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There have been many different theoretical proposals for ways of representing word
meaning in a distributed fashion. We ourselves have put forward a framework for
expressing aspects of lexical semantics in terms of patterns of word co-occurrences
measured in large linguistic corpora. Recent advances in the modelling of fMRI
measures of brain activity have started to examine patterns of activation across the
cortex rather than averaging activity across a sub-volume. Mitchell et al. [11] have
shown that simple linear models can successfully predict fMRI data from patterns of
word co-occurrence for a task where participants mentally generate properties for
presented word-picture pairs. Using their MRI data, we replicate their models and
extend them to use our independently optimised co-occurrence patterns to demonstrate
that enriched representations of word/concept meaning produce significantly better
predictions of brain activity. We also explore several aspects of the parameter space
underlying the supervised learning techniques used in these models.

1.   Introduction

There have been many suggestions for methods of representing word or concept
meaning in terms of a distributed pattern of feature values [e.g., 9,14]. Some of
these reflect linguistic intuitions of participants (or experimenters/modellers) and
others measure the distributions of words in language corpora. One of the
challenges in the field is to test whether a particular scheme for semantic
representation can explain or predict human behaviour better than another
scheme. Recent work by Mitchell, Shinkareva, Carlson, Malave, Mason & Just
[11] has shown that the co-occurrence statistics for a small hand-picked set of
verbs can be used to predict functional brain imaging data at a level well above
chance. In this paper, using the brain imaging data they have generously made
public, we compare their results with the performance of their method using our
own co-occurrence statistics that have been independently optimised.
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Magnetic resonance imaging (MRI) is a form of spectroscopy that can
produce high-resolution 3-dimensional images of materials including the
anatomy of the brain. This technique can be extended to produce images that
reflect blood deoxygenation in the brain where the strength of the “blood oxygen
level dependant” or BOLD signal is measured for subvolumes or “voxels” of
brain tissue of around 3-5mm-cubed and assumed to correlate with neural
activation. The functional (fMRI) signal can usually only be measured relative
to a resting or contrasting state and is small and noisy. The usual and highly
successful method of analysing fMRI data is the so-called mass-univariate
approach where a map is produced of the inferential statistic for each voxel
produced by a linear statistical model of the predictors in an experiment. With
appropriate adjustments for multiple comparisons, this approach allows a map
to be produced showing areas of the brain sensitive to the experimental
prediction or for a prediction that a particular area is sensitive to the
experimental contrast to be statistically tested. However, the method ignores the
possibility that what may be interesting in the data is the pattern of activation
across individual voxels rather than the level of activation of a voxel or its mean
across voxels. Mitchell et al’s work is an example of this increasingly popular
use of BOLD signal voxel patterns.

As reviewed by Naselaris et al. [12], these pattern analysis techniques have
the potential for wide application in cognitive neuroscience. Here, we explore
the possible ways of analysing the encoding of lexical or conceptual meaning in
the brain. Specifically, we test the efficiency of different linear mappings from
putative semantic representations to patterns of brain activation. In general, this
allows us to identify distinct brain areas whose activity can be predicted by a
particular representational scheme, but here we concentrate on comparing the
encoding accuracy of linear computational models built using two different
kinds of lexical co-occurrence vectors. The eventual aim is to test the validity of
different ways in which neural computational models represent word or
conceptual meaning by using measures derived from brain physiology.

In the following section we describe the Mitchell et al. model in more
detail, and discuss the key performance measures we employ. Then we outline
our own approach to corpus derived semantic representations, and present the
parameter optimisation process involved in using them effectively. The
comparative results for the key tasks in the Mitchell et al. study are then
presented for both regularised and unregularised models, and the effect of
varying the training data set size is explored. The paper ends with our
conclusions and some discussion.
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2.   Description of the Computational/Statistical Model

Mitchell et al. asked participants to mentally generate properties for 60
previously studied simultaneously presented word-picture pairs of concrete
entities, such as vehicles or animals (e.g., cat, cow, train, airplane), whilst
lying in an fMRI scanner. Each word-picture pair was presented on 6 different
occasions. The scanner data yielded vectors of BOLD activation (relative to a
baseline) across the voxels for all the grey matter in the brain being scanned.
Feature selection was achieved by choosing the 500 voxels whose values were
most stable across the 6 repeats for each word (measured by averaging the
pairwise correlations between the 60-item vectors produced for each of the
presentations of the 60 words for each voxel). The BOLD signal values were
then averaged across the repeats for each word and normalised to produce vectors
of 500 continuous values for each of the 60 words.

