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ABSTRACT

In a standard genetic algorithm (GA), individuals repro-
duce asexually: any two organisms may be parents in
crossover. Gender separation and sexual selection here in-
spire a model of gendered GA in which crossover takes
place only between individuals of opposite sex and the
GA’s evaluation, selection, and mutation strategies depend
on gender. Consequently, a pattern of cross-gender co-
operation and intra-gender competition emerges. A sym-
biotic relation between the selection and crossover opera-
tors also arises. Experimental results prove this strategy
to be advantageous, significantly outperforming the stan-
dard GA, both in number of generations required and in
the quality of solutions.
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1 Introduction

Genetic Algorithms are one approach of Evolutionary
Computation. Although GAs were conceived by modelling
key elements of natural evolution, one of those elements,
and perhaps one of the most crucial, was left out, namely
gender [13, 23]. Gender is not only responsible for preserv-
ing diversity in genes and maintaining a successful genetic
pool by means of selection, crossover and mutation, but is
also responsible for the optimisation of the different tasks
vital to survival. There is much evidence that the speciali-
sation of individuals is mainly by gender group [20].
Through gender came the developing of sexual selec-
tion, a component of natural selection where reproductive
success depends on interaction with a partner of the oppo-
site sex to produce offspring [23]. Sexual selection origi-
nates the observed differences between males and females
in the phenotypic traits of many species, as well as complex
behavioural patterns like competitiveness inside a gender
group and co-operativeness between the two sex groups.
Some attempts to formulate GAs featuring gender
have already been proposed [2, 21, 22, 25]. However, in
most cases, these simulations simply consist of adding an
extra attribute of gender to the chromosome, and defining a
constraint preventing crossover between individuals of the

same sex. Similarly, approaches including competitive/co-
operative operators and natural selection derived strate-
gies [11, 1] omit key elements of the sexual evolution strat-
egy, such as sexual selection, mutation variations between
gender and the competitive/co-operative patterns of indi-
viduals (in the same and opposite gender groups respec-
tively) [10, 23, 13, 8, 3, 15].

The gendered GA proposed here integrates two well
known components: the standard GA [16, 18, 12], and the
theory of sexual selection [8, 23, 13]. A competition co-
operation dynamic is simulated based on an adaptation of
Hamilton’s definition of inclusive fitness [17], and the in-
corporation of differing mutation rates for each gender as
observed in biological systems [10]. Hamilton pointed out
that an individual’s fitness can be partitioned into two com-
ponents, namely the Direct fitness resulting from personal
reproduction, and which we shall adapt to our model as
the individual’s Competitive fitness, and the Indirect fitness
which results from additional reproduction by relatives that
is made possible by an individual’s actions, adapted to our
model as the individual’s Co-operative fitness (for further
reading on Hamilton’s work, see [13, 23, 15]).

The organisation of this paper is as follows: Section
2 provides a brief description of the proposed model, Sec-
tion 3 discusses some experimental results on the TSP and
includes a comparison with the non-gendered standard GA
performance, finally the conclusions and some recommen-
dations for further work are presented in Section 4.

2 TheGendered GA

To the complex task of survival, organisms have responded
with adaptation. It is believed that life on earth began some
3.8 hillion years ago and it first developed in an asexual
scenario [23]. Around two billion years ago, environmen-
tal pressure triggered a response of a simple yet powerful
nature, namely sex. According to standard evolution the-
ory, this newly acquired feature must have represented an
advantage for individuals, and indeed a very useful one, for
it has not disappeared since then.

Sexual attractors are very common in nature, and al-
though their exact functions are still unclear, they have
passed the tests of evolution. Consequently, applying the
time honoured Evolutionary Computation practice of “if it



works for nature, it is worth trying it” [2], the proposed
model intends to integrate in a single approach some of the
principal strategies observed in gendered societies. More
precisely, it involves the simulation of patterns of competi-
tive and co-operative behaviour derived from sexual selec-
tion [15], as well as recent discoveries on how male and
female mutation rates differ [10].

The approach is based upon the following fundamen-
tal factors being included in the model:

e A clear distinction between the two gender groups,
with the possibility of embedding different tasks for
each one, such as the determination of what a “good”
partner is (for mating and crossover).

e The inclusion of the principle of co-operation between
elements of different gender to optimise the chances
of survival for the following generations.

e The inclusion of the principle of competition in each
gender group to ensure that the co-operative entities
will be fit individuals.

e The simulation of mutation biased on the group’s gen-
der, as observed in nature.

e The inclusion of a relation between age, fertility and
fitness as in biological systems affecting the selection
process.

