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Summary. Alternative splicing is an important cellular process that allows the expression of a large
number of unique cell-specific proteins from the same underlying strand of DNA, and thereby drastically
increases the organism’s phenotypic plasticity. Its emergence is facilitated by the modular composition of
genes into numerous semi-autonomous building blocks. In artificial evolution, such modular composition is
usually unknown initially, but once learned may greatly increase the algorithm’s efficiency.

In this paper, an abstract interpretation of alternative splicing is presented that emulates some of
the properties of its natural counterpart. Two appoaches, both based upon a simple (1+1) evolutionary
algorithm, are described and shown to work well on established benchmark problems. The first algorithm,
eAS, is designed for cyclical dynamic optimisation problems: it systematically merges the problem variables
into groups that capture the properties exhibited by a finite number of successive states and reuses that
information when required. The second algorithm, iAS, employs a systematic search to identify a sub-set of
variables for which simultaneous inversion affords an increase in fitness. This approach seems particularly
useful for problems that have many local optima that are far apart in the search space. Results from a
systematic series of experiments highlight the intrinsic attributes of each algorithm, and allow analysis in
terms of the identification and exploitation of linkage.

1 Introduction

Evolutionary Algorithms (EAs) are abstract interpretations of biological evolutionary systems in
which potential solutions to the problem of interest survive and reproduce according to some
measure of their fitness. Repeated application of appropriate genetic operators and selection lead
to increasing fitness from one generation to the next. EAs have become a popular choice of algorithm
for a diverse range of optimisation problems, especially those where traditional methods tend to
fail (e.g., those with highly rugged multi-modal search spaces). Numerous extensions have been
suggested over recent years that improve the performance of the canonical framework in a variety
of domains. In particular, understanding the identification and exploitation of linkage in these
algorithms can lead to more efficient EAs [14].

The concept of linkage originates in genetics and describes the physical relationship between
two genetic loci: genes located sufficiently close to one another on the same chromosome will be
inherited as a single unit, known as a linkage group, with high probability. As genes are flexible units
that have the ability to ‘move’ around the chromosome, one would expect interdependent genes
to ‘attract’ one another. This concept has been extended to evolutionary computation (EC) where
linkage is commonly used to describe the interdependency amongst the variables of a problem. This
interdependency means that the optimal state (e.g., 0 or 1) of one variable Si depends on the state
of another variable Sj. Quantifying linkage is difficult in general, but becomes more straightforward
if the problem is decomposable. If S = {S1, S2, . . . , Sn} describes a set of n variables Si, the fitness
function is said to be an Additively Decomposable Function (ADF) if it can be written as a sum of
lower-order sub-functions:

f(S) =
m∑

i=1

fi(SVi) (1)

where m is the number of sub-functions, fi is the i-th sub-function, and SVi is the variable sub-set
defined by index set Vi. For example, if Vi = {1, 2, 3, 5} then SVi = {S1, S2, S3, S5}. The set of



2 Philipp Rohlfshagen and John A. Bullinaria

variables specified by Vi is a set of interdependent variables, also known as a linkage set or, more
commonly, a building block (BB). For most real world applications, the linkage sets will overlap,
but they still form a useful basis for analysis.

In evolutionary computation we are usually interested in optimising some objective fitness func-
tion Φ : X → R, where X represents the problem. The mapping from the problem’s parameters to
the elements in X is usually static and pre-determined. If no problem specific knowledge is used,
the proximity of elements in X will not necessarily reflect the relationship between the parameters
of the problem. Consequently, genetic operators acting on X are likely to be disruptive. The identi-
fication of linkage groups may allow this disruption to be limited, and hence not only enhances the
algorithm’s performance, but also leads to more scalable algorithms. This idea has already been
exploited in numerous different ways, some notable examples being the Messy GA and Fast Messy
GA [15, 17], and the Linkage Learning Algorithm [21], which attempt to evolve appropriate repre-
sentations that capture the relationship between the variables of the problem. Another approach
has been to use statistical models known as Estimation of Distribution Algorithms (EDAs), such
as the Compact and Extended Compact GA [22, 23]. Finally, another class of approaches uses
perturbations to detect dependencies amongst variables, such as in the Gene Expression Messy
GA [29].

In this chapter, we study the identification and utilization of linkage in two EAs inspired by the
cellular process of alternative splicing (AS). AS is a post-transcriptional process that occurs in the
majority of cells of higher eukaryotes and is partly responsible for the proteomic diversity observed
in these organisms. The dominant property of this process is the ability to express meaningful
sub-sequences of the underlying encoding (DNA in this case) alternatively. In nature, this ability is
facilitated by the occurrence of readily available BBs, known as exons and introns. Exons (and, as
will be shown in section 2, introns) may be viewed as a tightly linked BBs that, by themselves, con-
tain meaningful information about the search space (in effect, sub-solutions). In artificial systems,
the structure of linkage sets is rarely available from the onset and needs to be identified during the
execution of the algorithm. Therefore, in order to implement the mechanisms of AS, considerable
effort has to be directed at the identification of modules in the search space.

The first algorithm proposed here, called explicit Alternative Splicing (eAS), is an implicit
memory approach for cyclic dynamic environments. It is an extension of an algorithm we presented
previously [37]. This algorithm utilises a single encoding that represents a tree of variable depth;
and each new state encountered results in a new level being added to that tree. The problem
variables are systematically placed into nodes of the tree that correspond to their value across all
states encountered thus far. Special care is taken to prevent the genetic operators disturbing the
acquired information. In other words, throughout the execution of eAS, the memory of previous
states is not acquired and stored directly, but instead, variables common to sub-sets of states are
identified and brought together within a single node. This leads to a very concise representation of
the search space and allows the algorithm to successfully identify and preserve common (shared)
genetic material across a succession of different environmental states when tested on a simple
dynamic problem.

The second algorithm, called implicit Alternative Splicing (iAS), is proposed for binary encod-
ings and relies upon a top-down search to identify sub-sets of binary variables that may be inverted
successfully in their entirety. EAs often suffer from entrapment in local optima from which an es-
cape is unlikely due to a general loss of diversity (i.e. premature convergence). iAS attempts to
circumvent this issue by using large-scale perturbations of the encoding that are incrementally
refined. In other words, iAS tries to perturb the underlying encoding without disrupting any of the
tightly linked BBs discovered so far.

The remainder of this chapter is structured as follows: first, the process of AS in biological
systems is presented in section 2, followed by a literature review of implementations that resemble
AS in EC (section 3). The first algorithm, eAS, is outlined in section 4, including an overview of
dynamic optimisation, a description of the algorithm, the experimental setup and results. Section
5 presents the second algorithm, iAS, following a similar structure to the previous section. Finally,
the chapter is concluded in section 6 with a summary of the two approaches and a brief discussion
of prospects for future work in this area. Throughout, special emphasis is given to the underlying
concept of linkage.
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Fig. 1: Protein synthesis of an eukaryotic gene: DNA is transcribed to RNA, introns are spliced
(RNA processing) and the resulting strand is translated to a polypeptide of amino acids (a protein).

2 Alternative Splicing in Nature

The physical carrier of genetic information in almost all living organisms is DeoxyriboNucleic Acid
(DNA). The DNA of an organism contains all the information required (viewed in the context of
the cell) to allow the development of all bodily functions. The DNA of multi-cellular eukaryotes
typically contains multiple different regions that are demarcated using well specified sequences
of nucleotides. In general, regions that have a dedicated function are known as genes. In classical
genetics, a gene is a conceptual entity, a hereditary unit that determines or influences a certain phys-
ical characteristic. In molecular genetics, a gene is a physical entity, a well defined strand of DNA
that contains instructions to synthesise a protein or other functional constructs. In prokaryotes
(bacteria), a gene exclusively contains instructions to fulfill its purpose (e.g., synthesise a protein).
In higher eukaryotes (plants and animals), on the other hand, genes usually contain non-coding
regions that do not directly contribute towards the final protein product. These interrupted genes
are composed of short, coding sequences called exons, and longer, non-coding sequences known as
introns (see figure 1).