Mitchell et al. hand-picked 25 verbs whose co-occurrences with the nouns
in question could be expected to distinguish the patterns of usage and hence
meaning of the nouns. The co-occurrences were measured in the 1 trillion word
Google corpus to yield an 25-dimensional vector representing word/concept
meaning.

To train a model to predict brain activation from word meaning, 58 of the
60 words were used to fit a linear regression model predicting each of the 500
most stable voxels for those 58 words from the 25 feature co-occurrence vectors.
The models were then tested on their ability to predict the activation of the two
held-out words. The model was deemed to have a correct prediction if the sum
of the distances between measured and predicted brain activation was smaller for
the correct mapping of input vector to output vector compared to the incorrect
mapping. The process was then repeated until all the 1770 combinations of
training set and test set had been trained and tested and the success of the model
expressed as the mean binary scores.

The exercise produced highly statistically significant results as measured
against a distribution of randomly permuted models. As such, it is an important
demonstration that a distributed pattern known to reflect some of the properties
of a stimulus (the 25 co-occurrence features) can be used to make statistical
predictions of putative measurements of brain activity.

Mitchell et al. speculate that a richer representation of word meaning might
yield better results in their models. They have generously made their data
available [http://www.cs.cmu.edu/~tom/science2008/index.html] and we
describe here how we have replicated their work and extended it to use our
semantic representations. This advances their work by using vectors that can be
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shown to have better semantic distinctiveness and are general to all words of a
reasonable frequency in the corpus we used to generate the vectors. However,
these advantages for the input features of the model are offset by the practical
considerations of increasing the dimensionality of the input from 25 to tens of
thousands, which results in much slower computation of the linear models and
the need for regularisation to prevent overfitting.

Following Mitchell et al., we used MATLAB to compute multiple linear
regression models to predict each output voxel value from the values of all input
features. This is equivalent to computing a multiple regression for each output
voxel consisting of a linear combination of predictors from the input feature
values. These computations are conveniently expressed as the minimisation of
the sum-squared output error E of the model over a set of training items i:
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E = mi − vi
i
∑

2
       ,      

€ 

mi =Wfi

where fi is the vector of features, vi is the vector of voxels, and mi is the vector
of model outputs, for word i. The matrix W of model weights/coefficients can
be computed easily using standard matrix pseudoinversion techniques. Mitchell
et al. report results from models that used their 25 input features and the 500
most stable voxels across the training set. We attempted to exactly replicate
their model and also investigated the effects of varying the number of voxels
used and the dimensionality of our own input vectors when they were used.

Regularisation techniques help avoid the overfitting of a model when the
ratio of predictors to data points is high. The standard approach is to add a term
proportional to the sum of the squares of the model coefficients W to the sum-
squared error term E that is being minimised by least-squares learning. This
penalises model complexity and helps avoid the fitting of the model to noise
rather than true data, and is equivalent to ridge regression. We report later on the
optimisation of the parameter that multiplies the regularisation term.

The aim is to test generalisation, i.e. how well the model outputs mi match
the actual voxel patterns vi for unseen input words i. Following Mitchell et al.,
we measure this similarity using the cosine cos(mi, vi) between the relevant
vectors. For small data sets (such as the 60 words here) a cross-validation
approach is appropriate: withhold each possible pair of words (i, j) from training
and for each withheld word i determine whether the model output is more
similar to the corresponding voxel pattern or the voxel pattern of the other
withheld word, i.e. whether cos(mi, vi) > cos(mi, vj). That gives 59 tests for each
word, and the model performance is the average number of correct matches over
the 3540 tests (which we shall call Perf). This Perf is the cross-validated
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estimate of the average probability p that the model output for a given word is
closer to the correct word target output than that of another word. It can therefore
be used to estimate the expected average performance on harder tasks, such as
leaving N words out of training and seeing how often the correct word is closest
(i.e. probability pN-1) or where the correct word ranks in closeness among the
other N-1 words (i.e. position 1+(1-p)(N-1)). Mitchell et al. actually combined
the cosine similarities for each word pair, i.e. tested whether the pair total
cos(mi, vi) + cos(mj, vj) > cos(mi, vj) + cos(mj, vi), and took their performance to
be the average number of those correct matches over the 1770 word pairs (which
we shall call PairPerf). If the semantic features were random, both performance
measures would be 0.5, and for totally successful models both would be 1.0.
For intermediate levels, however, PairPerf will generally be higher than Perf.
Permutation tests show empirically that the 0.05 significance level falls at 0.58
for Perf and 0.62 for PairPerf.