In the literature, many successful genetic operators
have been proposed for the GA [16, 7, 24, 19, 1, 4], how-
ever, although these methods can be included in the pro-
posed strategies here, our concern is to assess the improve-
ment these strategies may represent over the standard GA,
therefore, we have kept the standard variation operators
such as roulette wheel selection and a one-point crossover.
From this, tests will be run on both standard GAs with and
without the sexual selection strategies and the results will
be compared on the basis of the strategies and not on the
advantages of the operators.

The elements of the proposed model may be de-
scribed as follows: Let P be the population of the GA,
and let X and Y be two proper subsets of P represent-
ing each gender (females and males respectively), such that
P=XUYandXNY = {:
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A parameter vy denotes the fraction of individuals in set
Y, so at any given time, the probability of an individual
a € PheinginsetY or X is

p(a,Y) =7 p(aaX) =1 — Ty (3)

Procreation/crossover is permitted only between individu-
als of opposite gender, and only two offspring are created,
one of each gender. This keeps the male:female ratio con-
stant throughout the evolution of the system.

Figure 1 represents the implementation of the gen-
dered population. As this Unified Method Language Dia-
gram [5, 6] shows, individuals in the population each have
their own methods of evaluating a “good” partner and their
mutation. Their similar characteristics are contained within
the meta-class which represents the species.

Individuals

age

genotype

competitive fitness ...

crossover() ...

I |
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Figure 1. The structure of the population. A species class
defines similar attributes. Polymorphic methods are em-
bedded in each gender group.

For practical purposes and clarity in the evaluation of
the strategies, the selection method used for procreation
was the ‘roulette wheel” model in which the probability
of selection is in linear proportion to each individual’s fit-
ness [16]. We usually work with a fixed population size,
so the number of individuals remaining from one genera-
tion to the next will depend on the chosen degree of elitism
and the procreation probabilities. An extra attribute of age,
measured in generations, enables us to model males’ pref-
erences over females® fertility derived from sexual selec-
tion.

Sexual selection simulation consisted of implement-
ing different partner assessment functions for individuals
in contrasting gender groups. Males were selected based
on the direct outcome of the quality or fitness function ap-
plied to the individual’s genotype, denoted by f and defined
as its Competitive Fitness. Females however, were sub-
ject to a different evaluation scheme, that also involves the
differential in competitive fitness between male parent and
offspring that she makes possible by means of crossover.
Using the age attribute, the longevity and fertility param-
eters (see [11]) were also able to be included in the as-
sessment of her fitness. Combining these factors gives the
Co-operative Fitness for female individuals. We shall now
specify these ideas more precisely.

A male parent is selected first. We can define our se-
lection function to be Sel(¢(a)) which returns one chosen
individual from the set of all competing individuals a with
fitness function ¢. So our chosen male parent y,.; will be
selected from all y € Y according to

Yset = Sel(f(y)) 4)



After a male parent is selected, his female partner is cho-
sen from all z € X according to their co-operative fitness
that depends on their competitive fitness f, her Age, and
the improvement A f in fitness of her son compared to her
chosen mate. Clearly A f will have a value of zero for the
initial generation. After the offspring are evaluated, A f
will be computed for that female in the next selection pro-
cess. This is not a disadvantage to the oestrogenic individ-
uals due to the sexual selection scheme, where competition
is not present in contrasting gender groups. This can be
expressed as

2y = Sel (wlf(ﬂf) + w2 Af(y) + w39(A9€(97))) 5)

w1 + ws + w3

in which we have the fitness change

Af(y) = f(yson) - f(ysel) (6)

and g(Age(z)) is a scaling function that determines the ef-
fect of age on the chances of being selected. A simple tri-
angular function of width ¢ around the age of maximum
fertility u proves adequate for our purposes

1 _ 1Age(@)—pl)

ge@) = { |

Age(z) < p+o
Age(z) > p+o

()
For practical purposes we can take p + o to be the given
individual’s life-span. The w; are a set of fixed weighting
parameters that we must choose to specify appropriate rel-
ative importance to the three components.

The combination of this selection scheme and the
crossover operator steadily evolve to a symbiotic relation-
ship. The rationale for this is that each gender specialises
on a substring of the genome. For instance, in a one-point
crossover, females may contribute to the trailing part of the
genome string (by means of crossover). Thus, the better her
contribution is to the offspring’s fitness, the better her fit-
ness will also be (by means of the Indirect fitness scheme),
and hence the better her chance to get selected again. Such
co-operative patterns between opposite genders allows the
selection and crossover operators to “adapt” to each other.

As with all GAs, the individuals a € P will each be
specified by a chromosome that represents the given prob-
lem solution as a string of length L in some generalised
alphabet. We then have to define appropriate mutation and
cross-over operators on those chromosomes.

The mutation process is simulated with different mu-
tation rates for each gender group (as is found in na-
ture [23, 10, 13]). These rates are fixed throughout the
evolution process, and are set as initial input parameters.
We can define these mutation probabilities to be

mx VaeX , my VaeY 8)
and following biological systems have

mx <my (9)

Therefore, the total effective mutation rate of the popula-
tion P is
mp =yymy + (1 —yy)mx (10)

Clearly the details of the mutation when it occurs will de-
pend on the problem and the specification of the chromo-
some.