Prokaryotes usually have very condensed DNA that allows highly efficient replication. The DNA
of eukaryotes, on the other hand, may contain numerous structural and regulatory elements that
may affect gene expression: after transcription, but before translation, an intervening processing
step is required to remove non-coding regions that do not contribute towards the protein product.
This is known as RNA processing, and physically removes introns from the RNA before it is
translated into a protein. Every gene is made up of at least one exon and always starts and ends
with an exon, independent of the total number of exons and introns. Exons and introns always
occur in an alternating fashion, with the introns usually occupying far larger regions of the gene
than exons.

The classical pathway of gene expression removes and discards all introns, but AS may affect the
splicing event so that introns may be retained or exons may be skipped. This may lead to numerous
different transcripts from a single template. AS frequently takes place in the human genome and is
now recognised as being one of the most fundamental sources of proteomic complexity. Extensive
reviews of the mechanisms and developmental consequences of AS already exist [3, 34]. AS events
are thought to be regulated by factors such as cell type or developmental stage [32] and occur in
an estimated 60% of all genes in the human genome [24, 27]. It is therefore an important factor in
accounting for the discrepancy between the size of the human genome and proteome. The five main
splicing events are depicted and described in figure 2. The importance of AS is best illustrated by
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Fig. 2: The five most common forms of AS (the boxes resemble exons, the horizontal lines correspond
to introns): (a) alternative 5’ site, (b) alternative 3’ site, (c) cassette exon, (d) mutually exclusive
exons, and (e) retained intron. Adopted from [18].

the fact that AS determines the sex in Drosophila melanogaster : the female splice variant includes
exon 4 and the male ones does not [2].

The following scenario provides a good illustration of an effect of AS that is highly relevant to
the field of EC: AS is often associated with exon tandem duplication events [31]. Any exon that is
tandem duplicated (that is, has an exact copy placed in parallel) may be regulated as an alternative
element at first, and hence it does not interfere with the existing exons. The new exon is expressed
only in a small fraction of transcripts (minor form), meaning that the original gene expression is
largely preserved (major form). This effectively removes the selection pressure from the new exon
and creates a neutral or near-neutral region which is free to accumulate mutations. If the minor
form should yield an improvement in fitness, positive selection pressure will favour it, and it will
subsequently increase in frequency. The alternative pathway then eventually becomes the major
form, or a tissue-specific expression (see [35]). In other words, the temporary suspension of selection
pressure caused by AS may allow the gene to escape local optima in the fitness landscape.

An interesting perspective is offered by Herbet and Rich [25] who classify prokaryotes as ‘hard
wired’ because they usually consist of a single chromosome containing almost exclusively protein
coding material. DNA therefore serves as a true template which is translated faithfully into proteins
without the need for significant modification. These attributes are very much evident in current
EAs. Eucaryotes, on the other hand, are ‘soft-wired’ as they use relatively little content of their
genome, yet result in a far more complex translation by means of post-transcriptional regulation.
Here a single template may be used to create vast numbers of similar or even significantly distinct
proteins. We believe these insights from genetics may have a significant impact on the development
of novel EAs.

3 Alternative Splicing in Evolutionary Computation

The majority of EAs, and Genetic Algorithms (GAs) in particular, were originally inspired by
the field of population genetics, and most notably Fisher’s genetical theory of natural selection
[11]. In recent years, however, advances in molecular genetics, including the genome sequencing
projects, have triggered an interest in abstractions that are more directly inspired by the biochemi-
cal information processing architecture of organic cells. For example, properties of the genetic code
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have been exploited successfully by Karuptga and Gosh [28], and a simple implementation of RNA
editing, a post-transcriptional process that selectively modifies individual nucleotides, has been
presented by Huang and Rocha [26].

It appears that there have been no direct implementations of AS in the literature other than our
own work on this subject [37, 38]. However, there have been sudies that explore the phenomenon
of ‘alternative expressions’, one of the earliest being Levenick’s Swappers [33]. Swappers are very
simple encodings that consist of two parts, one of which is expressive (active) at any one time. This
is somewhat similar to a dynamic exon-intron structure, and Levenick showed how such dynamic
expression may be useful in accelerating the algorithm’s rate of adaptation. A more elaborate
and (more importantly) adaptive approach is the structured GA due to Dasgupta and McGregor
[9] which uses a control sequence of meta-bits that determines the regions of the encoding to
be expressed. Only one meta-bit (and thus one region) may be active at any one time. This
encoding was proposed particularly to deal with cyclic environments: whenever a new environment
is encountered, the control sequence is expected to express the part of the genome that implicitly
stores that particular state.

Similarly, Collard et al. [8] proposed the Dual GA (DGA) which uses a standard binary en-
coding, but with an extra bit to determine whether the encoding is expressed as its dual, where
the dual is defined simply as the inverse of the binary encoding. This meta-bit is, like the rest of
the encoding, subject to crossover and mutation and thus adaptive. This work was extended by
Gaspar et al. [12] to include multiple meta-bits that control different sections of the encoding: the
Folding GA has several meta-genes that determine the state of all subsequent bits in the encoding
until the next meta-gene. This encoding has been tested successfully in dynamic domains [13] and
is discussed in further detail in section 5.1. Yang extends these concepts further and proposes a
primal-dual encoding for use in static [41] and dynamic [40] environments. Here, primal chromo-
somes are defined as those individuals currently in the population, and a selection scheme is used
that considers the individuals of least fitness to be chosen for dual mappings: whenever the dual
produces a greater fitness than its primal counterpart, the primal is replaced by the dual. There
are numerous further studies dealing with the concept of diploid or poly-ploid encodings, though
that work is generally motivated by the concept of multiple alleles rather than the expression of
alternative segments at the molecular level.

We know of no further work that explicitly addresses the utility of AS or closely related concepts
in artificial evolution. This may be due to the fact that AS has only recently gained increasing at-
tention due to a better understanding (from the recent genome sequencing projects in particular).
Finally, it should be noted that the concept of linkage used here differs slightly from its generally
accepted meaning in genetics, but not necessarily from its usual meaning in EC. In general, the
design of EAs in EC follow the principles of population genetics, attempting to obtain a favourable
distribution of alleles by means of crossover and mutation under selection pressure. The two algo-
rithms presented in the remainder of this chapter assume that the underlying encoding represents
a strand of DNA (or, to be more precise, a single gene) and not a series of genes as found on
a chromosome. Thus the linkage groups or sub-structures do not correspond to groups of genes,
but groups of nucleotides / amino acids (i.e. exons and introns). This is a vital distinction from a
biological perspective, but irrelevant given the definition of linkage in EC (outlined above) where
we are only interested in the interdependencies of the variables, independently of how they have
been represented conceptually.

4 Explicit Alternative Splicing

Historically, EAs have been applied mainly to classes of static optimisation problems. Many prob-
lems are, however, dynamic in the real world, and it is thus not surprising to see increasing efforts
directed towards Dynamic Optimisation Problems (DOPs) [5]. A DOP, simply stated, is a problem
that changes over time t = 1, 2, . . .. More formally:

F (X, t) = ft(X) where ft(X) = D(ft−1(X), t − 1) (2)

and where D(fi(X), t) encapsulates the dynamics of the problem. The reason for this recent interest
is straightforward: problems of great complexity are either impossible or very costly to solve. It
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follows that in changing environments one should attempt to utilise the best solutions found so
far to guide adaption to the shifted problem. This should in general be more efficient than a
complete restart of the algorithm, which would be the simplest technique to deal with dynamics.
In fact, such a brute force approach is essentially identical to static optimisation, except that the
number of function evaluations (FEs) allowed is restricted by the dynamics of the search space.
A more efficient approach is to increase the diversity of the population (e.g., via hyper-mutations
[7] or random immigrants [19]), either throughout the execution of the algorithm, or whenever an
environmental change has been detected. Another useful approach is to have multiple populations
that keep track of the optima encountered in the past, and make use of them as appropriate.
Alternatively, a central population could keep track of the overall search, while multiple smaller
populations diverge to track promising regions in the search space [6]. Finally, the most recent
trend attempts to exploit the concepts of anticipation and prediction, which is particularly useful
if the current solution or action affects the dynamics of the search space (i.e. there is time-linkage
[4]).

