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Abstract

Connectionist models of the mapping from orthography or phonology
to random binary semantic vectors allow the simulation of lexical
decision with reaction times that show patterns of semantic and
associative priming similar to those found experimentally with human
subjects.  The co-occurrence statistics of words in large corpora allow
the generation of vectors whose distribution correlates with the
perceived semantic relatedness of the words.  Here we discuss the use
of these more realistic corpus derived semantic representations in
connectionist models of lexical decision.  We find lexical decision
priming that correlates with distances in the semantic vector space,
but the reaction times are very noisy.  Averages over many words
and/or many networks are required for the relationships to become
clear.  The question of associative priming remains open.

1  Introduction

Connectionist models of many language processing tasks have now reached a level
of sophistication whereby reasonably realistic distributed representations of
semantics are required.  Lexical decision (i.e. the task of deciding whether a given
string of letters or phonemes is a real word) is widely used in psychological
experiments to investigate the processes and representations employed in basic
human language processing [1, 2, 3].  Of particular interest is the study of priming
(i.e. the effect by which response is speeded through prior presentation of certain
related words).  The fact that we observe facilitation by semantically related words
(e.g. ‘jump’ primes ‘leap’) suggests that the lexical decision process taps into some
underlying semantic representation and that lexical decision experiments can be
designed to explore these representations.  However, priming is also found to be
produced by words that are associated but not semantically related (e.g. ‘pillar’
primes ‘society’).  It is not yet clear if such associative priming needs to be
explained by a different mechanism to semantic priming or if it is inherent in the
properties of the same semantic representations.

Recently, connectionist models of the lexical decision process have been
constructed that account for many aspects of semantic and associative priming [4,
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5].  The semantic priming arises due to the overlap of distributed semantic vectors
and the associative priming arises due to word co-occurrence during learning.
However, these models have been based on hand-crafted and/or random binary
semantic vectors.  Other researchers [6] have derived semantic vectors from large
text corpora and have suggested that the distances between words in this semantic
vector space can account for the experimental priming results.  In this paper we put
these two approaches together and investigate the properties of connectionist lexical
decision models based on corpus derived semantic representations.  In particular, we
question whether it is really possible to obtain useful results without considering the
two approaches together.

2  Modelling Lexical Decision

Given the experimental evidence that semantics has an effect on lexical decision
reaction times, it is natural to assume that the time taken to activate the appropriate
semantic representation provides at least one factor in the lexical decision process.
Within the conventional connectionist framework we model this by choosing
(simplified) representations for the orthography/phonology and semantics of words
and setting up a network to map between them.  Plaut [4] chose to do this with a
recurrent network trained with continuous back-propagation through time.
Bullinaria [5] used a cascaded feed-forward network trained in a similar manner.
Both approaches led to similar (though experimentally distinguishable) patterns of
reaction times and priming.  Here we shall adopt the Bullinaria [5] approach.  The
idea is that we explore these simple models first and only add in complicating
factors as they are required by the experimental data.

For simplicity, we restrict ourselves to mono-syllabic words and represent
phonology by having one unit for each possible onset, vowel and offset phoneme
cluster.  Each word then has three phonological input units activated.  Since the
phonology to semantics mapping in English is essentially random (ignoring
morphological effects) it is not unreasonable to represent the semantics by random
binary vectors with the interpretation that activated units correspond to the small
number of relevant semantic micro-features [7].  The network will then require a
sufficiently large layer of ‘hidden units’ in order to handle the random and non-
linearly separable associations between this phonology and semantics.

Since we are aiming to model reaction times (RTs), it makes sense to think in
terms of activation cascading through the network [8] as in recurrent networks rather
than the typical one pass approach of standard feed-forward networks.  To simulate
this we discretize the time and at each time slice t take:

Outi (t) = Sigmoid(Sumi (t))

Sumi (t) = Sumi (t −1) + λ wij Prevj (t) − λSumi (t −1)
j

∑

with the output Outi(t) of each unit i the usual sigmoid of the sum of the inputs into
that unit at that time.  The sum of inputs Sumi(t) is given by the existing sum at time
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t–1 plus the additional weight wij  dependent contribution fed through from the
activation Prevj(t) of the previous layer and a natural exponential decay of activation
depending on some time scale λ.

