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Abstract

The problem of modelling lexical decision in
connectionist models is discussed.  It is shown
how lexical decision can be performed by a
simple neural network with no explicit lexicon
and no recurrent connections.  We also see how
simulated reaction times can be extracted from
such systems that are in broad agreement with
various experimental data concerning semantic
and associative priming.

1.  Introduction

The basic language processing tasks of reading and
spelling have become important benchmark tests of
connectionist cognitive modelling and also of
connectionism more generally.  Already connectionist
models perform well at these tasks in terms of learning
the training data and in generalizing to new items.  We
now need to test and constrain these models further by
comparing them with human performance on the
various experimental conditions that psychologists have
designed to probe the representations and processing
procedures employed by the human brain.  Of particular
interest are the results of reaction time studies of
naming (i.e. producing a pronunciation) and lexical
decision (i.e. deciding whether a string of letters or
phonemes is a real word).

It is well known that humans are able to perform
both naming and lexical decision quickly and with high
accuracy and the corresponding experiments (which
investigate errors, reaction times and priming) place
particularly strong constraints on connectionist (and
other) models.  The connectionist modelling of the
naming studies was discussed in Bullinaria (1995).  In
this paper we shall discuss the modelling of the lexical
decision studies.

One advantage of connectionist systems over
others (such as symbolic analogy models) is their ability
to generalize well to novel items, i.e. to perform nearly
as well with novel inputs as with those items on which
they were trained.  For example, any successful network
model of reading must (like humans) be able to read
aloud words or non-words it has never seen before.
However, if the model can deal with new words in the
same way as those it was trained on, it will be difficult
for that system to perform lexical decision without the
introduction of an explicit lexicon.  It was for this
reason that the earliest single route connectionist
models of reading aloud (Sejnowski & Rosenberg,
1987; Seidenberg & McClelland, 1989) were unable to
perform reliable lexical decision (Besner, Twilley,
McCann & Seergobin, 1990).  There was simply no
criteria within those systems that could form the basis

for lexical decision.  The same is true of the more recent
and more successful direct route models of reading and
spelling (Bullinaria, 1994a; Plaut et al., 1994;
Bullinaria, 1994b).

It is now generally agreed (e.g. Coltheart et al.,
1993; Bullinaria, 1994b; Plaut et al., 1994) that such
single route models must be supplemented by some
form of additional semantic or lexical route so that we
end up with what is often described as a Dual Route
Model (e.g. Coltheart et al., 1993).  Some preliminary
work has been carried out on the semantic/lexical route
of such models (e.g. Plaut & Shallice, 1993; Plaut et al.,
1994), but it is still far from clear if an explicit lexicon
is required or if some more distributed semantic system
is sufficient (e.g. Masson, 1991).

In the remainder of this paper we shall investigate
some simple feed-forward networks that map between
orthography and phonology and semantics and show
that under certain (but not all) circumstances it is
possible for connectionist systems to perform reliable
lexical decision without an explicit lexicon.  It will also
be shown how these systems can produce reaction time
and priming results that are in broad agreement with
experiments on humans.  This work provides the
foundations for more detailed morphological modelling
currently being carried out (Bullinaria & Marslen-
Wilson, in preparation) and the construction of
complete connectionist dual route models of reading
and spelling (Bullinaria, in preparation).

2.  Modelling Lexical Decision

Within the connectionist framework, there are currently
two main approaches to modelling the lexical/semantic
system.  The original approach uses a localist
representation with a single node for each word (e.g.
McClelland & Rumelhart, 1981).  Lexical decision is
then simply a matter of checking to see if, and how
quickly, any of the word nodes are activated.  Priming
(i.e. the effect by which response is speeded by prior
presentation of certain related words) can arise due to
activation passing between appropriately related nodes.
More recently, Hinton & Shallice (1991) and Plaut &
Shallice (1993) have shown how a reading model using
distributed semantic representations can provide an
account of deep dyslexia.  In this distributed approach,
priming may (depending on the details of the model)
still arise due to activation passing between the nodes
which now correspond to semantic microfeatures.
However, it is now also possible for priming to occur
simply due to the overlap of semantic representations
that will inevitably occur for semantically related
words.

