
the interaction of learning and evolution for the particular hand-crafted system
described above.  It is clearly important for any realistic developmental model to
know how much of the system’s behaviour is innate and how much has to be learnt
by interaction with its environment.  Assuming that learning does have a significant
cost, a fixed system in a stable environment can be expected to evolve so that its
optimal behaviour is completely innate.  However, if the system really does need to
retain the ability to learn, for example to adapt to unknown or changing conditions,
or to compensate for aspects of its own natural maturation, then we may only get
partial assimilation.  We can still expect evolution to result in an efficient learning
system that has minimal associated cost, but the appropriate innate properties may
no longer correspond to a final learned behaviour.  Moreover, if learning allows
individuals with different genotypes to perform equally well, this will reduce the
ability of natural selection to discriminate between them, and we will be left with a
considerable range of individual differences.  The remainder of this paper explores
these effects by explicit simulations of the model presented above.

5.  Simulation Results
Even after we have made the basic system design decisions discussed above, there
are still a number of parameter choices to make.  Clearly much further work will be
required to justify particular choices for realistic models of human evolution.  For
concreteness here, all the fixed network parameters (neuron time constants, plant
characteristics, environment characteristics, and so on) were chosen to match those
of the human oculomotor control system [3].  The main evolutionary parameter
values in this study were largely forced on us by limited computational resources.
Choosing a fixed population size of 200 was a trade-off between maintaining genetic



diversity and running the simulations reasonably quickly.  The death rates were set
to produce reasonable age distributions.  This meant about 5 deaths per year due to
competition, and another 5 individuals over the age of 30 dying each year due to old
age.  The fixed population size meant each individual then produced on average two
children.  The mutation parameters were chosen to speed the evolution as much as
possible without introducing too much noise into the process.  The amount of
training data presented to each individual per year also had to be restricted to
minimise the computation times.  All these compromises led to coarser simulations
than one would like, but otherwise the simulations would still be running.

The natural starting point is to begin with a population consisting of individuals
that have all their weights and learning rates zero, and see if they can evolve into a
population that can perform well at their given task.  Figure 3 shows how such a
population’s mean initial weights (iWt) and learning rates (eWt) evolve in this case.
It also shows the mean actual weights (Wt) across all the individuals, which appear
little different to the mean initial weights.  The difference is clear, however, in the
fourth graph which shows the means and standard deviations of the iWC and WC
weights for mature individuals (i.e. those at least 10 years old).  We see that the
learning process has the effect of tightening the weight distribution from that
generated by the inaccurate procreation process towards the optimal values.

As noted above, there is a crucial distinction between systems that really do need
to learn, for example to adapt to changing conditions during their lifetime, and those
which could perform perfectly well without learning if given appropriate innate
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Figure 3:  Evolution of weights and learning rates from zero.



values for all the necessary parameters.  We have seen that there is a certain
necessity for our models to adapt due to the variability that is built into the
procreation process, but we also need to investigate the effect of needing to adapt to
changes that take place during an individuals lifetime, in which case good adult
weights are not necessarily appropriate initial weights.  For example, in oculomotor
control, the relationship between the eye rotations and the object’s distance will need
to vary as the inter pupil distance grows during childhood [3].  To incorporate such
an effect into the simulations, a simple maturational scale factor was applied to the
output, varying linearly from 0.5 to 1.0 between the ages of 0 and 10 years.  The
evolution of this new system is shown in Figure 4, and it does indeed differ
significantly from that seen in Figure 3.  In particular, we see larger evolved learning
rates and, once a significant amount of learning has evolved, there is a clear
difference between the mean initial and mature weights WC and WP.  Comparing the
distributions of the initial and mature WC weights we see that, once learning has
evolved, there is a clear separation between the initial weight distribution and the
tighter mature weight distribution (cf. the corresponding graph of Figure 3).

To understand this system better, Figure 5 presents two further graphs which
show important general characteristics of our models.  On the left we see how the
mean, minimum and maximum individual fitnesses evolve, with clear improvements
corresponding to the onset of learning seen in Figure 4.  Notice that the maximum
fitness often decreases.  This is because even the fittest individuals eventually die,
and they will not necessarily produce children as good as themselves, and even when
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Figure 4:  Evolution when the system has to cope with maturation.



they do, those children are not necessarily going to experience learning
environments as good as their parents’.  As a result, the evolution is slower, but it is
the price we pay for realism.  This is one area where we might want to improve upon
the human system when building artificial systems.  On the right of Figure 5 we
have the age distribution of our evolved population.  We see an initial sharp drop
corresponding to a high infant mortality rate, followed by a slower fall until the age
of 30 after which individuals start to die of old age.