There are now two broad approaches to training the network.  The quick and
easy way is to note that, as long as we have static inputs, the asymptotic state of the
above equations reduce to:

Outi (t∞ ) = Sigmoid(Sumi (t∞ ))     ,    Sumi (t∞ ) = wij Prevj (t∞ )
j

∑

which are the equations for a standard non-cascaded feed-forward network.  It
follows that, if we only require the network to produce correct outputs for individual
words, we can simply train on this asymptotic state using a standard gradient descent
algorithm (such as back-propagation).  The resultant trained network can then be
used in a cascaded fashion to extract the RTs.  If, however, we want the network to
respond efficiently to sequences of words, we need to train during the cascading
process so that the network can learn to make quick transitions from one set of
activations to another.  The network can still be trained using a standard gradient
descent procedure to modify the weights wij  iteratively so that the output activation
errors are reduced.  However, for each input word, we now need to repeat this
process over many time slices as the network settles into a stable state.  If we present
the training words in random order, and keep the time parameter λ and learning rate
η sufficiently small that large fluctuations in the weights and activations do not
occur, then the network eventually learns to produce the correct outputs for any
input word without any resetting of the network after the previous word.

Reaction times can then be defined in terms of time slices in a number of ways.
We could simply take the time required for the network to settle into a stable output
semantic state (as used by Plaut, [4]).  Alternatively, we could attempt to be more
explicit about modelling the lexical decision process by timing the consistency
checking between the input phonology and the phonology produced by allowing
activation to flow from phonology to semantics and back to phonology.  This simple
‘activate and check’ mechanism was shown by Bullinaria [5] to be able to provide a
reliable method for performing lexical decision in this kind of model, whereas
details of the pattern of semantic activation alone were not sufficient.  Finally, we
could argue that the semantic output activations need to drive some later decision
process, and that we can ignore the details of this process and take the time required
for the integrated output activations to reach some threshold.  This may be feasible if
all the semantic vectors had equal numbers of fully activated units, but if different
words have unequal numbers of activated units (e.g. to represent word concreteness
[7]) or if they have non-binary activations (as we shall consider later), then this
approach makes less sense.  In the following we shall consider both the settling and
consistency checking times, and compare their results.  In each case we first activate
the network for the prime input word and then, without resetting the other network
activations, present the target input word and measure the RT.

In this framework, semantic priming arises naturally due to overlap of the
semantic vectors.  If the network activations due to the prime word are already close
to that which will be activated for the target word, then it will take fewer time slices
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for the target word to be activated from this state than if it were starting from the
activation pattern of some unrelated control word.  Associative priming may be
caused by properties of the semantic vectors in a similar way, but it has been shown
explicitly in connectionist models [9, 4, 5] how the facilitation can also arise purely
due to co-occurrence of words in the training data.  If, for example, ‘society’ follows
‘pillar’ much more often during training than would be expected by chance, then it is
not surprising that an efficient learning system will be able to make use of this fact
to speed its response times.