This mutation scheme depicts two different groups of
individuals: males with a more dynamic or “active” genetic
pool given higher mutation rates, and females with lower
mutation rates and hence with a more static or “passive” ge-
netic material, providing a balancing element in crossover.

The crossover operator is implemented using one split
point for each parental chromosome, s; and s,, for father
and mother respectively. These are chosen at random and
thus divide the two parental chromosomes in four segments
(two segments each) with probability

9 2
DP(4_segments) = (1 - z) (11)

Figure 2 shows the one-point crossover operator, in which
F; and M; represent the genes of the father and mother re-
spectively. The son inherits the trailing part of his mother’s
genes starting after position s¢, and the rest is taken from
the father’s chromosome starting with the first gene Fj.
Similarly, the daughter inherits her mother’s trailing genes
in the same way as her sibling, however, the rest of her
chromosome is obtained by copying her mother’s heading
genes in inverted order. Generation of infeasible individu-
als (e.g. those with a chromosome that transgresses a con-
straint) is avoided by employing a repair algorithm [4]. If
a gene F; is found to produce an illegal individual when
copying the father’s gene to the son, the next one F;q is
considered instead, and so on. In the case of the daughter,
this crossover operator does not yield illegal individuals for
the test problem used here.

Fl Fz F: Fd ‘ FS Ps ‘Ml‘Mz‘Mi‘M4 Ms Mﬁ
Sp Sm
E | ‘M3 M, M5|M6 ‘Ma M, M1‘M4 M. M,

Figure 2. Details of the crossover process. Split points, s ¢
and s,, in father and mother respectively, denote the cut-
points for chromosome inheritance. In this case, the son in-
herits his father’s genes F; ... F in positions 1. .. sy, and
mother’sgenes Ms ... Mg insg+1... L. The daughterin-
herits My ... Mgins,,...L,and M3 ... Myinl...s,—1

It is clear that the approach described includes new
features for the GA. Female selectiveness is reflected in the
males’ competition by means of the competitive fitness and
higher mutation rates, while males’ preferences for fertility



and capacity to rear fit offspring in females, are intrinsically
included in the co-operative fitness model.

3 Experimental Results

As a first test of the approach, the performance was ex-
plored using the Travelling Salesman Problem (TSP), the
reason being the exponential nature of the problem, its so-
lution landscape, and the available resources to compare re-
sults against other GA models featuring diverse and more
complex variation operators. The TSP is a classic combina-
torial problem that has been widely used to study different
optimisation algorithms in the past. The task is for an agent
(the salesman) to complete a circuit of all the nodes (the
cities) in a fully connected graph, with the constraint that
no node is permitted to be visited more than once. Clearly,
as the number of nodes in the graph increases, the number
of possible circuits or tours increases exponentially. The
aim is to get the salesman to complete the circuit while
travelling the least total distance possible.

The TSP chromosome is the usual representation of
this problem: the list of cities in order of visit, so a chro-
mosome (14 2 5) representsthetour1 -4 — 2 —» 5 — 1.
A mutation simply swaps two cities in that list and the fit-
ness is the minimum possible tour distance D, divided by
the actual tour distance. To be sure of the global optimum
and to give an intuitive idea of fitness, the cities were laid
out on the circumference of a circle. Starting at any node
on the circumference, the global optimum will be a tour
corresponding to a cycle through consecutive cities around
the circumference. Thus, with Cp, ,, representing the link
cost, i.e. the distance between m and n, the fitness function
Va € P is defined as:

D
L-1
Zi:1 Cmi,mi+1 + CmLyml

The results presented are a comparison of matched runs of
the standard and gendered genetic algorithms, so the same
parameter configurations were used for all the simulations.
Good parameters proved to be a population size | P| = 200,
crossover probability of 0.75, and an elitism proportion of
0.07. For the gendered GA, there were several additional
parameters to specify. For the sexual selection, good co-
operative fitness parameters were found to be w; = 0.75,
wo = 0.55 and w3 = 0.18. The perceived fertility function
g(Age(z)), defined in Equation 7, had parameter values
1 = 2 and o = 4, leading to the age factor influence on
fitness shown in Table 1. The chosen gender dependent
mutation rates were mx = 10~2 and my = 10!, with
the fraction of male individuals in the population vy =
0.5 (see equation 3). Thus, following from equation 10,
the mutation rate selected for the standard GA was 0.0505,
in order to equate the total number of mutations in both
algorithms.

