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This paper explores the idea that auto-teaching neural networks with evolved self-
supervision signals can lead to improved performance in dynamic environments where
there is insufficient training data available within an individual’s lifetime.  Results are
presented from a series of artificial life experiments which investigate whether, when,
and how this approach can lead to performance enhancements, in a simple problem
domain that captures season dependent foraging behaviour.  

1.  Introduction

Neural networks with reinforcement or supervised learning algorithms are known
to be excellent at acquiring complex behaviours if they are given a large enough
amount of training data.  However, humans and other animals often need to
operate in environments in which there is insufficient information available to
enable an individual to configure their behaviour mechanisms appropriately.
This can render such lifetime learning techniques inadequate, despite their
generally good potential.

Learning, however, can take place over two rather different time-scales:
lifetime adaptation during the life of an individual, and evolutionary adaptation
over much longer periods.  If the learning task remains constant across many
generations of evolution, then it is possible that the necessary behaviours could
become specified innately, making the need for lifetime learning unnecessary.  If
lifetime learning has a cost, such as periods of relatively poor performance, then
it is best avoided if possible.  It is certainly known that the Baldwin Effect can
lead to the genetic assimilation of appropriate learned behaviours (Baldwin,
1896; Bullinaria, 2001).  However, if the behaviour to be learned changes
within the individual lifetimes, or varies between individual environments, or
changes too quickly for evolution to track it, or is too complex for easy genetic
encoding, then evolution will not be able to help in this way.



Another approach that has been suggested for resolving the problem of
insufficient training data during a lifetime involves employing auto-teaching
networks.  These are neural networks that can generate their own “supervision
signal”, based on evolved innate connection weight parameters (Nolfi & Parisi,
1993, 1996).  The idea is that evolution can lead to neural structures that do not
completely encode particular behaviours themselves, but instead they facilitate
the lifetime learning of appropriate behaviours.  Previous research in this area
has shown, using a number of different learning tasks, how simulated
individuals using these teaching architectures can out-perform similar
individuals that do not have an “auto-teaching” mechanism.  

The previous experiments involved simple artificial life agents evolved to
perform a foraging task.  Their neurocontrollers had a feed-forward architecture,
in which the inputs were environmental stimuli and the outputs specified
behaviour in the environment.  This paper presents further simulations
following a similar approach, but explores the evolution of auto-teaching
networks more systematically, and assesses the performance of this approach on
new and more difficult tasks in a novel dynamic environment.  

The remainder of this paper will begin with a review of past work on auto-
teaching networks, and then describe in detail how the new simulations were set
up.  This is followed by a presentation of the key simulation results, and some
discussion and conclusions.

2.  Auto-Teaching Neural Networks

Auto-teaching networks have traditional connection weights wij that are updated
during the individual’s lifetime, but instead of the usual external training signal,
which will not be available in many realistic scenarios, they have an internal
training signal coming from an additional set of neurons driven by the same

Figure 1:  Simple auto-teaching neural network architecture.



sensory inputs via evolved fixed teaching weights Wij (Nolfi & Parisi, 1993).  A
simple feed-forward auto-teaching network architecture is shown in Figure 1.
For each input pattern, the outputs are computed as in a standard feed-forward
network, but rather than updating the weights wij to minimize the output errors
relative to externally provided target outputs, they are updated using targets
provided by the internal teaching outputs.  The idea is that evolution provides
an appropriate teaching signal depending on the current sensory inputs, as a
substitute for the feedback information lacking in the environment.

The aim of this paper is to explore whether, when and how this architecture
performs better than traditional networks.  Nolfi & Parisi (1993) devised a
simple foraging task within a ‘grid-world’ artificial life environment to do this,
and used a genetic algorithm to evolve agents that were good at finding food
items to consume.  They used a multi-layer perceptron with sensory inputs that
provided the direction and distance to the nearest food item, and action outputs
that specified the agent’s next movement.  After each movement, the teaching
outputs were used to update the modifiable weights using a standard gradient
descent algorithm.  Nolfi & Parisi (1993) presented results indicating that their
auto-teaching networks performed better than networks in which the main
network weights were evolved but fixed during an individual’s lifetime.
However, Williams & Bounds (1993) analysed a similar task and found that
simple perceptrons performed better than the more complex multi-layer networks
with auto-teaching architectures.