To confirm these ideas explicitly, such a phonology to semantics to phonology
network with 50 phonological units, 400 hidden units and 27 semantic units was
trained by back-propagation throughout the cascading process on 200 mono-syllabic
words split into 40 sets of five [5].  Each set consisted of one target word, one
unrelated control prime word, one semantically related prime word (with two out of
three activated semantic units in common), one associated prime word (that
preceded the target word 25% of the time during training) and one prime word that
was both semantically and associatively related.  Figure 1 shows how the mean
primed target word consistency RTs varied for the four prime types during training
from the point at which the network had learnt to perform the lexical decision task
reliably.  We find clear and highly significant (p < 0.0001) semantic and associative
priming, but there is still a large overlap between individual RTs for the different
prime types, for example at epoch 5000 we have mean RTs and standard deviations
of 5.28 ± 0.30 for the control primes, 4.84 ± 0.40 for semantically related primes,
4.33 ± 0.47 for associated primes and 3.90 ± 0.32 for semantically related and
associated primes.  Models of this type also allow us to easily investigate various
more detailed RT effects such as prime duration, target degradation, priming
spanning unrelated items and mediated priming [5].
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Figure 1: Semantic and associative RT priming effects during the training process.
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3  Corpus Based Semantic Vectors

As noted above, there has been considerable interest recently in using the vectors of
statistics that describe the contexts in which words occur in large text corpora to
provide a representation of their semantics.  The idea is that words which occur in
similar contexts will naturally tend to have similar meanings.  The obvious
advantages of this approach include the elimination of the need for semantic features
to be generated randomly (e.g. as done by Plaut [4] and Bullinaria [5]) or by hand
(e.g. as done by Plaut & Shallice [7]) and the parsimony of being able to use that
statistical structure latent within the language itself.  Work of this type has often
been pursued from the perspective of computational linguistics [10], but Huckle [11]
and Landauer & Dumais [12] have recently noted that it is also of importance for
exploring psychological questions concerning human acquisition and representation
of word meanings, and have discussed such methods in conjunction with the use of
neural network models.

The general approach is to represent each word’s distributional context using a
vector of probabilities obtained by ‘reading’ large samples of natural language text.
For every ‘target word’ wordp being represented, each component of its semantic
vector contains the probability that some other ‘context word’ wordq will occupy a
particular relationship to wordp in the text.  This relationship is typically one which
concerns the physical distance between the two words, such as one word occurring
within a window of a particular size around the other.  Once vectors of this general
type have been obtained, the distances between them can be calculated using various
metrics to reveal similarities between word meanings and suitable transformations
may be applied to provide useful semantic representations for neural network
models (e.g. as discussed by Schütze [13]).  Alternatively, the inter-word distances
in the semantic space can be used directly as a basis for investigating psychological
phenomena such as semantic priming (e.g. as suggested by Lund et al. [6]).

For reliable statistics to be obtained, an appropriately large corpus must be used,
(e.g. [14]).  It was convenient here to use a 10 million word corpus taken from issues
of the Wall Street Journal published in 1988 and 1989.  Since Zipf’s law [15]
informs us that the probabilities for less frequent words in a corpus of this size will
rapidly become less reliable, we restricted ourselves to using only the highest
frequency items.  We actually used the most frequent 1000 words in the corpus as
our target words and the most frequent 200 words as our context words.

This still left us with many possibilities for deriving useful semantic vectors and
choosing different values for the various parameters that specify the vector
extraction process will affect the quality of the vectors obtained [14].  For the
purposes of this paper, however, it was not crucial that we used the best vectors
possible, as long as their distributional properties were sufficiently typical.  For each
of the 1000 target words, we calculated the 200 dimensional vector in which each
component contained the probability that a particular context word would occur
within a window of two words to the left of the target word in the corpus, and a
similar vector for a window of two words to the right.  The window length of two
words was chosen following exploratory work which suggested this captured the
words’ semantics reasonably well.  Finally, we concatenated our left and right
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context vectors to give a 400 dimensional vector of probabilities for each of the
target words.  This approach to representing the target words’ semantics is thus
similar to that adopted by Lund et al. [6].