3. Features used in the modelling

We aim to compare the hand-picked 25 feature set used by Mitchell et al. with
our own much larger feature vectors. One way to judge whether it is likely that
our feature set will perform better in predicting fMRI data from a task that taps
lexical/semantic judgments is to perform an unsupervised cluster analysis on the
two sets of vectors for each of the 60 words used by Mitchell et al. The word-
picture pairs describe 5 instances each of 12 conceptual categories (e.g., animals,
plants, tools, buildings) and so it should be possible to see some of this
category structure in the cluster analysis.

The purity Pr of a cluster r is simply the fraction of its members that
belong to the most represented class. Then the overall purity P of clustering is
the weighted average of the individual cluster purities Pr. Formally

€ 

P =
nr
nr=1

k

∑ Pr          ,         

€ 

Pr =
1
nr
max

c
nr
c( )

where nr and nr
c are the numbers of words in the relevant clusters and classes,

with r labelling the k clusters, and c labelling the classes [15]. Applying the
CLUTO Clustering Toolkit [7] with cosine distance and default parameters
shows the 25 dimensional features they use to have a purity of 0.47, and the
500 most stable voxels give purities 0.53, 0.42, 0.45, 0.47, 0.45, 0.43, 0.37,
0.33, 0.38 (mean 0.43) for the nine participants.

It is known that optimised corpus-derived semantic representations can
achieve perfect purity (1.00) for un-ambiguous concrete nouns [2], so it makes
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good sense to explore whether using such representations can improve the
results in the Mitchell et al. study. We have previously carried out a systematic
exploration of how to generate the best semantic representations and found that
simply computing vectors of probabilities that words occur next to each other in
large corpora, and calculating point-wise mutual information (PMI) [10] leads to
vectors that perform well across a range of tasks [1]. It is that type of semantic
representation, derived from the two billion word ukWaC corpus [4], that was
used to explore clustering ability and achieved perfect purity in some cases [2].
Using such vectors with 10,000 components achieves cluster purity of 0.83 on
the 60 Mitchell et al. words. This is still not perfect, and it is clear that such
corpus derived vectors never can work well for all words [1, 2, 5, 8], but the
improved clustering over the Mitchell et al. features suggests that they are worth
testing in the Mitchell et al. model. It might then be expected that, although
more computationally expensive, our vectors may be able to predict fMRI data
more successfully.

4. Parameter Optimisation

We began our experiments with an exact replication of the Mitchell et al. study,
which involved computing the voxel stability values using only the 58 training
set items so there could be no issue of non-independence in using the test items
during training. However, simply computing the most stable voxels across the
entire 60 member training + testing set once for all models, instead of once for
each of the 1770 training sets, actually proved to have very little effect on the
resulting performance, and allowed massive improvements in computing time,
so that approach was followed for the remainder of this study.

We surveyed the different mean performance results for both the PairPerf
and Perf criteria for all 1770 combinations of 58 item training sets and 2 item
test sets for a large range of values for the regularisation parameter, the number
of frequency-sorted corpus components (for our input features) and the number
of stability-sorted voxels. This allowed us to identify near optimal parameter
values for both types of input vectors. Each point in the following graphs shows
the mean performance over the 9 participants and thus summarises 9 x 1770 =
15,930 trained models.

It is interesting to see how performance changes as the size of the input
feature set increases and this is shown in Figure 1 where performance is plotted
against number of input components (ordered by associated word frequency in
the ukWaC corpus) for different numbers of stability-sorted voxels. Performance
peaks at around 10,000 components for both the PairPerf and Perf criteria. This
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pattern is familiar for this kind of corpus-derived representation – the increased
information from more components is eventually out-weighed by the noise that
comes from poorer estimates of co-occurrence probabilities for lower frequency
words [1,2]. These graphs also show that for these data, averaged over the 9
participants, 500 voxels is consistently the best performing number of voxels.