Most relevant to this work, however, is the use of memory which has been implemented either
implicitly or explicitly. In the former case, the memory is embedded in the encoding, usually in
the form of diploidy (e.g., [16]) or polyploidy (e.g., [20]). This approach has been used successfully
for small numbers of distinct states, but the space requirements and the memory’s loss of integrity
over time prevent this technique from scaling to larger numbers of states. Subsequently, more
research has focused on explicit memory schemes which attempt to maintain a diverse register of
previously good solutions. In cases where the environment returns to a point similar or identical
to a previously visited one, solutions from the register may be reused efficiently.

In general, the dynamics of a problem may be characterised by their magnitude and frequency.
Here we only consider dynamics that do not alter the actual structure of the search space, but
only shift the search space by some distance. Then the magnitude ρ corresponds to the distance
between the global optima at times t and t + 1. A value of ρ = 0.2, for example, means the global
optimum has shifted a distance of 0.2n where n is the size of the problem. The frequency of change,
τ , describes, in FEs, how often a change occurs.

4.1 Pseudo Rhythm

Prior to describing our proposed algorithm, it is important to stress a particular property of
random (non-cyclical) DOPs. Randomly changing environments do not follow a strict rhythmic
pattern. However, it is possible to formalise a notion of rhythm for acyclic environments using
the principle of pseudo-periodicity [10], which was originally defined for pseudo-rhythmic random
Boolean networks. Pseudo-periodicity allows one to estimate the correlation amongst a succession
of M states. The correlation between any two binary states X(t) and X(t′) at times t and t′ is
defined as

C(t, t′) =
1
N

N∑

i=1

X∗
i (t)X∗

i (t′) (3)

where X∗
i (t) is the mapping of Xi(t) onto [−1, 1]. The overall estimate for a succession of states is

then given by the auto-correlation

AC(k) =
1
M

M∑

t=1

C(t, t + k) (4)

for k = 0, 1, 2, . . .. Further details have been discussed by Di Paolo [10] (also see [39]).
In order to explore the rhythmic activity of randomly changing environments, we generated a

succession of 2000 binary states using the framework described in section 4.3 using different degrees
of change (ρ ∈ {0.1, 0.2, . . . , 1}) between successive states. The results of this basic analysis are
shown in figure 3: there is no correlation amongst states for magnitudes of change equal to or below
0.5. However, once the magnitude of change affects the majority of bits, a rhythmic pattern emerges.
This trend increases as the magnitude of change approaches a value of 1 (which corresponds to
a cyclic environment). This implies that memory approaches may not only work well for strictly
cyclical domains, but also for randomly changing domains where the change between successive
states is sufficiently large. This property is investigated further in section 4.4.



Identification and Exploitation of Linkage by Means of Alternative Splicing 7

0 5 10 15

0$0

0$2

0$4

0$6

0$8

1$0 )*0$1
)*0$2
)*0$3
)*0$4
)*0$5

! " #! #"

$#%!

$!%"

!%!

!%"

#%! &'!%(
&'!%)
&'!%*
&'!%+
&'#%!

! # , - .
$#%!

$!%"

!%!

!%"

#%!

(a) (b)
Fig. 3: Pseudo-rhythm of randomly changing environments: the y-axis shows the degree of correla-
tion amongst states, the x-axis corresponds to the i-th successive state: (a) changes of magnitude
0.1-0.5; (b) changes of magnitude of 0.6-1.0. The inlay in figure (b) shows a magnification of the
period up to the fourth successive state, excluding ρ = 1.0.

4.2 eAS: the Algorithm

The general idea of eAS is to have a single encoding that may be expressed in numerous different
ways. This technique is essentially an implicit memory approach, because almost all the information
required to reconstruct previously visited states is stored within a single encoding. The most
significant difference from other implicit memory approaches is the way in which the memory is
constructed and reused. The states visited are not stored in their entirety, but rather the algorithm
attempts to capture the relatedness of a succession of states. The algorithm presented here is a
refinement of an algorithm we presented earlier [37]. For the sake of completeness, we will briefly
describe the original algorithm, eAS I, first.

eAS I

This algorithm combines the principles of explicit and implicit memory to represent multiple states
concisely within a single non-redundant encoding. The encoding consists of two parts, a memory
of p splicing patterns Y ∈ {0, 1}p×q and a virtual gene X ∈ {1, 2, . . . , q}n which is divided into
q segments. The splicing patterns control which segments of the virtual gene contribute towards
the phenotype. There are p such splicing patterns, each of length q, only one of which is active
at any one time (with the index of the active splice denoted by σ). Furthermore, inactive splicing
patterns are shielded from mutation (explicit memory) while the active pattern is mutated with
low probability using a standard binary mutation operator. The problem variables are able to
‘move’ between segments by means of a mutation operator that simply places a variable from one
segment into a randomly chosen one: the mutation operator considers every element in X and
mutates element i with probability pm by reassigning the value of Xi to a randomly chosen one
from {1, 2, . . . , Xi−1, Xi +1, . . . , q}. All variables within a segment that is ‘expressed’ are assigned
a value of 1, all other variables are set to 0. A segment j is expressed if Yσj = 1.

The following simple example for n = 10, p = 4 and q = 5 will illustrate this. Row 1 shows the
encoding (segment numbers for each variable) and rows 2-5 show the (active) splicing patterns on
the left and the resultant phenotype on the right.

(2, 3, 0, 0, 0, 1, 3, 3, 3, 4)
(00, 01, 02, 03, 04) ∴ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(00, 11, 12, 03, 14) ∴ (1, 0, 0, 0, 0, 1, 0, 0, 0, 1)
(00, 01, 12, 13, 14) ∴ (1, 1, 0, 0, 0, 0, 1, 1, 1, 1)
(10, 11, 12, 13, 14) ∴ (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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Whenever a change in the environment occurs, all p splicing patterns are evaluated and the currently
best one (as judged by the fitness of the resulting phenotypes) is activated. Such an approach
effectively allows one to view cyclic dynamic optimisation problems as static. There is one globally
optimal solution that solves the problem independent of its current state and, once that solution
is found, no further adaptation is required unless noise and uncertainty is introduced into the
system. The encoding bears some noticeable similarity to the Messy GA [15] and Linkage Learning
Algorithms [21]. However, there is no under- or over-specification and no crossover. The latter is
partly substituted by the use of splicing patterns which have a similar effect as they affect multiple
variables simultaneously.