4  The Combined Model

Unfortunately, using our corpus derived vectors in the existing lexical decision
model described above was not a totally straightforward matter.  Our first problem
was that, if we are to train our networks in a reasonable amount of time, we need to
keep the networks as small as possible, which in turn means minimising the
dimensionality of our semantic vector space.  For our purposes, principal component
analysis proved to be a convenient procedure.  The 400 dimensional semantic
vectors were projected onto the 30 dimensional sub-space containing the maximum
variance.  This provided much lower dimensional vectors with relatively little loss of
information and had the added advantage that we lost a lot of the noise in the
process.  The inter-word distances in the original space and the sub-space correlated
well (Pearson r = 0.94).  The psychological relevance of this dimensional reduction
procedure for corpus derived semantic representations has been discussed recently
by Landauer & Dumais [12].

The second problem arose with the standard use of sigmoidal activation
functions in our network.  For our non-binary outputs it was appropriate to use a
linear activation function for the network outputs rather than sigmoids.  Since the
distribution of vector components was rather skewed towards small values anyway,
which corresponds to the central linear region of the sigmoid rather that the saturated
extremes, this difference is probably not crucial.

What might be more crucial however, is the decision to use the non-binary
components that come naturally out of the corpus analysis rather than attempting to
convert them into the binary form commonly used in connectionist systems.  Since
we already know that we can get semantic and associative priming using random
binary semantic vectors [4, 5], it seemed appropriate go on to investigate the more
ambitious case of non-binary vectors.  Moreover, in the human case, it would be
natural to consider our semantic representations to be ‘hidden representations’ that
are learnt by the brain, and it is rare to find hidden representations developing purely
binary values in connectionist models.  We shall see later how our networks behave
rather differently when based on real, rather than binary, outputs.

The next thing we have to consider is that the Wall Street Journal is a rather
atypical source of the English language.  Certain word pairs (such as ‘wall street’
and ‘dow jones’) occur together much more frequently than in normal English, and
other words (such as ‘bush’ and ‘ford’) are often used in atypical ways.  In general,
it is interesting and important to study such words, since they are simply extreme
examples of what does happen in real language, but to avoid possible artefacts that
these words may cause in the current study, we simply removed them from our
network training set.  We also removed 16 homographs (e.g. ‘lead’ and ‘row’) which
would clearly have problematic semantic vectors.

In the original model reviewed in Section 2, Bullinaria [5] simulated mappings
between phonology and semantics.  Here (as Plaut did in his model [4]) we consider
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the mappings between orthography and semantics.  Given our simplified abstract
input representations and the regularity of the orthography to phonology
relationship, the distinction is unlikely to be crucial, but it should be kept in mind.
As with other models that map to semantics, the randomness of the mapping means
that in order to train the network in a reasonable amount of time, we need to restrict
the number of training words, which also allows us to use less hidden units.  It then
follows that we have to reduce the size of the input space so that the word
distribution does not become unnaturally sparse.  To this end we restricted ourselves
to monosyllables with orthography made up of the most common onset consonant
clusters (30), vowel clusters (18) and offset consonant clusters (38) plus two units to
code for the presence or absence of a final ‘e’.  Our highest frequency set of 1000
target words contained 270 words consistent with all the above restrictions.  These
all occurred at least 1297 times in the corpus and were within the most frequent 993
words.  Finally, in an attempt to keep the weights and weight changes at values
comparable to the binary output networks, we set the arbitrary scale and origin of the
semantic vector space so that the mean activation of each semantic unit was zero and
the overall standard deviation was 0.14, with maximum component 1.95 and
minimum component –1.27.

Since all our 270 words are classed as high frequency in the experimental
studies, we did not attempt to impose a word frequency structure on our network
training regime.  We trained our main network for 75000 epochs on these words
using back-propagation on the asymptotic output patterns (with 270 hidden units,
sum squared error measure, learning rate η = 0.01, no momentum).  By this point the
network was able to perform reliable lexical decision by input-output orthography
consistency checking.  The RTs were then extracted as above, except that we used a
reduced λ = 0.01 to give a more accurate approximation to the continuous process.
The settling RTs were defined as the number of time slices required for all output
activation changes per time slice to fall below 0.0001.  The consistency RTs were
defined as the number of time slices required for the total difference between the
input and output orthography activations to fall below 0.1.  Note that the precise RT
criteria are somewhat arbitrary.  The way to proceed is (as in [16]) to vary the
various parameters and criteria and show that the resultant RTs are highly correlated
over a wide range of reasonable values, and then pick central values within that
range.  The values used here were also chosen to result in similar RT means and
standard deviations for the two RT approaches.