In many ways the distributed approach seems
more natural in the connectionist framework (see Plaut,
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1995, for further discussion), but performing the lexical
decision becomes a much less straightforward matter.
If our system still involved some form of explicit
lexicon, the lexical decision could be carried out by
checking the target word or the corresponding semantic
activation against this lexicon.  If the lexicon search
were ordered by frequency in some way, then we would
automatically arrive at the experimental result of faster
decision times for high frequency words than for low
frequency words than for non-words (Forster, 1976).
However, there is considerable experimental evidence
against such sequential search models (e.g. Marslen-
Wilson, 1987).  There is still the possibility of a realistic
non-sequential lexical search within a connectionist
system, but we shall see if we can manage without such
a search altogether.

If the whole lexicon is replaced by a distributed
system of semantic microfeatures, we need some other
method of performing lexical decision.  It is natural to
consider the reaction times to be the time taken for the
relevant sets of microfeatures to be activated or to settle
down to or become sufficiently close to their stable
state.  The awkward question of determining whether
this final state corresponds to a word or a non-word is
rarely investigated in detail.  One could argue that there
is some form of (possibly variable) processing deadline,
such that failure to activate or stabilise by that time
indicates a non-word (e.g. Coltheart et al., 1977).  This
would certainly explain the faster response for words
over non-words, but it is not obvious that is it possible
to find a deadline that accurately separates the two
classes.  Similarly, we could consider lexical decision to
be based on simple familiarity, and argue that the
networks output activation error scores are a reasonable
measure of this familiarity.  A potential problem with
using such error scores is that, if there is no explicit
lexicon to check against, it is difficult to see how the
error scores could be calculated.

To test the feasibility of these various possibilities
we really need to explicitly implement and test some
representative models.  The simplest model we could
consider is essentially the same for the phonology to
semantics mapping as for orthography to semantics: A
static input coding of phonology/orthography is
associated by gradient descent learning with a static
output semantic vector in a simple feed-forward
network.

For mono-syllabic words the relationship between
phonology (or orthography) and semantics is essentially

random.  Some progress has been made towards
generating realistic semantic representations (e.g.
Schütze, 1993; Lund, Burgess & Atchley, 1995), but for
simplicity here we shall use conveniently constructed
random semantic vectors. Each of these vectors is taken
to be 27 dimensional binary with exactly three bits on.
These three bits are supposed to correspond to the
activated semantic microfeatures of Hinton & Shallice
(1991) and Plaut & Shallice (1993).  For the phonology
we shall take one unit for each of the 20 most common
onset consonant clusters, the 10 most common vowel
clusters and the 20 most common offset consonant
clusters.  This gives us a simplified version of the
phonological representation used by Plaut et al. (1995).
This kind of representation might not be sufficient to
give human level reading and spelling performance and
cannot even deal with all English mono-syllables, but it
will be sufficiently representative for our purposes here.
We shall use a fully connected feed-forward network
(as shown in Figure 1A) with 400 hidden units and train
it on a random set of 200 mono-syllables taken from the
Seidenberg & McClelland (1989) corpus.  The training
procedure was standard back-propagation with cross-
entropy error function, a learning rate of 0.005 and no
momentum (Hinton, 1989).

The network was trained for 5000 epochs with all
200 training words appearing in random order in each
epoch.  By epoch 2500 all the training vectors had been
learnt correctly, i.e. the three on bits each had activation
greater than 0.5 whilst all the off bits had activation less
than 0.5.  The remainder of the training reduced the
output activation error scores further.  The error score
distributions at each stage were the usual noisy
positively skewed gaussians.  The cross-entropy error
scores were highly correlated (Pearson r = 0.95) with
the standard root mean squared errors (RMSE) so we
shall only discuss the RMSE in the following.

Our main purpose here is to establish if the
network’s outputs for non-words are sufficiently and
consistently different in some way from those for the
training words that they may be used as the basis for
lexical decision.  Because of our reduced phonological
representation, there are only 4000 possible input
strings for our network.  We took 200 ‘words’ for
training, leaving us 3800 ‘non-words’ to use for testing.
We shall look at the network at both 2500 epochs and
5000 epochs to give us an idea of how things change as
a result of more or less training.  In more realistic
training data with a wide word frequency distribution
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Figure 1.  Simple feed-forward networks for mapping phonology to semantics.



many of the low frequency words will be more poorly
learnt as at our epoch 2500.  The higher frequency
words will be better learnt as at our epoch 5000.