Figure 2 shows that for our 10,000 component input vectors, performance
peaks at a regularisation parameter of around 100 for the Perf criterion and 300
for the PairPerf criterion, and remains fairly level for higher values. It also
shows more clearly how the performance falls off for more or fewer than 500
voxels. However, we have observed that for individual participants with the
most stable voxels (perhaps simply due to not moving whilst in the scanner as
noted by Mitchell et al.), larger numbers of voxels are advantageous and that
leads to different optimal regularisation parameters.

For fair comparison, we also checked the optimisation of parameters for the
Mitchell et al. study. Figure 3 shows that for the 25 input features used by
Mitchell et al., optimal performance was obtained for a regularisation parameter
of 1 and 500 voxels. Choosing optimal parameters for such models should
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Figure 1.  Performance using our vectors as a function of number of corpus components: Perf
(left) and PairPerf (right), regularization parameter 0 (upper) and 10,000 (lower).  Individual
lines correspond to different numbers of voxels as indicated by the line labels.
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really be done using an independent validation set, but with only nine
participants of rather variable performance, that was not feasible. It is clear that
for these experiments, regularisation makes little difference to the success of the
trained models for this task. This might be expected for the low dimensional
Mitchell et al. features, and Mitchell et al. did not use regularisation, but we
were surprised that our much larger vectors didn’t benefit more from its use. For
all the comparative studies we used 500 voxels which appears close to optimal
on average for both types of input features, and was used in the original
Mitchell et al. study. Performance was tested without regularisation, and with
regularisation parameter of 1 for the Mitchell et al. features (where there appears
to be a consistent peak) and of 10,000 for our 10,000 dimensional corpus
features (which is perhaps not optimal, but safely in the flat region of the
performance graphs).

Figures 1, 2 and 3 also show how the Mitchell et al. PairPerf success
measure produces slightly better results than the Perf measure across all model
parameters. Such a difference is to be expected from a simple consideration of
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Figure 2.  Optimization of performance using our 10000 components corpus vectors: Perf (left)
and PairPerf (right), regularization parameter (upper) and number of voxels (lower).  Individual
lines correspond to different numbers of voxels (upper) or regularization parameter (lower) as
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combining pairs of values from a roughly Gaussian distribution of cosine
differences cos(mi, vi) – cos(mi, vj). However, the nature of the model outputs
can lead to the individual cosine differences in the pairs of combined values
being anti-correlated, and that can lead to surprising advantages to the PairPerf
measure. We therefore present both the Perf results (that are sure to be free from
such artifacts) and PairPerf (for comparison purposes).

5. Comparative Results

Now that we have some confidence that we have near optimal values for the
main parameters for each of the two different kinds of input features, we can
compare performance across the 9 individual participants with and without
regularisation. Table 1 shows the results for the individual participants for the
PairPerf criterion as used by Mitchell et al.: for the 25 dimensional Mitchell et
al. feature set, with no regularisation and with regularisation parameter 1, and
for our 10,000 component corpus vectors, with no regularisation and with
regularisation parameter 10,000. For all cases, 500 voxels were used. Column 2
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shows the original results published by Mitchell et al., and column 3 is our
replication of what they did. There are small differences that are presumably due
to variations in the rounding errors coming from different implementations.
Column 4 is the same but with the voxel stability computed just once for the
full set of 60 words, rather than for each of the 1770 training sets of 58 words.
The differences are slightly larger here, but the mean is the same, which is our
justification for using this computationally more efficient approach for the
remainder of this study. Column 6 shows the equivalent for our input features.
Finally, columns 5 and 7 are the regularised versions corresponding to columns
4 and 6. We tested statistical significance throughout using paired t-tests with
one-tailed p-values. In all cases, the statistically significant results are also
significant using Wilcoxon non-parametric tests. Our vectors show a modest
improvement over those of Mitchell et al. for most participants for both non-
regularised (t(8) = 2.123, p < 0.05) and regularised (t(8) = 2.877 p  < 0.05)
conditions. Regularisation appears to make a slight improvement for both
feature sets.