Finally, we also attempted to train an identical network on the same words
throughout the cascading process with no resetting of activation between words (150
time slices per word, λ = 0.1, sum squared error measure, learning rate η = 0.0001,
no momentum), though, as we shall discuss in Section 6, the network never
managed to learn to perform reliable lexical decision.

5  Semantic Priming

Needless to say, we checked that our closest semantic vectors (defined in terms of
Euclidean distances) did actually correspond to words that were semantically related
(the shortest distances were 21 between ‘will’ and ‘would’, and 21 between ‘three’
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and ‘four’) and the most distant words really were unrelated (the longest distances
were 737 between ‘lot’ and ‘past’, and 646 between ‘same’ and ‘try’) though in this
paper we shall not attempt to match our network results to real lexical decision
experiments.  To do that reliably we would need to train a much larger number of
considerably more realistic networks on many more words and use semantic vectors
derived from significantly more representative corpora.

As we discussed in Section 2, semantic priming has been found before in
network models such as ours [5].  In these random binary target networks, the
semantic Euclidean distances were all √2 ~ 1.41 between semantically related words
and √6 ~ 2.45 between un-related words, yet there was still a large distribution of
RTs and varying degrees of priming.  Clearly factors other than simple semantic
distances are determining these results.  Inevitably, each RT will be determined by
the unit i that is the slowest to update its activation.  Looking at the above cascade
equations we see that, to first approximation, the number of time slices required to
move from the prime output to the settled target output will be given by the
difference of the final Sumi(t∞) between the prime and target divided by the average
step size which will be related to the Sumi(t∞) for the target.  Unfortunately, we
cannot use this as an easy way to predict the RTs, because determining the average
step size is harder than actually running the network, but it does tell us something
useful about the RTs.  The problem with sigmoids and binary output targets is that
the sigmoids saturate, which means that very large random variations may arise in
the Sumi’s during learning without affecting the actual network outputs very much
and hence without being constrained by the training algorithm.  Given that the
values of the Sumi’s have such a big influence on the RTs, it is no wonder that the
RTs are so noisy.  With our non-binary semantic vectors we have no output
sigmoids and the output activations are the Sumi’s themselves which are learnt to be
particular values.  We may thus expect to suffer less seriously from random effects
than the binary case.  But is this true (given that we still have sigmoids at the hidden
layer) and does it really allow the simulated priming results to correlate better with
the distances between our semantic vectors?

There are many ways in which we can illustrate our network priming results.
One useful approach is to look at the RTs for each of our 270 words when primed by
the three closest words in semantic space (sets P1, P2, P3) compared to the RTs
when primed by the three furthest words (sets C1, C2, C3).  The mean distances and
RTs are shown in Table 1 (with standard deviations in brackets).  The first thing to
notice is that both forms of simulated RT show faster times for the prime sets (P’s)

Prime Set Distances Settling Times Consistency Times
C1 561  (42) 669  (44) 709  (77)
C2 459  (43) 655  (58) 699  (75)
C3 399  (53) 638  (47) 676  (83)
P3 96  (54) 591  (72) 586  (91)
P2 86  (52) 586  (71) 569  (93)
P1 71  (44) 581  (78) 570 (101)