The first thing to consider is the total semantic
activations produced by each input.  For our training
words the sum squared activation will obviously be
close to 3.  At epoch 2500 we actually find 2.58 ± 0.15
and by epoch 5000 this has increased to 2.93 ± 0.03.  If
the semantic activations for non-words were much less
than this, we might have a basis for lexical decision.
Unfortunately they are not – we find 2.42 ± 1.07 at
epoch 2500 and 2.53 ± 1.13 at epoch 5000.  If we also
take into account the fact that realistic semantic
representations are unlikely to have equal numbers of
activated micro-features for every word, we see that this
approach is not really viable.

Although there is a very large overlap between the
total semantic activations for the words and non-words,
the words have been learnt to be near-binary, whereas
the non-words have a wider distribution, so maybe this
could be used for lexical decision  At epoch 5000 the
sum squared deviation from binary is 0.00096 ±
0.00052 for the words compared with 0.23 ± 0.17 for
the non-words and there are only 43/3800 (1.1%) non-
words overlapping with the word distribution.
Unfortunately at epoch 2500, things don’t look so good.
The deviation from binary is then 0.036 ± 0.021 for the
words and 0.31 ± 0.19 for the non-words with 568/3800
(14.9%) overlap.  It was a similar overlap that also
made it impossible for the Seidenberg & McClelland
(1989) model to perform reliable lexical decision
(Besner et al., 1990).

Another problem is that in realistic semantic
representations there is no good reason to suppose that
we will have binary activations for each word, i.e. each
unit either fully on or fully off.  Shades of meaning and
variable contexts suggest that we cannot necessarily
assume binary activations of the microfeatures.  Certain
microfeatures may well be activated to intermediate
degrees.  This will clearly make it difficult to perform
lexical decision based purely on semantic activations
without some form of lexicon to check the activations
against.

We know that it is possible for non-words (e.g.
‘slithey’) to elicit semantic activation, particularly if
they are closely related orthographically or
phonologically to real words.  It is also natural that,
when we hear a non-word mixed in with normal speech,
we should interpret it semantically as best we can and if
necessary allow the available context information to
adjust its meaning so that the sentence makes sense.  If
we hear a slightly mis-pronounced or slightly garbled
word we do not reject it completely and fail to parse the
sentence.  Indeed, we often fail to detect such errors at
all (Cole, 1973).  It should be considered good to see
our network behaving in a similar manner.  However,
even though context free lexical decision is a somewhat
artificial task, we still need to understand how humans
can do it so well.

We have seen that simple phonology to semantics
networks on their own have a hard time trying to
perform lexical decision.  However, one possible
alternative procedure that could be implemented in
these simple models is to consider the internal
consistency of the activations.  For example, if a
phonological input produces a particular pattern of

semantic activation, we could check that this pattern of
activation would in turn produce the same phonological
activation.  It is natural in the cascaded approach for
such activation to develop automatically even though it
is not necessarily going to be used for anything.  To
implement this we need to train the network separately
to map from phonology to semantics as well as from
phonology to semantics (as in Figure 1B).  We can then
feed the activation through the four stages from
phonology back to phonology and check for
consistency.  This is similar to the use of orthographical
error score for lexical decision in the Seidenberg &
McClelland (1989) reading model.  If the training data
corresponded to a fairly regular mapping, the
consistency for non-words would be a measure of the
generalization ability of the system and we would
expect it to be high.  (This is why the procedure didn’t
work very well in the Seidenberg & McClelland
model.)  However, for an essentially random mapping
such as phonology to semantics, we can expect the
consistency to be low for non-words; possibly low
enough to perform lexical decision.

Training our extended network with the same
training data and parameters as above leads to an
accurate phonology to semantics to phonology mapping
and we can examine the phonological output activations
in the same way as the semantic outputs above.  The
difference is that we now have the input phonology for
comparison.

Not surprisingly there were no consistency errors
(i.e. false negatives) for the training words at either
epoch 2500 or epoch 5000.  The number of consistency
errors (i.e. false positives) on the non-words at epoch
5000 was 28/3800 (0.74%) in terms of best activated
phonology.  If we look at the phonological output error
scores, the overlap between words and non-words is
0/3800 (0.00%).  At epoch 2500 the number of
consistency errors is still only 28/3800 (0.74%) and the
overlap of error scores is 6/3800 (0.16%).  If we train
the network with 400 random words instead of 200, the
number of consistency errors falls to 8/3600 (0.22%)
with 0/3600 (0.00%) overlap of error scores even for
the epoch 2500 case.  It would appear that this
consistency checking procedure does provide a fairly
reliable method of performing lexical decision without
an explicit lexicon.