The problem with this approach is that one needs to specify the number of segments and splices
in advance, which might pose a problem: the number of splices corresponds to the number of unique
states in the environment and the number of segments should be chosen according to the related-
ness of the states encountered. This information is not usually available a priori. Nevertheless, we
confirmed empirically that approximations for p and q are sufficient for our algorithm to signifi-
cantly outperform a simple GA, as well as a GA with hyper-mutations or random immigrants, in
certain types of dynamics for the problems considered [37].

eAS II

The algorithm presented now was developed to improve upon the previous algorithm and to allow
for a more simplified application. The most significant difference is the elimination of the splicing
patterns, and the number of segments required no longer has to be set a priori. Now the encoding
consists of a single vector X ∈ {0, 1, . . . , 2d−1}n where d ≥ 1 is determined dynamically throughout
the execution of the algorithm, and has an initial value of d = 1. This encoding, with fitness
ψ = Φ(X), essentially represents a tree. At first, when the algorithm is initiated, all variables may
belong to either one of two groups, one group for those variables equal to 1, and the other for
variables equal to 0. The integer encoding X is translated to a binary vector Y ∈ {0, 1}n by:

decode(X): Yi = %Xi/2d−dc& mod 2, for i = 1, 2, . . . , n (5)

where dc ≤ d is the level of the tree to be expressed. At this stage, the encoding is identical to
the classical binary one. Once a change in the environment is detected, the number of groups is
expanded by a factor of 2 and the variable d is incremented by 1. The four groups now class the
variables according to variables that are 1 or 0 in both states encountered so far, and variables that
are either 1 or 0 in one state but not the other. Figure 4 shows how the tree is incrementally built
up: whenever a change occurs, all d levels of the current tree are decoded and evaluated. These
scores are stored as φn and are compared against a register, φa, that contains the scores of each
expression when it was last active. The expression whose new score matches its old score is made
active. The active expression, dc, is corresponds to the level i of the tree for which φn

i = φa
i . If

no match can be found, another level is added to the tree (expand) with a random assignment of
variables. If there are multiple matches, one is chosen at random. It follows that a new level is only
added to the tree if a new state is encountered. Otherwise, the (hopefully) correct expression is
reused (see section 4.2). An upper limit dmax is used to prevent the tree from growing indefinitely.

The mutation operator, like all the other operators acting on the encoding, ensures that only
the active expression is affected by mutation (i.e. all other expressions are unaffected and thus pre-
served). The mutation operator considers every single element in X and mutates it with probability
pm to a new value as follows:

Xi ←
{

Xi + 2d−dc if Xi/2d−dc mod 2 = 0
Xi − 2d−dc otherwise (6)

Further details of this algorithm may be found in the pseudo-code (algorithm 1). An example of
the encoding adapting to a two state cyclical oneMax with optima 1 and 0 illustrates it:

X(t) = (0, 1, 1, 1, 1, 1, 0, 1, 0, 1) ∴ Y = (0, 1, 1, 1, 1, 1, 0, 1, 0, 1), d = 1, dc = 1
X(t + 1) = (0, 2, 2, 3, 2, 2, 1, 2, 0, 3) ∴ Y = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1), d = 2, dc = 2
X(t + 2) = (2, 2, 2, 3, 2, 2, 3, 2, 2, 3) ∴ Y = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), d = 2, dc = 1
X(t + 3) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2) ∴ Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), d = 2, dc = 2
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Fig. 4: The internal memory structure of eAS: each layer corresponds to a unique state encountered.
The problem variables are sorted according to their state ({0, 1}) such that there is a strict and
easily exploitable ordering. All variables in segment 4 of state 3, for example, are expressed as 1 in
state 1, 0 in state 2 and 0 in state 3.

The encoding is shown at four different environmental stages where ft(X) = ft+2(X) and
ft+1(X) = ft+3(X). The adaptation of one binary encoding leaves the other binary encoding
intact and the encoding eventually settles into the correct state. Some notable advantages of this
algorithm are:

• concise representation of multiple states
• operators (decode, mutate, expand, reduce) all operate in linear time (O(n))
• memory grows as required

On the other hand, it is clear that the growth of the tree places a limit on the number of states that
may be memorised: at any time, 2y nodes are required to describe y states and it is clear that at
least 2y −n nodes do not actually contain any variables. It should be possible to use an actual tree
that is constructed on the fly and where empty nodes are pruned as necessary. The disadvantage of
this is that the operators would require more time to manipulate the data structure and an explicit
memory structure might be a better option.

Finally, note that there are two fundamental assumptions underlying the design of this algo-
rithm: first, that the algorithm is told when change has occurred, and second, that the algorithm
is able to reliably identify previously encountered states. These issues are addressed next.

State Detection and Identification

In general, and in true black-box fashion, any EA is required to detect changes in the environment
to ensure that not only an appropriate action is taken, but also that no expired fitness values are
used. It is possible to divide the task of dynamic optimisation into three fundamental aspects as
shown in figure 5. Here we assume the algorithm is told when a change occurs. Nevertheless, it would
be relatively simple to detect change within the problems considered here using a small register of
stationary points placed systematically across the search space (see, for example, Morrison ([36]).
A periodic re-evaluation of these points should reveal any changes in the environment. In fact, the
likelihood of detecting change using a single stationary point is identical to the likelihood that a
previously encountered state is correctly identified as such: whenever a change in the environment
has been signaled, eAS re-evaluates all d expressions to obtain the current fitness values. The
algorithm assumes that a previous state has reoccurred given any of the d expressions produces
a fitness value identical to the one produced when that expression was last active. The problem
with this approach is that any given expression may produce identical fitness values for different
environments and this may mislead the algorithm.

Let us assume that the problem is one of dynamic pattern matching, namely the oneMax
problem with a dynamically changing target. Given all types of change, any target pattern can
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Algorithm 1 Pseudo-code for the part of eAS that deals with changes in the environment.
//this method converts the encoding from an integer encoding X to a binary one Y
decode(X) : for i = 1, 2, . . . , n : Yi = %Xi/2d−dc& mod 2

//this method adds another level to the tree (to account for a novel state encountered)

expand(X) : for i = 1, 2, . . . , n : Xi ←
{

2Xi if rand < 0.5
2Xi + 1 otherwise , d ← d + 1

//eliminates the lowest level of the tree if instead an existing level is to be reused

reduce(X) : for i = 1, 2, . . . , n : Xi ←
{

Xi/2 if Xi mod 2 = 0
(Xi − 1)/2 otherwise , d ← d − 1

//act upon change
if change detected then
φn ← Φ(decode(X, i) for i = 1, 2, . . . , d //evaluate all expressions and store them in φn

φa
dc

= ψ //update the fitness value of the splice active just prior change
dc = −1 //reset the pointer to the currently active splice

//check if the new state has been encountered before
for i = 1, 2, . . . , d do

if φa
i = φn

i then
dc ← i

end if
end for

//The state encountered has not been encountered previously
if dc = −1 then

if d < dmax then
expand(X)
//test only if environment is acyclic, else this statement is always true
if Φ(decode(X, d)) > max(φn) then

dc ← d
else

reduce(X)
dc ← index of max(φn)

end if
else

dc ← index of max(φn)
end if

end if
end if

change into any of 2n − 1 different patterns. In this simple scenario, the fitness of any encoding
equals the Hamming distance δ between the encoding and the target pattern. In general, the
probability that a new state encountered is indeed a state encountered previously is

p(δ) = 1 −

(
n!

δ!(n−δ)!

)
− 1

2n − 1
(7)

It is clear that if δ = 0 or δ = n, then p(δ) = 1. Therefore, although there is a certain probability
that an expression is reused in the wrong context, the continuous approximation of the expression
to the target pattern reduces this probability over time:

lim
δ→0

p(δ) = 1 (8)

As mentioned previously, in order to detect change, a small register of static random points may
be used. The number of points required in this case depends upon the probability p(δ) given by
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Fig. 5: EAs for DOPs require the ability to detect and react to changes in the fitness function. Two
scenarios are shown, the case of static (a) and dynamic (b) optimisation.

equation 7. In order to guarantee the detection of change with probability of 0.995, we require

m =
log(1 − 0.995)
log(1 − p(n/2))

random static points (we assume a random point has an expected distance of n/2 to the target
pattern). In the case of the n = 100 oneMax, this corresponds to m ≈ 2 points.

4.3 Experimental Setup

The algorithm has been tested on a well established benchmark problem that allows the modeling
of different search space characteristics, some of which are known to be difficult for EAs. This
problem is described next, followed by a brief discussion of the experimental settings.