Table 1.  The simulated primed RTs compared with distances in semantic space.
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than the control sets (C’s), so we do find semantic priming (and this is highly
significant, p < 0.0001).  However, it is clear from the standard deviations that the
RTs are very noisy and that, as we also found in the binary target networks, there is
no simple relationship between the Euclidean distances and the RTs.  Indeed, if we
take what we would expect to be the maximum priming result, i.e. the differences in
RTs between control prime set C1 and semantically close prime set P1, we find the
effect is not always even in the right direction.  Not only do both RT approaches
show some negative priming, but they also fail to agree on which words this happens
for.  For the settling RTs we have a mean priming of 88 (standard deviation 76),
minimum –72, maximum +293.  For the consistency RTs we have 140 (101), –135,
+429.  If we average over all three sets of primes and control primes, the priming is
only slightly more reliably positive: 68 (48), –69, +205 for settling and 119 (61),
–38, +322 for consistency.  At least every time we test a given trained network on a
particular prime-target pair, we get the same RT.  In experiments on human subjects,
noise arises even here (e.g. due to effects such as concentration, tiredness, episodic
memory recall, and so on) to give a distribution of RTs.  Since distributions of
priming results are also found in humans, there is no real problem for our models in
that respect, but it does make it rather difficult to uncover the precise relationship
between the semantic space distances and the network priming results.
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Figure 2:  Comparison of priming results for settling and consistency RTs.



222

To see past the random noise and to reveal the reliable underlying effects we
really need to look at many networks in the same way that experimental results are
averaged over many human subjects.  We therefore trained another fifteen networks
with exactly the same architecture and words, but with different random initial
connection weights and learning rates, and obtained results similar to those of our
original network.  The individual word primings did not correlate particularly well
between the networks – we typically found Pearson r ~ 0.4 to 0.5 for consistency
priming and Pearson r ~ 0.5 to 0.6 for settling priming across networks.  This was
comparable to the correlation between the consistency and settling priming within an
individual network – typically Pearson r ~ 0.45 to 0.55.  However, each network did
show a similar, and highly consistent, average semantic priming effect for both
settling and consistency RTs.  Averaging over all sixteen networks and the three
primes and controls per word gave a settling priming of 58 (36), –40, +160 and a
consistency priming of 106 (47), –69, +257.  Figure 2 shows the actual distributions
of average priming and compares the settling and consistency results.  The
correlation between the two approaches has now risen to Pearson r = 0.65.

We can get a fair indication of the reliability of these average priming results by
comparing the results obtained from two disjoint random subsets of eight of our
sixteen networks.  Figure 3 shows how well the consistency primes correlate
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Figure 3:  Reliability of consistency RTs for individual words.
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(Pearson r = 0.88) and we get a very similar pattern for the settling primes (Pearson
r = 0.91).  These results suggest that averages over sufficiently many networks
and/or primes can cancel out the noise to leave reliable semantic relatedness effects
together with any other (e.g. orthographic, consistency, neighbourhood, RT
approach) effects not inherent in individual semantic vectors themselves.  It is
unfortunate, given the computational resources necessary to train the networks to
map between the orthographic and semantic representations, that so many networks
are required in order to obtain a clear picture of what is going on.

The final question we need to ask is what exactly is causing the spread of
priming that is becoming clear in plots such as Figure 3.  The natural first guess is
that it is simply the Euclidean distances between the words in our semantic vector
space [6].  Figure 4 shows how these distances for individual word pairs (the P1’s
and C1’s) compare with the consistency RTs averaged over all sixteen networks.
We get a similar pattern for the settling RTs.  Once again we can see that there is
more involved than simple Euclidean distances.  It may well turn out that city block
distances or particular information theoretic measures can provide a better indicator
of priming, but, since these are not preserved by the principal component
dimensional reduction, it is rather difficult to investigate this reliably.
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In the long term, we really need to investigate the networks’ performance much
more closely.  One approach is to look at the words which stand out as being reliably
good or bad primers and see what is special about them.  Unfortunately, the
variability between networks makes this rather difficult and we often find that a
given RT is determined by one particular output unit that has no obvious
significance.  Another problem is that the current networks are still far too small
scale.  Despite our restrictions on the orthographic space, there are still some
graphemes that only occur in two of the training words, whilst others occur up to 57
times.  Similarly some words occur in sparsely populated areas of semantic space
whereas others have several close neighbours.  These factors, which presumably
contribute to the spread of priming results, may well disappear in more realistic
networks.  It is clear that there is much more work to be done in this area.