The environment used by Nolfi & Parisi (1993) had randomly distributed
food items, but was of the same form for each new agent, and static during an
agent’s lifetime.  It seems likely that, for any predictable static environment,
any useful search policy that evolves to be encoded in fixed network weights
would remain suitable throughout each agent’s life, and there will consequently
be no advantage to having an auto-teaching mechanism too.  Whether auto-
teaching might usefully interact with evolution to facilitate the acquisition of
better evolved behaviour in such circumstances is less clear (Nolfi & Parisi,
1993; Williams & Bounds, 1993).

Nolfi & Parisi (1997) designed a more challenging changing environment,
and used simple perceptrons with auto-teaching to control simulated Kherpera
robots.  These robots had to move to a randomly pre-defined target in a finite
environment, and to do well (i.e. complete the task quickly) the robots had to
explore the environment as efficiently as possible.  However, there were two
distinct environments, and each new agent was placed randomly into one of
them, which meant that two distinct search policies were needed.  Evolved robot
controllers that could auto-teach during their lifetime were found to outperform



those with fixed weights, because they could adapt to the right policy rather
than rely on some inferior compromise policy.  In general, it is easy to see how
limited sensory information could be used with auto-teaching to switch at birth
to the appropriate one of many evolved behaviours that have been acquired
though exposure to many potential environments over evolutionary history.

What remains to be explored is the dynamic case in which the form of the
environment is the same for all agents, but its nature changes during the agent’s
lifetime, possibly many times.

3.  Simulations with Dynamic Environments

To explore auto-teaching in dynamic environments, agents were simulated that
had to forage for randomly placed food items in a grid-world environment of the
form shown in Figure 2, as in the Nolfi and Parisi (1993) study.  Adaptation is
required because the availability of food varies throughout the agents’ lifetimes.
Each time-step is one agent day, and 600 days is one agent year made up of two
seasons: first summer with plenty of food items, and then winter with none
(Figure 3).  Agents must bury some food during the summer to consume later
to survive through the winter.  Simulation results will be presented for a 20×20
cell world, with agents that start with 100 energy units and expend energy at the
rate of one unit per time-step.  Each food-item consumed is worth another 35
energy units, but agents can only store 100 units of energy at any time.  Given
appropriate sensory information, this task is linearly separable (Williams &
Bounds, 1993), so a simple perceptron controller was adequate.

At each time-step, the agents’ simple perceptron networks (as in Figure 1)
have their weights and activations updated and then have their output actions
implemented.  The agents had different sensory input information available
depending upon the experimental condition.  They always had the normalized

Figure 2:  Grid-world environment, with agent ★, food ● and buried food Ο.



coordinate distances to the nearest food item.  In the first set of simulations,
they also had a sinusoidal representation of the time of year (i.e. the season),
and their current normalized energy level, but these were absent in the second set
of simulations.  Each of the agents’ three output unit activations specified one
of their three potential actions: namely move left/right, move up/down, and
consume/bury food.  These outputs were all thresholded, so that activations in
the range [–0.2, +0.2] meant no action, while higher or lower values meant unit
action in the appropriate direction.  The consume/bury action always takes
precedence over the movements.  If an agent is situated in the same cell as a
food-item, and the consume/bury output neuron has output +1/–1, the agent
will consume/bury the food-item, and not move.  Only if the consume/bury
output is 0, or the agent is not situated on a food-item, will the agent perform
the action corresponding to its movement outputs.