To assess the initial weights and learning rates that our systems evolve, we really
need to know what the optimal newborn and mature weights would be to produce a
good average performance across the whole (infinite) distribution of training data.
Fortunately, these can easily be determined sufficiently accurately using the model’s
own learning algorithm whilst keeping the maturational scale factor fixed at either
0.5 or 1.0.  Figure 6 shows how such learning alone leads to appropriate weights for
a newborn and an adult.  We end up with the same final weights using a range of
initial weights and learning rates, indicating that these represent the true global
minima which we might expect our evolving populations to reach.  Note that,
because of the linearity of our model and the way we have chosen to parameterize it,
the maturational output scale factor can be compensated by an inverse scaling of
WB, WC and WP, whilst leaving WO and WT alone.  This is seen clearly in the
optimal weights from Figure 6, which are in broad agreement with the mean evolved
initial weights in Figures 3 and 4.  The expected equality of the evolved mature
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weights between Figures 3 and 4 is also found, apart from the bias WB, which we
would expect to have evolved a significant learning rate so that it could compensate
appropriately for the maturation.  The reason for this discrepancy is something that
will be investigated further later.

The next variation to consider, now that the basic model has been simulated and
examined, is the specification of the initial population.  Starting all the initial
weights and learning rates from zero makes sense, but so does starting them off with
a large range of random values.  Figure 7 shows the evolution that results when all
the learning rates start off randomly distributed in the range 0.0 to 20.0.  There are
several interesting differences from the corresponding graphs in Figure 4.  First,
having large learning rates right from the start delays the evolution of the innate
weights, because individuals are able to learn the weights necessary to perform well.
In due course however, genetic assimilation does occur, and the WC learning rate
can be seen to fall dramatically as iWC increases.  Eventually, the system settles
down with mature weights near the optimal values observed before.  For some
reason, however, the WO innate weights and learning rates become unexpectedly
large, and the WB weight again fails to adjust in line with the maturation.

This leads us to consider the case in which both the initial weights and the
learning rates are randomly distributed in the range 0.0 to 20.0.  Figure 8 shows how
this affects the evolution.  Naturally the initial stages are different from those seen in
Figures 4 and 7, but the system soon settles down into the same pattern observed for
the case of zero starting weights in Figure 7.
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Finally, to ensure a fair assessment of how learning affects evolution, Figure 9
shows how the system evolves when there is no ability to learn.  The unused
learning rates are plotted to show the kind of random walks that result when there is
no evolutionary pressure.  The initial and mature weights in this case are identical
and constitute a compromise that allows the individual to survive the immature stage
whilst allowing reasonable performance when mature.

6.  Discussion
To a large extent our simulations have behaved how we would hope and expect them
to, with appropriate evolved values for the innate weights and learning rates which
lead to appropriate mature learned behaviour.  However, we have noticed that the
bias WB consistently fails to take on optimal values, and that when we start with
large learning rates, the innate values of the weight WO appear larger than optimal.
Clearly, some further investigation is required here.

One thing that is particularly evident from the simulations is that the weights are
not all behaving in the same way – some are evolving faster than others, some are
evolving larger learning rates, and so on.  A convenient way to explore this in more
detail is to test the sensitivity of the cost function to changes in each weight while all
the other weights are kept fixed.  This will give an indication of the forces acting on
each weight during learning and evolution.  Figure 10 presents the relevant results
corresponding to the simulation shown in Figure 7.  On the left we have the mean
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proportional changes in the cost that is caused by increasing or decreasing each
weight by 20% at each stage of the system’s evolution.  From this it is now clear
why the bias WB  is so slow to evolve and take on its optimal values during
maturation.  The cost function is so insensitive to it that the drive for it to change is
being lost in the noise.  It is quite possible that simulating a longer evolutionary
period, or performing a less noisy simulation (e.g. by using a larger population size
or more training data per simulated year), will allow the drive to manifest itself, but
for the present we must be satisfied with understanding what is happening.