We next need to consider how lexical decision
reaction times can be extracted from our network
models and how we can simulate priming experiments.

3.  Modelling Reaction Times

In the earlier models of reading (Seidenberg &
McClelland, 1989) it was argued that reaction times (i.e.
naming latencies) could be simulated by the networks
output activation error scores.  This indeed produced
many of the frequency, regularity and consistency
effects exhibited by adult readers.  More recently it has
been argued (Bullinaria, 1995) that a more principled
account of reaction times can be provided by
considering the time it takes for activation to cascade
through a multi-layer network (McClelland, 1979).
This approach also has the advantage that it can provide
direct accounts of priming and speed-accuracy trade-off
effects (Bullinaria, 1995).



Within the cascaded approach the natural system of
equations to describe the build-up of activation is:

Outi (t) = Sigmoid(Sumi (t))

Sumi (t) = Sumi (t − � ) + wij Prevj (t) − λSumi (t − � )
j

∑

so that at each discrete time slice t the output Outi(t) of
unit i is the usual sigmoid of the sum of the inputs into
that unit at that time.  The sum of inputs Sumi(t) is given
by the existing sum at time t–1 plus the additional
weight wij  dependent contribution fed through from the
activation Prevj(t) of the previous layer and a natural
exponential decay of activation depending on some
decay constant λ.  These are equivalent to the equations
commonly used to update the state of recurrent
networks (e.g. Plaut, 1995).  In the asymptotic state
Sumi(t) = Sumi(t–1), so we have:

Sumi (t) =
wij

λ
Prevj (t)

j
∑ .

It follows that the asymptotic state of our cascaded
network is equivalent to a standard feedforward
network with weights w/λ.  Thus, assuming the right
way to train the cascading network is to adjust the
weights so that it produces the right asymptotic output
for each input, we can obtain exactly the same results
by training the standard feedforward network in the
conventional manner, e.g. by back-propagation.  In this
way, any back-propagation network can be trivially re-
interpreted as a cascaded network and we can easily
extract reaction times from it by counting the time steps
required for the outputs to reach a given threshold after
a particular pattern of activation is presented at the
inputs.

We can model speed-accuracy trade-offs by
adjusting these thresholds and model various forms of
priming by allowing the network activations to update
smoothly after a change of inputs according to the
above equations.  Both of these effects are difficult to
simulate in conventional feedforward networks.

4.  Modelling Lexical Decision Reaction
Times

We can now apply the cascading activation equations to
the above feed-forward networks and extract the lexical
decision reaction times (RTs).  All our RTs and other
time durations are simply the number of time slices
times the time scale parameter λ which we shall always
take to be 0.1.

First it is instructive to consider how the output
activations vary as one input word is replaced by
another in the simple phonology to semantics mapping
of Figure 1A.  Figure 2 shows how Sum(t) varies for
some representative semantic units after the word /keg/
is replaced by the word /sok/.  We see that the
behaviour is rather complex and it is not obvious what
the appropriate measure of RT should be.  We could
follow Plaut (1995) and take the RT to be the time taken
for the network to settle to within some tolerance of the
stable state, but our RTs could then be delayed by units
that actually have little influence on the lexical decision
process.  Instead, we could follow Bullinaria (1995) and

take the time for the integrated output activations to
reach some threshold, but this makes less sense if we
allow the possibility of non-binary semantic vectors.
Fortunately, by considering above how our networks
can actually perform lexical decision, we have also
provided the answer to the question of how to extract
the RTs.  The RT for words is simply the time taken for
the difference between the output and input phonology
to reduce to an appropriate threshold.  Non-words, of
course, should never reach this threshold and their finite
RTs will presumably be due to some processing
deadline (Coltheart et al., 1977).  Even if this time limit
is variable and/or augmented by explicit mismatch
detection, it is easy to account for the longer RTs for
non-words than words.

We tested our networks using a conservative
phonological error threshold of 0.2 and a generous time
cut-off of 10 time units to allow for words that have
only just been learnt.  At both epoch 2500 and 5000, all
words were given the correct lexical decision response.
For the non-words, all but 16/3800 (0.4%) were given a
negative response at epoch 2500 and all but 22/3800
(0.6%) at epoch 5000.  The RT distributions for the
words were realistic noisy skewed gaussians with mean
6.26 (s.d. 0.77) at epoch 2500 and 4.84 (s.d. 0.23) at
epoch 5000.  The reduction of RTs with training is
consistent with experimental observations of faster RTs
for higher frequency words.