In line with the previous studies described in Section 2, an evolutionary
algorithm was used to evolve populations of fit agents.  The genotype to be
evolved consisted of the network connection weights and biases, and, when
lifetime auto-teaching was allowed, the learning rate.  For tasks with n input
units and m output units, that means (n+1)m evolvable parameters for the fixed
networks and 2(n+1)m + 1 for the auto-teaching networks – consisting of the
(n+1)m main initial weights wij, (n+1)m auto-teaching weights Wij, and one
learning rate.  At the beginning of each simulation, a population of 100 random
individuals were generated, with network weight values taken from a uniform
distribution with the range [–1, +1].  Fitness was taken to be the length of time
survived, which provided a measure of the agent’s foraging skills.  To smooth
the statistical variations inherent in the simplified task, each agent’s fitness was
averaged over three independent runs.  A steady state genetic algorithm with
tournament selection was used, replacing the least fit fraction of the population
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Figure 3:  Density of food items in the environment at different times of year.



at each stage by children of the fitter individuals (Eiben & Smith, 2003).  A
recombination process produced the children by crossover and mutation.
Crossover randomly took parameters from both parents, but with an increased
probability (of 66%) that sets of weights corresponding to a single output were
kept together.  That minimized the disruption to existing correctly functioning
output units.  Then, with 1% probability, an individual would have one of its
parameters randomly mutated with a Gaussian distribution.  This process was
repeated over many generations until the performance level stabilized.

4.  Simulation Results and Analysis

Three distinct sets of experiments were run to elucidate the advantages, if any,
of auto-teaching networks in the artificial life environments described above.

4.1  Simulations With Full Set of Sensory Information

First the performance was evaluated for auto-teaching architectures that had all
the sensory-information available to them: coordinate distances to nearest food-
item, time of season, and internal energy levels.  Although this environment is
different to that used by Nolfi & Parisi (1993), it is qualitatively similar in that
the agents have all the information necessary to perform well on the task.  Thus
it can again be asked whether auto-teaching networks provide an advantage over
standard fixed neurocontrollers.

Figure 4 presents the survival times, with means and variances over twenty
evolutionary runs, with foraging episodes of up to 5000 days.  This shows that
there is no statistically significant increase in foraging performance when auto-
teaching networks are employed on this task.  Contrary to the Nolfi & Parisi
(1993) study, it is found here that, in this case where the task is linearly
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Figure 4:  Evolution of performance when all the sensory information is available.



separable, a good behavioural policy can be specified via evolution alone, with
simple fixed perceptrons performing just as well as those that adapt during their
lifetimes, and there is no difference in the rate of evolution.  The overall lifetime
performance will always be better when the agents can behave correctly from
birth, rather than at some later point in life after learning, so it follows that
auto-teaching networks are of no benefit here.

Observing the behaviour of individual agents confirmed that those with
fixed networks possess the correct behavioural policy from birth.  It was useful
to determine, at this point, exactly how evolution had specified the ability to
solve the task.  The agents could easily evolve the capacity to quickly approach
food via the most optimum path, because the available distance information
inputs trivially indicate the direction to move at each stage.  How the agents
evolved to deal with the issue of when to bury or consume food-items, or
indeed when to neither bury nor consume them, was not so straightforward.  It
was found that the best evolved agents used a combination of time-of-year and
internal-energy sensory inputs to decide on the appropriate action at each time-
step.  The main criterion for what an agent should do with a food-item was the
time of season.  During the winter months, because of the lack of new food-
items available for burying, agents only consumed food-items.  During the
summer months, agents only buried items, unless the winter period was
imminent or their internal energy became low.  This meant that they generally
maximised the number of food-items buried during the summer months, and
only consumed food-items when necessary.  Another use for the internal-energy
sensory input was to maximise the length of time during the winter months
when the agent was not consuming its previously buried food-items.  Agents
did this by remaining still until their energy became low, in which case they
headed to a previously buried food-item and consumed it.