Modular Base Function

This problem, which we shall call a Modular Base Function (MBF), is constructed using BBs of 4
bits, each of which contribute equally towards the total fitness according to some fitness vector. In
this case, 25 BBs are used to construct a problem of size n = 100. The fitness value of any encoding
is then given by:

25∑

i=1

ξx(i) where x(i) =
4∑

j=1

X4i+j (9)

in which ξx(i) returns an integer value according to the fitness vector ξ. Here we use

ξ ←






(0, 1, 2, 3, 4)
(0, 2, 2, 4, 4)
(3, 2, 1, 0, 4)

which correspond to the classical oneMax (1), a neutral landscape (2) and a fully deceptive one
(3; see [42]). In other words, for each BB, the unitation function indexes the corresponding fitness
vector to return a value that contributes towards the overall fitness of an encoding. It is clear that
this function is identical to the ADF presented earlier with non-overlapping BBs of size 4 bits.

Dynamics

In order to introduce dynamics, we make use of the dynamic benchmark generator proposed by
Yang (see [42]) upon which the following description is based. The DOP-generator can construct
a dynamic environment from any stationary binary-encoded problem f(X), X ∈ {0, 1}n using a
bitwise exclusive-or (⊕) operation that involves X and a binary mask M(k), where k = %t/τ& is
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the index of the current environment. The dynamics are generated by performing the exclusive-or
on each individual as follows:

f(X, t) = f(X ⊕ M(k)) (10)

The mask M is incrementally generated using randomly or systematically constructed templates
T(k) each of which contains ρ× n ones:

M(k) = M(k − 1) ⊕ T(k) (11)

The initial mask at time k = 1 is M(1) = 0. It is possible to generate cycles of size 2K by generating
2K masks systematically first. Individuals are subsequently evaluated according to:

f(X, t) = f(X⊕ M(k mod 2K)) (12)

The masks are generated as follows: K binary templates T(0), . . . ,T(K − 1) are constructed ran-
domly to form a partition of the search space. Each mask contains n/K exclusively selected bits
that are assigned a value of 1. The masks are then generated according to:

M(i + 1) = M(1) ⊕ T(i mod K), for i = 0, 1, . . . , 2K − 1 (13)

The templates up to K − 1 are used to construct incrementally the mask M(K) = 1 and are sub-
sequently reused to generate up to 2K states where M(2K) = M(0) = 0. In this case, the number
of states, 2K, dictates the distance among successive states: n/K. Alternatively, the magnitude of
change ρ dictates the number of successive states: K = n/(ρ × n). If, for example, n = 100 and
ρ = 0.1, the cycle has a length of 2K = 20 states. This is, however, only the upper limit and it is
possible to generate smaller cycles by restricting the partition of the search space to a sub-space
(i.e. some bits never change). Thus, if a cycle of length 8 is required with a distance between
successive states of ρ = 0.1, the partition of the search space is simply restricted to (0.1n ∗ 8)/2,
which, in the case of n = 100 is 40 bits. The maximum cycle that may be generated given n is 2n
where all successive states have a distance of 1.

The performance of the algorithm on this DOP may be calculated as follows:

F =
1
G

G∑

i=1



 1
N

N∑

j=1

FBOGi,j



 (14)

where FBOGi,j corresponds to the fitness of the Best Of Generation in generation i and trial j, G
is the number of generations, and N the number of trials. As eAS is implemented as a (1 + 1)-EA,
the value of FBOG corresponds to the fitness after every 100 FEs.

Settings

The majority of experiments will focus on cyclical domains. However, given the analysis of rhythm
in acyclic domains (section 4.1) and the presumably stronger presence of such scenarios in the
real world, it is interesting to investigate how eAS would fare in randomly changing environments.
The algorithm is tested on the dynamic MBF for all three fitness matrices and a problem of size
n = 100. For each setting as shown in table 1, we ran the algorithm for 30 times, limiting the
duration of each run to 30 cycles each of length c (total number of FEs per run is thus 30cτ).
For the acyclical experiments, the algorithm is executed for a total of 50 changes (50τ FEs). A
summary of parameter settings may be found in table 1. We do not take into account the FEs
required to evaluate all expressions after each change. This omission is justified on the grounds
that we do not compare eAS to another algorithm and that the FEs required after a change are
usually insignificant in regard to the period between environmental changes.

4.4 Results and Analysis

Cyclical Dynamics

The general performance of eAS is summarised in table 2 using as performance measure equation
14. Figure 6 shows how eAS is able to memorise the dynamics relatively independent of the length
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Parameter Values
τ 2501,2, 5001,2, 10001,2

ρ 0.11,2, 0.21,2, 0.51,2, 0.82, 1.01

c1






4, 8, 12, 16, 20 if ρ = 0.1
4, 6, 8, 10 if ρ = 0.2
2, 4 if ρ = 0.5
2 if ρ = 0.8

Table 1: Experimental setup for eAS on cyclical (1) and acylical (2) dynamic environments.

ρ=0.1 ρ=0.2 ρ=0.5 ρ=1.0
c=4 c=8 c=12 c=16 c=20 c=4 c=6 c=8 c=10 c=2 c=4 c=2

ξ=1 98.51 98.51 98.49 98.50 98.50 98.52 98.52 98.51 98.48 98.54 98.50 98.53
250 ξ=2 96.02 96.11 96.10 96.13 96.07 96.12 96.20 96.05 96.11 96.07 96.06 95.99

ξ=3 77.76 77.91 78.53 78.42 78.59 77.67 77.99 77.93 78.20 77.80 78.09 77.76
ξ=1 99.15 99.15 99.15 99.15 99.15 99.15 99.16 99.15 99.15 99.16 99.15 99.19

500 ξ=2 98.01 97.92 97.96 97.93 97.95 97.91 97.90 97.87 97.90 97.94 97.87 97.90
ξ=3 78.72 78.50 78.53 78.42 78.59 78.61 78.46 78.52 78.46 78.25 78.23 78.59
ξ=1 99.57 99.57 99.58 99.58 99.58 99.58 99.58 99.57 99.58 99.58 99.58 99.58

1000 ξ=2 98.96 98.97 98.97 98.97 98.97 98.97 98.96 98.96 98.95 98.94 98.96 98.92
ξ=3 78.68 78.78 78.81 78.77 78.72 78.69 78.79 78.70 78.62 78.75 78.80 78.52

Table 2: The performance of eAS on the dynamic oneMax for different magnitudes of change
(ρ ∈ {0.1, 0.2, 0.5, 1.0}) and different durations between successive changes (τ ∈ {250, 500, 1000}).
The maximum possible score is 100 in each case.

of the cycle. Only the initial period where the dynamics are ‘learned’ is affected. The performance
for the oneMax and the neutral function is very good. In fact, as indicated by the table and the
graphs, the average value would approximate the maximum of 100 if executed for sufficiently long.
The performance on the deceptive problem is significantly worse, as expected. Nevertheless, the
performance is again unperturbed by the length of the cycle. In all cases, the performance of eAS
improves given longer periods between changes.

Figure 7 shows the performance of eAS on the neutral and deceptive MBF. The neutral case is
similar to the oneMax although it takes longer for the algorithm to fully encapsulate the dynamics.
The final fitness value obtained in the deceptive case is only locally optimal and oscillations are
evident where the algorithm switches between solutions without further adaptation (figure 7 (b)
where FE > 5000).

It is important to note that the memory only helps the algorithm to deal with the dynamics
and not the base function. If other variation operators would have been employed, a better overall
performance could be achieved. In fact, it is possible to combine the algorithm presented in the
second half of this chapter, iAS, with this memory scheme for improved performance. This will be
left for future work.