We also checked how well these consistency RTs
correlated with other simulated RTs, namely output
error scores (Seidenberg & McClelland, 1989; Moss et
al., 1994), settling times (Plaut, 1995) and integrated
activation build-up times (Bullinaria, 1995).  At epoch
2500 the respective correlations with the consistency
RTs are r = 0.92, 0.90 & 0.95 and at epoch 5000 we
have r = 0.58, 0.87, 0.95.  Thus using error scores rather
than a full cascaded approach begins to look slightly
suspect at later stages of training.  Another important
question is how do the RTs at the semantic layer
correlate with our complete lexical decision RTs?
These correlations are quite low (r = 0.45, 0.47 & 0.46
at epoch 2500 and r = 0.28, 0.36 & 0.32 at epoch 5000)
suggesting that it might not be wise to ignore the details
on what goes on beyond the semantic activations when
simulating lexical decision.

Finally, we must check that the RTs at the
semantic layer cannot be used for lexical decision in a
way that the activations themselves could not.  If we use
the maximum settling time found for the words as the
reaction deadline, we can count the number of non-
words that settle before this as the number of false
positive decisions.  This turns out to be 150/3800
(3.9%) at epoch 5000 and 2877/3800 (75.7%) at epoch
2500.  We can reduce these error rates slightly by
reducing the deadline and allowing false-negatives, but
it is clear that this is not a reliable way of performing
lexical decision.

5.  Modelling Semantic and Associative
Priming

From an experimental point of view, there is still
considerable disagreement in the literature concerning
the precise nature of associative and semantic priming;
for example, compare Shelton & Martin (1992), Moss



et al. (1995) and Lund et al. (1995).  For this reason we
shall simply assume that both types of priming exist and
outline the performance of our model without a detailed
comparison with the conflicting experimental results.

As noted above, priming by semantically related
words will arise naturally in our model due to the
overlap of semantic features.  To test this explicitly, our
200 training words were split into 40 sets of five
phonologically unrelated words.  Each set of five words
consisted of one target word, two semantically related
words (with two of the three on bits in common with the
target) and two semantically unrelated words (with no
on bits in common with the target).  At epoch 2500 the
mean target RTs was 5.46 (s.d. 0.99) when preceded by
semantically related primes compared with 6.54 (s.d.
1.03) for the unrelated control primes.  Similarly at
epoch 5000 we had mean RTs of 3.66 (s.d. 0.55) and
4.64 (s.d. 0.47).  The facilitation by the semantically
related primes was highly significant (p < 0.0001) in
both cases.  (In this, and all the following priming
simulations, there were no lexical decision errors and
significance was measured using standard t-tests.)

Priming is also found to be produced by words
that are associated but not semantically related (e.g.
‘pillar’ primes ‘society’).  One approach that has been
used to model such associative priming in the past
(Moss et al., 1994; Plaut, 1995) relies on the order in
which the words appear during the training process.  If
the word ‘dog’ immediately follows the word ‘hot’
during training much more often than it should by
chance, then it can be expected that any efficient
learning system will come to process the word ‘dog’
more quickly when following ‘hot’ than when following
some other word.  That is, it will exhibit associative
priming.  (We shall follow Moss et al. and Plaut in not
worrying, at this stage, about what happens to the
intervening words that sometimes come between
associated pairs, such as the ‘of’ in ‘pillar of society’.)

Both Moss et al. (1994) and Plaut (1995) have
recurrent connections in their networks that allow them
to ‘remember’ such useful between words information
and hence exhibit this effect.  Clearly, our simple feed-
forward networks cannot operate in this way.  However,
if we take the cascaded activation approach more
seriously, we can see how associative priming might
occur.  First, our phonology to semantics network

should be considered as just one stage of a multi-stage
system from the basic sound detectors in our ears right
through to the motor control system that drives the
lexical decision response.  It thus makes sense for our
phonological activations to build up and decay over a
period of time rather than instantaneously appearing and
disappearing.  It also makes sense for the learning
process to be carrying on throughout the cascading
process rather than just at the endpoints.  The
asymptotic states that the network is learning will be the
same, but the time courses may be different and the
network will have the opportunity to take advantage of
associated words to improve its overall performance.  In
terms of Figure 2, the network should be able to learn to
cross-over the crucial semantic activations more quickly
and hence exhibit associative priming.