Table 2 show the comparison in performance between the input features sets
using the Perf success criterion. There is again an apparent small advantage for
regularisation and statistically significant improvements for our features set over
the Mitchell et al. set (t(8) = 2.111, p < 0.05 for the non-regularised cases and
t(8) = 2.564, p < 0.05 for the regularised cases).

The advantages of our feature vectors are that they did not need to be
generated specifically for this task and they are general to a very wide range of

Table 1. Results for each participant from the original paper by Mitchell et al. [11] (Science), our
replication, and for the regularised (with reg) and non-regularised (no reg) models using Mitchell
et al. (M. et al.) or Bullinaria & Levy (B & L) features for the PairPerf success criterion.

P Science Replication M. et al.
no reg

M. et al.
with reg

B & L
no reg

B & Lwith
reg

1 0.83 0.83 0.83 0.84 0.91 0.92
2 0.85 0.85 0.84 0.80 0.78 0.80
3 0.76 0.77 0.78 0.78 0.82 0.85
4 0.78 0.79 0.79 0.82 0.89 0.91
5 0.82 0.82 0.81 0.84 0.78 0.83
6 0.73 0.73 0.71 0.76 0.79 0.83
7 0.78 0.78 0.78 0.78 0.85 0.87
8 0.72 0.72 0.71 0.76 0.70 0.73
9 0.68 0.68 0.69 0.76 0.87 0.88

mean 0.77 0.77 0.77 0.79 0.82 0.85
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possible words. However, the difference in performance over the Mitchell et al.
vectors is rather modest, especially given the computational expense of using
10,000 features rather than 25. To test whether this might be due to a ceiling
effect of the fMRI data for this particular task, we progressively increased the
difficulty of the task. Figure 4 compares results when the size of the training +
test set was successively reduced from 60 words to randomly selected subsets of
the original word set of 50, 40, 30, 20 and 10 words (with each case averaged
over 20 different subsets). Each data point shows the average and standard error
over the nine participants.

The consistency or reliability of the advantage of our input vectors over the
Mitchell et al. input vectors appears to increase slightly as the training sets get
smaller until a floor effect begins as the set size reaches 10 words. Using paired
t-tests to gauge statistical significance of this advantage, it was significant for
all training + test set sizes (apart from 10) and the level of significance increased
as the training + set size decreased (apart from 10), and hence the difficulty of
learning increased giving support to the suggestion that the advantage of our
vectors increases as the task increases in difficulty until performance suffers for
the regularised models when the set size reaches 10.

6. Further Comparisons

In addition to the main test of their model, described above, Mitchell et al.
presented three further tests of its performance that we now apply for our richer
representation of semantics.

Table 2: Results for each participant for non-regularised and regularised versions of each type of
input feature for the Perf success criterion.

P M et al.
no reg

M et al.
with reg

B & L
no reg

B & L
with reg

1 0.77 0.76 0.84 0.84
2 0.76 0.73 0.72 0.72
3 0.71 0.71 0.74 0.76
4 0.73 0.76 0.81 0.83
5 0.73 0.75 0.71 0.74
6 0.66 0.70 0.73 0.74
7 0.72 0.70 0.79 0.79
8 0.67 0.69 0.65 0.65
9 0.63 0.69 0.79 0.79

mean 0.71 0.72 0.75 0.76
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First, since the 60 test words each fall into one of 12 semantic categories, it
is instructive to compare the performance for the 120 word pairs that fall within
a category, to the full set of word pairs. The within-category task is obviously
harder than the full task, and Mitchell et al. did find a performance drop to 0.62.
Our replication achieved 0.61 for their features without regularisation and 0.60
with regularisation. For our features, we achieved 0.58 without regularisation
and 0.62 with regularisation. The differences between their results and ours was
not significant (t(8) = 0.89, p = 0.20 and t(8) = 0.69, p = 0.26). This indicates
that the improvements arising from our vectors come primarily from the
remaining 1650 word pairs that fall across categories.

Next, we explored how much the presence of semantically related words
(i.e. those in the same category) helped the model perform well. The models
were retrained for each word pair with all the words from their categories
excluded, and the performance recomputed. Mitchell et al. found the mean
performance dropped to 0.70. Our replication also achieved 0.70 for their
features without regularisation, and 0.74 with regularisation. For our features,
we achieved 0.78 without regularisation and 0.79 with regularisation. t-tests
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showed that our advantages were statistically significant: t(8) = 2.48, p < 0.05;
t(8) = 2.23, p < 0.05 (both one-tailed).