We now turn to the simulation results, for which each
case is averaged over 100 experimental runs. To assess and

fla) = (12)

Table 1. Age dependence of perceived fertility
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Figure 3. Results from the TSP experiment for the gen-
dered GA and standard GA with 20 cities. The fitness aver-
ages of the population (above), and average best individual
fitness (below).

compare the performance of the algorithms, we used the
De Jong’s off-line measure [9] defined as

X:(h) = 230 f2(0) (13)

where f¥(t) = best{f(a1), f(a2),..., f(a;p))} at gener-
ation ¢, and T is the total number of generations. This mea-
sure is thus the average of the best individuals over all the
generations iterated in the algorithm. Since all our experi-
ments were based on 100 trials, our off-line measure is then
averaged over 100 runs.

In Figure 3, for 20 cities, we can see that the popu-
lation’s mean fitness in the gendered approach has a much
steeper evolution towards a higher asymptotic state. It also
shows a similar advantage in terms of speed of evolution
for the best individual fitness, achieving the optimal fitness
of 1.0, whereas the standard approach only achieves around
0.75.

Figure 4 reveals how the results differ for runs with
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Figure 4. Results from the TSP experiment for the gen-
dered GA and standard GA with 50 cities. The fitness aver-
ages of the population (above), and average best individual
fitness (below).

Table 2. Comparison of performance for the Standard and
Gendered GA

Standard GA Gendered GA
DeJong’s X |Optima|DeJong’s X|Optima
20 | 10'8 0.7389 96 0.9826 100
50 | 10% 0.2379 0 0.7180 44
200 | 103%™ | 0.0356 0 0.1006 0
500 |10''%3| 0.0123 0 0.0264 0

Nodes|Routes

50 cities, which obviously represents a much larger solu-
tion space. They show that the gendered GA again results
in steeper slopes than the standard GA, reaching better so-
lutions in fewer iterations (generations) and less computing
time.

The averages in the figures do not tell us how often we
achieve the optimal routes in each case. Table 2 shows the
number of optimal routes achieved out of 100 experimen-
tal runs for the two GA types, and for different numbers of
TSP nodes. It also provides a performance comparison for
both algorithms, running on different problems, based on
the De Jong’s off-line measure (equation 13). For all the
test cases, the gendered GA clearly outperforms the stan-
dard GA on these measures.

Table 3 shows the De Jong off-line measure for
different total levels of mutation (noise) for both algo-

Table 3. Noise/mutation tolerances of the Standard and
Gendered GA

GA Mutation 10% | Mutation 30% | Mutation 50%
Standard 0.180 0.162 0.155
Gendered 0.513 0.458 0.458

rithms. For the gendered approach we maintained the ini-
tial male:female mutation rates ratio. The comparison is
based on the 50 nodes TSP instance. As in Table 2, the
gendered GA outperforms the standard GA, keeping a bet-
ter measure at higher noise levels. Intuitively, this robust-
ness is due to the different mutation rates for each gender
group, where the embedded sexual selection strategy helps
maintain a more “stable” population by means of competi-
tion only between individuals of the same gender.

4 Conclusions

A Genetic Algorithm with sexual selection and
competitive/co-operative operators has been presented.
This approach models the competitive behaviour observed
in many species amongst males using standard selection
models. However, it also includes a new selection policy,
based on co-operative fitness, for the female selection.
The mutation rates also involved gender-based differences.
A symbiotic relation emerged between the selection and
crossover operators, and these allowed an adaptive scheme
with consequent specialisation of each gender in a sub-area
of the chromosome.

The results of preliminary experiments on the Travel-
ling Salesman Problem suggest that this is a promising ap-
proach that can significantly outperform the standard GA,
both in number of generations required and in the quality of
solutions. This was found consistently in all the tests runs.
Sexual selection by means of different mutation rates and
age parameters are likely to keep the algorithm from local
optima stagnation and from exponential take-over of strong
individuals.

More appropriate recombination operators for the
problem discussed have been proposed, however, as men-
tioned before, by modelling sexual selection on a gendered
GA, a better assessment of the strategies may be possible
by keeping the variation operators of the standard algo-
rithm. Nevertheless, results proved promising when com-
pared with other more complex genetic algorithms such
as [14].

Further research on parameter-tuning and parameter
control strategies (e.g. static, dynamic and adaptive con-
trol), as well as further study into the nature of the trade-
offs from having different mutation rates between genders,
are likely to result in even greater advantages for the gen-
dered approach.

Although there is obvious potential for this approach,
there is still much work to be done in pursuing a more solid



theoretical basis for it, and in assembling a general frame-
work capable of producing successful implementations for
a range of different problems. In particular, research work
on the mathematical foundation on the indirect fitness se-
lection model needs to be carried out. This is likely to lead
to a more profound understanding of the co-operative op-
erators, and is likely to steer their nature to a more “real-
world” arena, and perhaps introduce further new improve-
ments, approaches and state-of-the-art strategies in all as-
pects of GA research.
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