To test this, we used the same 200 training words
split into 40 sets of five as before.  In each set of five
words, one of the semantically related words and one of
the semantically unrelated words were chosen at
random to be associates of the target word.  The target
words were preceded by one of their associates on half
of their training presentations.  Thus each associate was
followed by its associated target 25% of the time
compared with 0.5% of the time for all the other words.
The phonological input activations were allowed to
build up linearly over 1.5 time units.  Each word was
trained until it reached an integrated output activation
threshold of 50.0 or a maximum of 15.0 time units.  The
word’s input activation then decayed over 1.5 time units
whilst the next word’s input activation built up.  There
was no re-setting of hidden unit or output activations
between words – all changes came about according to
the above cascading equations.  Since each word was
trained for many time slices (of the order of 100 at a
time) the learning rate was reduced to 0.00005.  All the
other network parameters remained the same.

Figure 3 shows how the mean RTs for our target
words, with the four different prime (i.e. preceding
word) types, change during training. (A± means
associate/non-associate, S± means semantically related/
unrelated.)  We see that the control primes (A–S–) and
purely semantically related primes (A–S+) give target
RTs that soon level off, whilst the associated primes
(A+S– and A+S+) result in target RTs that continue to
reduce as training continues.  The amount of priming in
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each case is simply the reduction in RT compared to the
RT with the control prime.

It is clearly important that we run appropriate
control conditions, especially for small training and
testing sets such as ours.  The obvious control is to
simply repeat the training without the associations.
However, it actually proved rather difficult to split the
words into two sets such that they were matched
throughout training.  For this reason, a third run was
carried out with the original control set B associated and
the original associated set A non-associated.  The
resulting mean RTs at epoch 5000 for the three runs are
shown in Figure 4.  This suggests that the associative
priming arises at the expense of the reaction times with
non-associated primes, though this may simply be an
artefact of the number and strength of the associations
in our training data. We should not, at this stage, attach
too much importance to the precise values of the
various primings.  The associative priming clearly
depends on the degree of association we use and also on
the amount of training.  The semantic priming depends
on the degree of overlap of our rather artificial semantic
vectors.  However, these results show quite clearly that
our model can exhibit a pattern of semantic priming,
associative priming and the ‘associative boost’ for
mixed priming, qualitatively in line with experiment
(Moss et al., 1994; Moss et al., 1995).  In the associated
conditions the four sets of RTs are all highly
significantly different from each other (p < 0.0001)
except for the unassociated semantic difference in the B
set associated run (where p = 0.005).  In the non-
associated condition we have significant semantic
priming (p < 0.001) with association set differences at
most marginal (p = 0.05 for S–, p = 0.3 for S+).

One worry about performing the lexical decision
at the level of phonology is that all our priming results
will be swamped by unrealistically large phonological
priming.  To test this we took 125 words from our
training set as targets and for each used two
phonologically unrelated primes as controls and two
phonologically related primes (with no semantic or
associative relations).  These showed highly significant
phonological priming (p < 0.0001), but the effect was
small (0.22) compared with our semantic (0.43),
associative (0.94) and associative + semantic (1.39)
priming.

Following Plaut (1995), we now investigate four
important properties of our model, namely the effect of
prime duration, the effect of target degradation, priming
spanning an unrelated item and mediated priming.

To test the effect of prime duration we first allow
the network to settle into a stable state with no input,
then present the prime for varying lengths of time
before presenting the target and measuring the RT.
Figure 5 shows that all three types of priming initially
increase with prime duration and eventually level off as
the prime has time to settle into its asymptotic state.
Note that this behaviour is rather different to that of
attractor networks (Plaut, 1995), where the semantic
priming reaches a peak and decays away before the
associative priming begins to level off.  Unfortunately,
the complications that tend to arise, due to strategic
effects, in experiments with long prime durations may
make experimental tests of this difference rather
difficult (e.g. Shelton & Martin, 1992).