4.2  Simulations With Limited Sensory Information

The first objective of this work has been achieved by establishing, in this
scenario, that auto-teaching networks do not always perform better than fixed
networks in artificial-life environments.  Next the simulations were varied to
determine under what conditions auto-teaching networks can outperform fixed
evolved networks.  Analysis of the experimental results so far indicated that the
evolved agents relied heavily on the internal-energy and seasonal-time sensory
inputs.  With these two sensory stimuli, a fixed-network can display a wide
enough range of actions to survive indefinitely in the environment.  However, if
these stimuli were removed, the agents would need another mechanism to
change their behaviour during their lifetime in order to survive longer than the



initial summer months.  This is because, with only the position information
available, an agent’s network input will always be the same whenever it is
positioned on a given food-item.  Therefore, for the network outputs to be
different, e.g. –1 for bury or +1 for consume, the network connection weights
must be different, which means the agent needs to adapt during its lifetime.  

However, given the nature of the neural learning mechanism being used, it
is not obvious whether the necessary adaptation is possible, given that the
external teaching signals are limited, and the way an agent teaches itself is fixed
during its life (because the teaching weights are fixed).  In particular, the agents
must use the environment to generate appropriate auto-teaching stimuli, and if
the environmental stimuli are limited to the position information of the nearest
food-item, it is not clear whether that can lead to appropriate consume/bury
signals.  To explore this issue, the simulations were re-run with only the food
location information as sensory inputs.  The results, presented in Figure 5,
show that all the performance levels are considerably lower than the previous
experiment, due to the increased difficultly of the task resulting from the lack of
sensory stimuli.  However, there is now a clear and significant improvement in
the performance of the auto-teaching networks over fixed networks.

The fixed networks evolve to simply consume food-items whenever they
find them, and that allows them to survive until shortly after the end of
summer-time, i.e. ~410 simulated days.  It is clear from the improved mean
performance of ~450 days that agents with an auto-teaching architecture are
changing their behaviour (with regard to what action to perform when on a food-
item) during the task.  They are now, at birth, burying food-items whenever
they encounter them.  However, at some point during their life, the agents
change their behavioural policy to one that involves consuming the food-items
whenever they are encountered.  This allows them to bury some food-items to
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Figure 5:  Evolution of performance when only food location input is available.



be consumed during the winter part of the task when there are no other food-
items available.  Since the agents no longer have any sensory information about
the time of year, nor their internal energy levels, the evolutionary process is
managing to select for teaching-weights that ensure this behaviour change
happens at the most appropriate point in time, given the stochastic nature of the
task.  Figure 6 illustrates how these behaviours take place in typical evolved
agents, with the up/down spikes representing successful consume/bury actions.
This graph also illustrates the difference in resultant life-times.

From these results, it is clear that the auto-teaching networks do not evolve
sophisticated continuous learning – the agents only change their consuming/
burying behaviour once during their lifetime.  To do better at the task, they
would need to be able to switch between the two behaviours multiple times
during a lifetime spanning many years.  In effect, the evolved auto-teaching
mechanism needs to encode the fact that there are seasons of particular lengths,
and adjust the agents’ behaviours at appropriate times of each year.  The current
framework is such that evolution cannot find such a mechanism, probably
because the sensory inputs provide insufficient information to allow it to take
place with the learning mechanisms available.

4.3  Simulations With Multiple Learning Rates

To give the auto-teaching mechanism more flexibility, and to provide evolution
with a better chance of finding improved behaviours, more sophisticated neural
networks were considered.  The auto-teaching signal provides target outputs, and
the single evolved learning rate specifies the rate at which the adaptable weights
change to achieve those targets.  If numerous different rates of change were
allowed in the network, it is likely that a wider range of dynamics would be
evolvable.  Consequently, the previous approach was extended to allow the

Figure 6:  Actions taken by typical evolved agents during the foraging task.

Up-spike = consume

Down-spike = bury



possibility of a different learning rate to evolve for each adaptable network
weight.  This would allow (if it proved beneficial) independent weights to
change at different speeds during the life of an agent, possibly with some being
fixed, and this could allow more complex behaviours to emerge.