Finally, we investigated how well the model copes with inputs not from
the 60 word test set. For each of 1000 control words (ranked 301 to 1300 in
frequency in the corpus) semantic vectors were created and passed through the
model trained on 59 of the 60 test words, and the similarity of the withheld
word voxel pattern with each of the 1000 control word outputs and 1 withheld
word output were ranked. The higher the withheld word ranks (measured as a
fraction of the other 1000 words falling below it), the better the models
performance. Mitchell et al. achieved a mean performance of 0.72. We did not
have the data to attempt replication.  For our features, we achieved an improved
value of 0.77 without regularisation (t(8) = 2.1, p < 0.05, one-tailed).

The relatively marginal statistical significance for these last two tasks,
despite approximately 5% increases in mean performance, is a reflection of the
small number of subjects and the large variations between them. Some subjects
consistently perform better with our corpus vectors than with the Mitchell et al.
features, and others show the opposite pattern. This could be due to individual
differences in the strategy chosen by the participants to perform Mitchell et al.’s
relatively unconstrained task being captured better by one set of vectors than
another. This is something that is worthy of future investigation, and may well
hold the key to refining the whole approach.

7. Conclusions and Discussion

We have been able to closely replicate Mitchell et al.’s results and have shown
that regularisation improves them slightly for the original task and more so
when the task increases in difficulty. We have also provided results for the
single word measure (Perf) that we believe is a more generally reliable indicator
of performance than Mitchell et al.’s word pair measure (PairPerf).

Our richer semantic representations perform better across most of the tasks
we have tried. Although the improvements are modest, they are consistent and
statistically significant. It appears that the advantage of the much larger and
semantically richer feature vectors increases as training set sizes decrease, which
may be because the much larger vectors contain enough distributional
information to make up for the smaller number of items. It was unsurprising
that regularisation was required for our much larger input vectors, but perhaps
unexpected that it made so little difference even after the regularisation parameter
was optimised. Our average performance peaked when we used 10,000
frequency-ordered components demonstrating that even with a training set of 60
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items, the computation of co-occurrence with large numbers of other words was
advantageous.

Like Mitchell et al., we found that for this training set, optimal
performance overall was achieved by using the 500 most stable voxels. For
those individual participants with relatively high average stability values,
however, a larger number of voxels was optimal. As with optimising our corpus
vectors, there appears to be a trade-off between increased information and
increased noise as more components are added.

While we were writing this paper, we discovered other recent work that had
also used the Mitchell et al. data set and tested performance for a variety of
alternative sets of input features [3, 6, 13]. It is interesting to note that all of
these papers report useful results using different input features, but none of them
convincingly exceed the performance levels achieved using the Mitchell et al. or
our input vectors.  

Perhaps the most puzzling aspect of this research is the apparently rather
poor results achieved by all of the methods we have described. It is maybe
worth speculating on what might be causing such a ceiling effect. It is certainly
true that the BOLD signal is always small and subject to large amounts of
noise, and that any head movement (which should be reflected in the “stability”
measure) will cause problems for a voxel-pattern based approach. However, to
train on 58 items and test on the remaining 2 is not an intrinsically difficult
task. Mitchell et al.’s input feature set of 25 items performs well above chance
and one might expect that our 10,000 element vectors would boost performance
more than they did.

It would be instructive to further analyse the degree to which noise in the
measurement of voxel BOLD response may be leading to an upper bound in the
performance of the learning models reported here. The voxel patterns themselves
do not cluster well using the CLUTO algorithm and this may indicate
measurement noise. We are currently exploring the degree to which this kind of
noise affects the performance of the models by constructing idealised voxel
patterns that cluster perfectly and testing how learning performance drops off as
noise is added.

It may also be instructive to repeat these modelling methods on a different
stimulus set. The particular words chosen by Mitchell et al. are sometimes
ambiguous and are always paired with line drawings. It is likely that lexical
semantic processes are being confounded with visual ones in ways that differ
between the different words. We hope to further investigate these issues using
data derived from stimuli that are purely word-based.
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