In visual priming studies (Neely, 1991; Besner &
Smith, 1992), larger priming is found if the targets are
degraded (e.g. by reducing the contrast).  In our priming
model we have assumed, for simplicity, that the
complete phonology for each word builds up linearly
over time.  Given this assumption, together with our
random semantic vectors and the restricted
phonological coding, our model can be equally well
considered as representing a mapping between
orthography and semantics as between phonology and
semantics.  It is thus appropriate to expect primarily
visual effects, such as target degradation, to be
exhibited by our model.  We can easily simulate this
effect by assuming that degradation of the target simply
slows down the build up of the input activation.  Not
surprisingly, this produces significant increases in the
RTs for all prime types.  Figure 6 shows how this
interacts with the amount of priming, in broad
agreement with experiment.

Next we explore the possibility of priming
persisting across an intervening item in our model as
has been found in some experiments (e.g. Joordens &
Besner, 1992; McNamara, 1992).  We carried out the
priming simulations exactly as before except that an
intervening item was presented between the prime and
target.  Figure 7 shows the mean amount of priming as a
function of duration of the intervening item with
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Figure 4. Associative priming control conditions. Figure 5. Effect of prime duration on priming.



averages taken over ten different (phonologically,
associatively and semantically unrelated) intervening
items in each case.  Not surprisingly the amount of
priming is seriously reduced by the intervening item,
but the priming actually remains highly significant right
up to and beyond 4.5 time units, by which time the size
of the effect would be far too small to detect under
normal experimental conditions.  We get a similar
reduction in priming (though with slower fall-off) by
having a simple (no input) delay between the prime and
target.

Finally, we come to the question of mediated
priming (e.g. McNamara & Altarriba, 1992; Shelton &
Martin, 1992).  Although there is no mechanism within
our model to account for mediated associative priming
(e.g. ‘cordless’ to ‘number’ via ‘phone’), it has been
suggested (Matt Davis, personal communication) that  it
might be possible to have mediated priming involving
first association and then semantics (e.g. ‘hot’ to ‘fox’
via ‘dog’).  This could arise because a prime that
facilitates one particular pattern of semantic activation
is also likely to facilitate a closely related pattern of
semantic activation.  To test this we took the old A+S–
primes to be our new primes, so the old A–S+ primes
could become our new targets with mediation through
our old targets.  As controls we took old A+S– primes
that were semantically unrelated to the new primes and
targets and whose associate was also semantically
unrelated to the new target.  As before we ensured that
there was no phonological overlap within each set of
new primes, controls and targets.  The result was that
small (0.15 time units) but significant (p < 0.005)
mediated priming was obtained in this way.

6.  Conclusions and Discussion

We have described a simple feedforward neural network
model that can perform reliable lexical decision without
an explicit lexicon.  It also allows two distinct causes of
priming: semantic priming due to semantic vector
overlap and associative priming due to word co-
occurrence during learning.  The model compares
favourably with that of Moss et al. (1994) which
showed associative priming but did not exhibit semantic
priming and the attractor network model of Plaut (1995)
which showed both semantic and associative priming

but was not designed to exhibit the associative boost.
There is insufficient space to present the detailed

results here, but we find that the build up of semantic
activations in the phonology to semantics mapping
alone also shows significant semantic and associative
priming, which is likely to exhibit itself in any other
reliable implementation of lexical decision different to
the one discussed here.

One could rightly argue that our parallel phonemic
inputs do not take into account the importance of the
sequential nature of normal speech input (e.g. Marslen-
Wilson, 1987).  A variation of the current approach, that
does account for many aspects of the time course of
semantic activation, involves having the build up of
activations in each of the three input blocks occur
sequentially - first the onset consonant cluster, then the
vowel cluster and finally the offset consonant cluster.
Such a modified model still results in significant
semantic and associative priming, but to a slightly lesser
extent than discussed above.  This work will be
discussed in more detail elsewhere.

Another limitation of our model is that we have
not yet properly explored the important effect of word
frequency.  These effects come out correctly in Plaut’s
(1995) model, but that is no guarantee that they will in
ours.  Our model needs to be scaled up to more realistic
word sets, that include real word frequencies, to check
this.  We also need to re-run the simulations with more
realistic semantic vectors to investigate the effect of
having different types and degrees of semantic relation
(Moss et al., 1995).

Perhaps the biggest problem left for future
research is that of homophones and homographs.
Simple phonology to semantics mappings such as ours
tend to produce semantic blends for homophonic inputs
which cause problems for any form of lexical decision.
It is possible that the incorporation of context
information or more complex semantic representations
will help.  In this paper we have simply avoided the
problem by using non-homophonic training data, but
this problem cannot be avoided for ever.
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