Acyclical Dynamics

We would expect eAS to do well in acyclic environments if the change is sufficiently large to result
in a reliable pseudo-rhythm. However, most changes in the real world are expected to be small
on average. The most obvious problem encountered by eAS in this case would be the continuous
accumulation of states added to the memory: no state is likely to be repeated within a short period
of time and the encoding will consistently add new levels to the tree until the maximum has been
reached. This is the reason for the guardian if statement as shown in the pseudo-code: a new level
is only added to the tree if the corresponding expression, which is random initially, produces a
higher fitness value than any of the stored encodings. One would expect continuous optimisation in
environments with small change (i.e. trees with a single level) and a mixture of restart and re-use
in environments with larger changes (which eventually should adapt a pure re-use strategy).
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Fig. 6: Performance of eAS on dynamic oneMax for ρ = 0.2 and 4 (a), 6 (b), 8 (c) and 10 (d) states
per cycle.
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Fig. 7: Performance of eAS on fitness matrices 1 (a) and 2 (b) for a change of ρ = 0.1 and a period
of τ = 250.

For this experiment, we focus simply on the depth of the tree that evolved given different pa-
rameter settings. The results are shown in table 3 and, as expected, the algorithm simply continues
to adapt without making use of memory if the changes are very small. Conversely, if the changes
are fairly large, memory is used and, more importantly, reused efficiently. A value for ρ = 0.8 has
an approximate period of 2, which is reflected by the depth of the tree that evolved. Finally, the
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250 500 1000
ξ=1 1.0 1.0 1.0

ρ=0.1 ξ=2 1.0 1.0 1.0
ξ=3 1.0 1.0 1.0
ξ=1 1.0 1.0 1.0

ρ=0.2 ξ=2 1.2 1.0 1.0
ξ=3 1.3 1.0 1.0
ξ=1 9.1 9.0 9.4

ρ=0.5 ξ=2 8.8 8.9 8.2
ξ=3 9.2 9.5 9.4
ξ=1 2.5 2.1 2.0

ρ=0.8 ξ=2 4.6 3.2 2.3
ξ=3 5.5 3.2 2.0

Table 3: Depth of tree constructed in acyclical environments for all fitness matrices and different
magnitudes of change ρ ∈ {0.1, 0.2, 0.5, 0.8} and durations τ ∈ {250, 500, 1000}.

most difficult scenario for eAS is a change of magnitude 0.5 in which case there is no rhythm. It is
interesting to note that the algorithm converges to a memory of approximately 9 states for ρ = 0.5
independent of the fitness vector or period τ . This value may be explained as follows: whenever the
environment changes, the new optimum shifts a distance of 1/2n. A randomly generated encoding
is also expected to have a distance to the global optimum of 1/2n. The initial likelihood that a new
level is added to the tree is thus 1/2. If, however, a new level is added and another change occurs,
this likelihood changes to 1/3 (we assume that all encodings evolved so far have, on average, a
distance of 1/2n to the new optimum). In general, the probability of adding another level to the
tree is thus 1/(d+1). If we simulate this happening for 50 times, empirical results confirm (averaged
over 1000 trials) the expected value of d to be roughly 9.5.

4.5 Discussion

It is worth pointing out that the concept of linkage in this scenario, and possibly in other dynamic
domains as well, differs from its traditional meaning. Here, we are not interested in the structural
properties of the base state, but instead we are interested in the structural properties amongst
a succession of states. The genetic operators need to be designed to find and preserve useful
structures. It has been shown here how an abstract implementation of AS is able to find subsets
of bits common to subsets of states, and to reuse that information when required. The encoding
therefore provides a very compact representation of the entire dynamic landscape, and the dynamics
are effectively removed from the problem as there is now a single static optimal solution. The
performance of eAS has been demonstrated in a variety of different experiments, and the results
seem to suggest that the ability of eAS to cope with cycles is independent of cycle length, although
there is obviously an upper limit as to how many different states may be fully captured. An unsigned
8 byte integer representation (long) could capture cycles with up to 64 states. It is important to note
that the suggested encoding does not enhance the algorithm’s performance on the base problem
(i.e. the static version of the problem), but only enhances the algorithm’s ability to cope with the
dynamics imposed on top of the base problem. Nevertheless, the suggested methodology may be
applied to other algorithms.

5 Implicit Alternative Splicing

The second algorithm, implicit Alternative Splicing (iAS), differs from the previous approach in
that BBs are found on-the-fly using a systematic search procedure. Hence this algorithm is referred
to as implicit because the encoding itself does not imply any modularity of the search space. It
is clear that any artificial equivalent of AS relies upon a proper choice of segmentation and a
meaningful definition of ‘alternative expression’. In eAS, this choice was dictated naturally by the
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succession of states. This algorithm, on the other hand, requires additional definitions. We define
an alternative expression of a binary segment simply as the segment that is maximum hamming
distance from its source. More specifically, given a binary vector X ∈ {0, 1}n, we define an inversion
operator ⊥ such that X⊥B means: Xb = 1 ⊕ Xb, ∀b ∈ B ⊆ {1, 2, . . . , n}. In other words, B is a
set of indices indicating which bits in X are to be inverted. If B is the set of all indices in X we
simply write X⊥ and call it the dual of X. Any segment that may be inverted without negatively
affecting the fitness of the underlying encoding will be called an exon. Subsequently, iAS attempts
to find and invert (i.e. express alternatively) the largest exon possible. This objective is achieved by
inverting randomly chosen segments of decreasing size in a top-down fashion, using intermediate
fitness values as stepping stones for subsequent inversions (see below, and also [38]).

This abstract implementation essentially reduces iAS to the search of the largest possible binary
sequence that may be inverted successfully. The first step of iAS is to create the dual of the encoding
with some probability pd. If the dual has a higher fitness than the original encoding, the dual
replaces the original encoding. This is followed by a phase of recursive divisions and inversions:
the initial focus is directed at a randomly chosen subset of indices B ⊆ {1, 2, . . . , n} that is of size
0 < bl ≤ |B| ≤ bu ≤ n where bl and bu are lower and upper bounds specified by the user. At
the beginning of each iteration of iAS, the size of B is chosen randomly within those bounds. As
the set of indices B is dynamically reassigned throughout a single iteration of iAS, we explicitly
denote the initial set as B0. The chosen bits are randomly divided into two, equally sized disjoint
sets, α and β such that α ∪ β = B and α ∩ β = ∅. Each of those sets is inverted in X, one at a
time, to produce two fitness values. This step is repeated q times with different, randomly chosen,
partitions of B. If any of the 2q fitness values should result in a fitness superior to the original
one, the process is terminated and the changes are applied immediately. Otherwise, iAS proceeds
by taking the ‘path of least resistance’ and is executed repeatedly using as guidance those bits the
inversion of which caused the least decline in fitness (and may thus contain promising inversions
of smaller scale). Those bits are then again randomly divided q times and the above procedure is
repeated until a better fitness value is found or the number of bits to be inverted is reduced to 1.
If the inversion is neutral in regard to fitness, the process is terminated with some predetermined
probability pn. If q should be larger than the total number of unique divisions,

dunique ←






0 if |B| < 2
0.5 × (|B|!/((|B|/2)!)2) if |B| mod 2 = 0
0.5 × ((|B| + 1)!/(((|B| + 1)/2)!)2) otherwise

(15)

an exhaustive search of unique divisions is performed.
The following illustrates the workings of iAS on a simple n = 10 oneMax problem. Let us

assume we have a solution X = (1, 1, 1, 1, 1, 1, 0, 1, 1, 0) with fitness Φ(X) = 8. First we generate
the dual with probability pd. The dual is X⊥ = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1), has a fitness of Φ(X⊥) = 2
and will be ignored. We then randomly generate an initial B such as B = {0, 2, 3, 4, 6, 7, 8, 9}. This
subset of variables is then partitioned q = 2 times and each partition is used to determine which
bits to invert:

α1 = {0, 4, 6, 8} ∴ X⊥α1 = (0, 1, 1, 1,0, 1,1, 1,0, 0)
β1 = {2, 3, 7, 9} ∴ X⊥β1 = (1, 1,0,0, 1, 1, 0,0, 1,1)
α2 = {2, 3, 4, 7} ∴ X⊥α2 = (1, 1,0,0,0, 1, 0,0, 1, 0)
β2 = {0, 6, 8, 9} ∴ X⊥β2 = (0, 1, 1, 1, 1, 1,1, 1,0,1)

In this case, X⊥β2 has a fitness of 8 and the algorithm terminates with probability pn. If execution
continuous, B ← {0, 6, 8, 9} and

α3 = {0, 6} ∴ X⊥α3 = (1, 1, 1, 1, 1, 1,0, 1, 0, 1)
β3 = {8, 9} ∴ X⊥β3 = (0, 1, 1, 1, 1, 1, 1, 1,1,0)
α4 = {0, 8} ∴ X⊥α4 = (1, 1, 1, 1, 1, 1, 1, 1,1, 1)
β4 = {6, 9} ∴ X⊥β4 = (0, 1, 1, 1, 1, 1,0, 1, 0,0)

Again, the algorithm would terminate with probability pn in cases X⊥α3 and X⊥β3 . If not termi-
nated, the correct solution would have been uncovered in the third iteration of the procedure with
Φ(X⊥α4) = n. More details may be found in the pseudo-code for this algorithm (see algorithm 2).
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Algorithm 2 Pseudo-code for a single iteration of the iAS algorithm.
//Testing the dual
if rand([0, 1]) ≤ pd then

if Φ(X⊥) > Φ(X) then
X ← X⊥

end if
end if

//Generate initial set of bits considered for partitioning and inversion
randomly generate B ⊆ {1, 2, . . . , n} | 0 < bl ≤ |B| ≤ bu ≤ n

//Generate random partitions and inversions
while |B| ≥ 2 ∧ terminate = false do

if dunique(B) < q then
P ← all possible pairs of disjoint partitions (α, β) of B

else
P ← q random, equally-sized pairs of disjoint partitions (α, β) of B

end if

//Select the bits that produced the best inversion and assign them to B
B ← Pi | Φ(X⊥Pi) ≥ Φ(X⊥Pj ), ∀j∈P

//Apply the best inversion found so far if it improves the fitness of X
if Φ(X⊥B)) ≥ Φ(X) then

if Φ(X⊥B)) = Φ(X) ∧ rand([0, 1]) ≤ pn then
X ← X⊥B

terminate =true
else

X ← X⊥B

terminate =true
end if

end if
end while

The reasons for this particular implementation follow directly from the exposition of AS in
section 2: AS allows the emergence of new proteins by temporarily suspending selection pressure
for certain splice forms which are subsequently free to accumulate mutations. This accelerated
rate of change may ultimately produce a new protein (see [35]). A purely neutral approach is too
costly for our purposes (due to the general lack of parallelism) and selection pressure is upheld
to a certain degree while allowing a temporary decrease in fitness. The lack of problem specific
knowledge implies that there is no evidence of modularity in the search space, and it is impossible
to determine a priori what segments should be inverted. iAS thus systematically searches for such
a segment and the top-down recursive technique allows for the largest segment to be found. There
is no certainty that a successful inversion will be found, but testing q different divisions increases
the likelihood of success. It is crucial that the initial number of bits, |B0|, is chosen randomly
(within bounds) as the size of all subsequent segments depends on this initial choice (as segments
are always halved). The maximum number of FEs processed during a single iteration is:

(log2(n))∑

i=1

min{q, dunique(4n/2i5)} (16)

given that |B0| = n and pd = 0 and that the algorithm continues until |B| = 1. In the case of
n = 100 and q = 10, this would be 2(4q + 3 + 1) = 88 FEs.
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5.1 Comparison to the Folding GA

The ability of iAS to invert numerous bits simultaneously makes the need for crossover redundant
and some initial experiments have confirmed that there is indeed no significant advantage to using
multiple individuals (we investigated the use of 2 individuals in [38]) in place of the (1+1) EA
employed here. It is worth pointing out the importance of choosing a random distribution of bits
to be inverted (and not continuous segments), and it is possible to draw a meaningful comparison
between n-point crossover and uniform crossover: the effectiveness of n-point crossover depends
upon the total length of the BBs (distance between first and last defining bit), while the effectiveness
of uniform crossover is only dependent upon the actual number of bits within the BBs. If the bias
of uniform crossover is chosen randomly every time the operator is applied, uniform crossover has
the same attributes as n-point crossover without the restrictions imposed by the static ordering of
variables inherent in the algorithm’s encoding.

A similar comparison may be drawn between iAS and the Folding GA (FGA, [12]), the most
closely related approach in the literature. The FGA, an extension of the dual GA, includes multiple
meta-bits that adaptively control different sections of the encoding. These so-called meta-genes
determine the state of all subsequent bits in the encoding up to the next meta-gene. An example
taken from [13] is as follows. A transcription step T is applied to the encoding that affects all genes
between any two meta-bits {0̇, 1̇} such that T (0̇ω) = ω and T (1̇ω) = ω̄ where ω̄ is the inverse of ω:

T ([1̇010̇0]) = [100]
T ([101̇1]) = [100]

T ([1̇00̇00̇0]) = [100]

This technique is expected to work well on the fully deceptive MBF as a single mutation to any of
the meta-bits allows the simultaneous inversion of multiple bits. However, as the distribution of BBs
is generally unknown a priori, the meta-bits have to be inserted adaptively. If the deceptive BBs
form consecutive groups of variables, this approach should fare well because only a few meta-bits
are required to exert sufficient control over the locally optimal parts of the encoding. If, on the other
hand, BBs are distributed randomly across the encoding, the problem may become intractable.

If, for example, the MBF is constructed as follows:

((v1, v2, v3, v4)1, (v5, v6, v7, v8)2, . . . , (vn−3, vn−2, vn−1, vn)n/4)

each meta-bit exerts control over exactly one BB in the worst case scenario (locally and globally
solved BBs in alternating fashion). If, on the other hand, the MBF is constructed randomly as
follows:

((v5, v15, v8, v10)1, (v12, v1, v22, v23)2, . . . , (v2, v32, v21, v11)n/4)

a meta-bit may only affect a single variable in the worst case scenario. Thus, in order to overcome
deception, four meta-bits have to be inverted simultaneously, which is just as hard as the original
problem. The crucial difference between the FGA and iAS is, of course, that the folding GA adapts
during the execution of the algorithm and hence does not rely upon the extensive amount of FEs
required by iAS to locate meaningful structures in the search space.

5.2 Experimental Setup

Here we present a modification of the basic MBF problem as well as two additional problems on
which iAS has been tested. The extended version of MBF is presented first, followed by a discussion
of the NK fitness landscape and a brief outline of the multiple knapsack problem. Finally the
experimental settings are described.

MBF - Extended Version

Here we extend the basic MBF problem to allow exclusively selected parts of the encoding to refer
to different fitness matrices. This allows one to mix different search space attributes within the
same problem. An MBF of type 0.33 - 0.33 - 0.33, for example, indicates that the search space is
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composed to 1/3 of each of the 3 fitness vectors (in the order: maxOnes, neutral and deceptive). A
type 1 - 0 - 0 would correspond to the classical maxOnes problem. Furthermore, the elements in X
that belong to the same BB are distributed randomly across X (although there is still no overlap
across all BBs).