6  Associative Priming

As we discussed in Section 2, for random binary semantic vectors, we find that
training our networks throughout the cascading process allows them to use any
frequent word co-occurrences that arise during training to speed their RTs, and
hence they automatically exhibit associative priming [5].  This is largely because
such sigmoidal networks with binary output targets have an inbuilt flexibility that
enables them to make the weight adjustments appropriate for an advantage in RT
with little increase the output error.  For example, weight changes could be made
that result in a large shift (from –15.0 to –5.0 say) in a Sumi(t∞), with only a small
increase (~0.007) in the activation error Outi(t∞).

In our linear non-binary output networks it is much harder to gain an RT
advantage in this way, since any significant change to an output Sumi(t∞) will
directly introduce a significant error into the Outi(t∞).  When using the standard
cascaded learning approach described in Section 2 in this case, the output errors that
inevitably occur during the word transitions cause weight changes that disrupt the
networks’ output performance to such an extent that it is very difficult for the
networks to learn accurate semantic representations (as checked by testing them on
the orthography to semantics mapping) and they are hence unable to perform
reliable lexical decision by input-output orthography consistency checking.
However, if we artificially reduce the disruption by increasing λ (to 0.5), the
network is able to learn sufficiently well to end up performing lexical decision
reasonably reliably, and the RTs do exhibit semantic and associative priming.  Both
types of priming are significant but, compared with human experimental results, the
associative priming is too small in comparison to the semantic priming.

It thus remains a rather open question as to whether human brains are able to
exploit this word co-occurrence mechanism with fixed semantic representations
(such as derived from corpus statistics) and hence exhibit associative priming.  It is
possible that the semantic representations must themselves be subject to adjustment
during training in order to show this effect.  It is also possible that the experimental
associative priming is already inherent in the ‘semantic’ vectors without the need for
any additional training effects.  It may even be possible that additional connections
between associated words (i.e. their semantic micro-feature units) are employed.
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Clearly, many more network simulations are required to resolve this matter.  Of
course, it should be noted that the corresponding experimental results are far from
clear cut either.  Separate claims have been made that all associative priming is
really a form of semantic priming (e.g. by Lund et al. [6]), that all semantic priming
is actually associative priming (e.g. by Shelton & Martin [2]), and that both forms of
priming exist in their own right (e.g. by Moss et al. [3, 9]).

7  Conclusions

The use of a cascaded activation approach in neural network models of simple
mappings provides a natural procedure for simulating realistic distributions of RTs
including priming and speed-accuracy trade-off effects [16].  Previously this
approach has been used to show how connectionist models of the mappings between
simplified representations of orthography/phonology and random binary vector
representations of semantics can account for many experimental results concerning
semantic and associative priming of lexical decision RTs [5].  In this paper we have
investigated the use in these lexical decision models of non-binary semantic vectors
derived from the word co-occurrence statistics of large text corpora.  Our main
conclusion is that there is a significant relationship between the prime-target
distances in the underlying corpus derived semantic vector spaces and the priming in
the connectionist networks that use these vectors, but the relationship is very noisy.
In the same way that experiments need to control for many other factors and average
over many test words and many subjects to show clear priming results, so do the
connectionist simulations.

We believe that the simplified and small scale connectionist lexical decision
models presented here show much promise and already exhibit many of the essential
features required of a complete model of this task.  We have also identified and
solved a number of problems inherent in this class of model.  However, it is clear
from the preliminary results presented here that further investigations employing
larger and more representative corpora and many larger and more realistic networks
will be required before we can be confident of the precise relationships between the
various corpus, neural network and experimental results.
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