On the right of Figure 10 is shown the variability (i.e. standard deviation over
mean) of each weight across the population during the system’s evolution.  We see
that the bias WB  stands out as having the particularly large range of individual
differences we would expect given its small influence on the fitness.  Here it is
worth remembering that an important relevant feature of the models is that the
weights within each individual are not independent.  The optimal value for each
weight will depend on the values of the other weights.  There will exist an overall
optimal set of weights, but if for some reason one weight does not take on its optimal
value, then the others can partially compensate.  For example, in each of Figures 4,
7, 8 and 9, we can see that before the innate weight WO evolves, the values of WC,
WP, WT are larger.  Similarly, low values of WB seem to coincide with higher values
of WO.  This anti-correlation of WO with the poor bias WB signals may well explain
the unexpected behaviour of WO in some situations.
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A realistic feature of our models is that each individual not only needs to perform
well on average, but must also be able to cope if an unusual/extreme environmental
condition arises (such as requiring a particularly large response change, or a
particularly rapid sequence of response changes).  To do this may require a set-up
that is less than optimal for normal conditions.  So, whilst it is reassuring to see that
our evolved individuals are broadly in line with the optimal performance parameters,
this is not something we can rely on happening in general.  The extent to which this
is responsible for the sub-optimal parameters that have evolved in our models is
clearly worthy of further investigation in the future.

Having understood the factors underlying what has been happening in our
simulations, there are several further issues worth commenting on.  First, for the
models, survival is determined by competition among the individuals, rather than by
competition of the individuals against a hostile environment.  Moreover, children are
always produced to replace the dead, however young and unfit the parents might be.
Consequently, whilst a non-adaptive population appears to evolve faster than their
adaptive counterparts (e.g. Figure 4 compared with Figure 7), the poor fitness of
individuals during the early stages of evolution (seen in Figure 5) may, under more
realistic circumstances, result in the population not surviving long enough for the
evolution to happen at all.  It is in this sense that learning will assist evolution.  The
traditional Baldwin Effect [1, 4] corresponds to the comparison of the evolution in
Figure 7 not with Figure 4, but with that of a system which has to wait an enormous
time for a rare mutation to create a non-adaptable individual that is able to survive
long enough in its environment to procreate.

Finally, note that the cost of learning is not encoded explicitly into any of our
fitness functions, but it is implicit in the sense that if any unnecessary learning is
required, then individuals are at a disadvantage until the learning is completed.  The
population can compensate for this to a certain degree by having individuals learn
quickly, but if the learning rates are constant throughout each individual’s lifetime,
this may lead to instability.  A sensible strategy, that occurs in real systems and will
be explored further for our models elsewhere, might be to evolve initially high
plasticities that decrease with age.  Alternatively, a parent or population may evolve
a propensity to protect its offspring until they have acquired the ability to fend for
themselves, as many real species do.  This is also worthy of a study in its own right,
but for the present simulations, we simply protect the offspring until they have
completed their first year of learning, and expect them to compete with adults after
that.  The net effect will be that, where possible, evolution will result in the need to
learn being replaced by innate behaviour.  For now, we leave open the question of
whether a more explicit learning cost might be more beneficial or realistic.

7.  Conclusions
We have seen how it is possible to simulate the interaction of learning and evolution
in a class of simplified neural network control models.  The processes whereby
appropriate innate connection weights and learning rates evolve can be understood,
and are broadly in line with what we might expect.  However, it is also clear how the
need to cope in unusual/extreme environmental conditions may result in individuals



evolving in such a way that their performance is sub-optimal under normal
conditions.  We have also seen how some weak effects can easily get lost in the
noise and result in the evolution of less than optimal solutions, which in turn may
result in various compensatory effects generating unexpected properties.

We already knew that in order to understand real developmental processes, it is
important to understand how those developmental systems have been constrained by
their evolution [3].  The simulations presented in this paper now indicate that to
understand the evolutionary process we also need to take into account the history of
the evolutionary environment, as there are dependencies on the evolutionary initial
conditions and we cannot rely on an optimal developmental system from evolving
within a given time-scale.  Moreover, fitness insensitivity to particular parameters
can lead to considerable ranges of individual differences that can be difficult to
predict without explicit simulation.  In the case of oculomotor control, for example,
individuals exhibit a wide range of cross-link strengths between accommodation and
vergence with little effect on their normal performance [3].

Having seen how fundamental questions about the nature-nurture debate and
individual differences may be answered, the next stage of this work will be to check
the extent to which our results change as we vary the details of the models and the
simplifications we have made to the real evolutionary process.  We also need to test
the approach against some real systems.  This will be complicated by the fact that, in
practice, real control systems will evolve alongside their plant, rather than
independently with a fully operational plant.  It is also quite likely that the initial
population will arise as mutations of some other existing system (possibly adaptable,
possibly not) and this will surely affect what evolves.  There is clearly some way to
go to achieve reliable simulations of real human or animal evolution.  Alternatively,
we could consider the approach to be an appropriate technique for developing
efficient artificial control systems for real world problems.  In which case, we have
some way to go in another direction.
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