The previous simulations were thus repeated with multiple learning rates.
For networks with n input units and m output units, that meant increasing the
size of the agent genotypes to 3(n+1)m – consisting of (n+1)m initial values for
the adaptable weights wij and (n+1)m auto-teaching weights Wij as before, but
now with (n+1)m learning rates instead of only one.  All the other simulation
details remained exactly the same as before, with a similar pattern of crossover
and mutation employed for the learning rates as for the network weights.
Figure 7 shows how the new multiple learning rate auto-teaching networks
significantly outperform both the previous single learning rate auto-teaching
architectures and the non-learning fixed networks.  

The new multiple learning rate architectures are able to modulate their
behaviour during life, allowing them to change between consuming and burying
policies multiple times.  It is clear, from the average population fitness, that
agents using this new architecture are surviving well beyond a single simulated
year, which is encouraging because the previous auto-teaching networks were not
capable of this.  In fact, the maximum foraging time of 5000 days is once again
being regularly achieved, and it is now actually possible for agents to survive
indefinitely in the environment.  

The season dependent behaviour is seen more clearly in Figure 8, which
presents a plot of a typical agent’s actions when encountering a food-item, for
their first 2500 days.  Analyzing the details of the evolved networks reveals that
there are actually many different mechanisms that can emerge to enable this
improved behaviour.  The auto-teaching signals always vary rapidly during the
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Figure 7: Evolution of performance for multiple learning rate agents.



agents’ lifetimes, and these interact with complex patterns of learning rates to
modulate the rates of consuming and burying at different times of each year.
Exactly how this is achieved is found to vary considerably across individuals
from independent evolutionary runs, with different sub-sets of the weights wij

becoming fixed in different individuals.  It is certainly clear from Figure 8 that
the evolved behaviour is more complex than the simple switch between burying
and consuming at appropriate times each year that one might think would be the
easiest way to survive over many years.  Burying only takes place during the
summers, but apart from that, the choice between burying and consuming
appears random.  Determining the precise range of mechanisms that allow this
improved behaviour will require considerable further study.  The important issue
here is that, within this relatively simple framework, it is possible for evolution
to reliably find such mechanisms.

5.  Discussion and Conclusions

The study presented in this paper has used artificial life simulations, in a simple
foraging domain, to test the effectiveness of auto-teaching neural networks for
agents operating in dynamic environments.  It showed that, contrary to previous
indications in the literature, simpler fixed weight networks can exhibit equally
good performance on some tasks.  However, if the sensory input information is
sufficiently limited on the same tasks, then auto-teaching networks can show
significant performance improvements over fixed networks.  In general, if the
task is predictable, but varies during an individual’s lifetime, it will depend on
the nature of the task and the available sensory inputs whether auto-teaching will
be beneficial.  Fortunately, the evolutionary approach adopted in this paper is
easily applicable to determine the efficacy of auto-teaching neural networks for
any novel problem domain.

Figure 8: Actions taken by typical evolved multiple learning rate agents.

Up-spike = consume

Down-spike = bury



For the simple foraging task studied, the performance enhancement
provided by standard auto-teaching neural networks, with a single learning rate
for all the modifiable weights, was relatively limited.  However, by allowing a
slightly more general auto-teaching mechanism, with a potentially different
learning rate for each modifiable weight, it was demonstrated that auto-teaching
architectures can, in certain scenarios, evolve to modulate behaviour successfully
in line with the environmental dynamics, and thus out-perform the standard
auto-teaching networks by a large margin.

While it is clear that evolved auto-teaching networks can perform better on
the simple foraging task considered than evolved networks with fixed weights,
it remains to be seen how useful auto-teaching is for more complex behaviours
that require more complex neural networks.  For example, for the dynamic task
studied here, a neural network sophisticated enough to allow the implementation
of a timer or oscillator would quite likely allow the evolution of a fixed network
that could allow individuals to survive over many years just as easily as the
auto-teaching network.  It remains a topic for future work to establish the limits
of the auto-teaching approach, and to determine if and when it has advantages
over other approaches for other tasks.  If auto-teaching allows simpler networks
to solve a particular task, it is quite possible that evolution will favour it as a
mechanism for implementing the appropriate behaviour.
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