NK Fitness Landscape

Kauffman developed the NK-fitness landscape model (NK; [30]) to study the effects of genetic
interactions (epistasis). Each bit in the encoding contributes towards the encoding’s fitness. The
contribution depends upon the state of the bit itself and the state of all k bits that are linked
to it, and the more the bits are dependant on one another, the more rugged the search space
becomes. The fitness values for each bit are generated randomly in the range [0, 1] for each of the
2k+1 possible states and are stored in a look-up table (for high values of k, these values may be
generated on-the-fly). The final fitness is the average contribution of all bits:

F (X) =
1
n

n∑

i=1

Fi(Xi; Xi1 , . . . , Xik) (17)

where {i1, . . . , ik} ⊂ {1, . . . , i−1, i+1, . . . , n}. For random neighbourhoods, this problem has been
shown to be NP-complete for values of k ≥ 2 (see [1]). This problem is again an example of an ADF
where the component functions are defined by the relationship between variables. Unlike the MBF,
there is overlap between the linkage groups proportional to k, making this problem increasingly
difficult to solve.

Multiple Knapsack Problem

The Multiple Knapsack Problem (MKP) is a widely studied combinatorial optimisation problem
that has several direct counterparts in industry, such as the cutting stock problem or resource
allocation in distributed systems. Well-established benchmarks for this NP-hard problem are read-
ily available allowing a direct comparison to other approaches in the literature. The MKP is a
generalisation of the single knapsack problem: the objective is to fill a series of m knapsacks each
of capacity cj with any number of n items, each with weight Wij and value Vi, in such a way that
the combined value of all items is maximized without exceeding any of the knapsack’s capacities.
More formally, the aim is to maximize the fitness

max{
n∑

i=1

ViXi} |
n∑

i=1

WijXi ≤ cj ∀j (18)

where Xi ∈ {0, 1}. We studied the widely used SAC’94 suite of benchmark MKP problems, which
may be found online at http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/. It
contains 55 problem instances which range in size from 15-105 objects and 2-30 knapsacks.

Settings

We tested the performance of iAS on three different problems. First, it was applied to the fully
deceptive MBF in order to investigate the ability of iAS to reliably identify the BBs of the problem.
Secondly, it was tested on a variety of other MBFs and Kauffman’s NK fitness landscape. Here
a comparison was made against the canonical GA (cGA) using a population size of 100, uniform
crossover and tournament selection. The crossover and mutation probabilities were pc = 0.8 and
pm = 1/n respectively. Finally, iAS was tested on several instances of the MKP. In each case, the
algorithm was executed 20 times for each problem, with a maximum of 20,000, 50,000 and 100,000
FEs. Whenever the global optimum was found within the limit allowed, the algorithm’s run was
terminated and the number of FEs required noted. The parameter settings used for all problems
are shown in table 4.
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Parameter Values
q 102,3, 201

|B0|






641

1001

{2, 3, . . . , 100}1

{50, 51, . . . , 100}1,2,3

pn 0.51,2,3

pd 0.51,2,3

Table 4: Experimental setup for iAS for problems 1 (1), 2 (2) and 3 (3).

|B0| = 64 |B0| = 100 50 < |B0| < 100 2 < |B0| < 100
q % avg FE % avg FE % avg FE % avg FE
1 0 91.95 - 0 91.35 - 0 91.05 - 0 92.25 -
5 10 98.4 423350 0 93.45 - 0 96.45 - 0 95.7 -

10 70 99.6 330962 0 95.6 - 15 98.2 410294 5 98.05 355555
20 100 100 223895 5 98.25 469648 65 99.6 321232 30 99.05 371357
30 100 100 187486 30 99 330856 75 99.75 291386 70 99.65 368337
40 100 100 90103 80 99.75 350168 90 99.9 257587 90 99.9 290079
50 100 100 109580 80 99.75 329730 85 99.85 275812 65 99.6 278106
60 100 100 107851 80 99.75 336884 90 99.9 273186 95 99.95 258828
70 100 100 99680 65 99.65 347471 90 99.9 213651 95 99.95 248939
80 100 100 107223 60 99.55 320236 90 99.9 275824 70 99.7 293830
90 100 100 130937 85 99.75 330761 85 99.85 262796 75 99.7 337469

100 100 100 110571 55 99.55 354448 90 99.9 259557 65 99.65 255182

Table 5: Results for iAS on fully deceptive problem (BB=4) for different values of |B0| and q. The
% symbol indicates the number of trials solved successfully.

5.3 Results

Results Problem 1: MBF

Table 5 shows the performance of iAS on the fully deceptive MBF: iAS is able to solve this problem
if executed for a sufficiently large number of FEs (500,000 in this case). This type of problem may
only be solved successfully if the algorithm is able to invert entire BBs instantaneously, and it is
evident from table 5 that the choice of |B0| is crucial: values that are multiples or powers of 4 (the
BB size) are most successful (64 in this case is the largest possible initial segment that is a power
of 4). It is clear how problem specific knowledge may be employed in the choice of |B0|. This effect
is shown more clearly in figure 8 where the frequencies of segment sizes successfully inverted are
shown. The highest peak, irrelevant of the initial segment size, corresponds to the BB size. In other
words, iAS is able to successfully identify the BBs and invert them to find the global optimum.
It is important that the initial segment size is as large as possible to guide the search and it is
evident that 50 < |B0| < 100 performs better than 2 < |B0| < 100. A large initial segment not
only increases the frequency of finding large exons, but also increases the overall success rate of
finding smaller exons in subsequent processing steps.

It is also evident that the choice of q is crucial as well. The more divisions are tested at each
stage, the higher the success rate of finding an exon. On the other hand, high values of q are
computationally expensive. There is thus a trade-off between the number of times iAS may be
executed and q. In this case, 40 < q < 70 seems best. It should be stressed that a stochastic
approach to exploring different divisions at each stage is the only appropriate choice for deceptive
problems. Attempts to find the best possible division using local search, or indeed a GA, have failed
because the search for a division seems to be as difficult as the original problem itself. Depending
on the problem, however, different (problem-specific) heuristics may be employed.
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Fig. 8: Results for iAS on fully deceptive problem (BB=4). Frequency of successful inversions (non-
successful inversions not shown) for different values of |B0|: 64 (1), 100 (2), 50 < |B0| < 100 (3)
and 2 < |B0| < 100 (4). The x-axes correspond to the number of bits inverted, the y-axes describe
the number of successful inversions.

The second set of experiments on the MBF compares iAS to the cGA on a variety of different
search space properties as shown in table 6. First, it is evident from the data that iAS, unlike the
cGA, improves significantly in performance if given more resources (i.e. more FEs). Secondly, iAS
performs significantly better than the cGA on all instances, and is able to solve all instances that
have no more than 33% deception at least once. It should be noted that a high value of q is required
to solve deceptive BBs but slows down the algorithm in the simpler cases. A re-run of iAS on case
1 and 2 using q = 1 requires only 473 and 568 FEs respectively.

Results Problem 2: NK Fitness Landscape

The results for the first part of this experiment are shown in Table 7: iAS is significantly better
than the cGA in at least 70% of the cases, especially those with higher values of k. Again, as the
limit on the FEs is increased, the differences in performance increase as well. This indicates that
iAS makes better use of the available resources and suffers less from local optima entrapment.

The NK fitness landscape is an ADF where the size and overlap of linkage sets increases with
k. High values of k thus imply a greater degree of difficulty as the optimal assignment for each
subset of variables XVi is likely to interfere with most other assignments. iAS initially inverts a
large subset of variables and this inversion is likely to affect most, if not all, linkage sets (for high
values of k at least). Nevertheless, the performance of iAS seems to indicate that the incremental
refinements made to the set of inverted variables is able to locate and isolate a set of variables the
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20,000 FEs (1) 50,000 FEs (2) 100,000 FEs (3) Sig cGA
Case % avg FE % avg FE % avg FE 1v2 2v3 1v3 Diff Sig

1.00 - 0.00 - 0.00 (1) 100 100 1542 100 100 1542 100 100 1542 - - - 1743 *
0.00 - 1.00 - 0.00 (2) 100 100 1804 100 100 1804 100 100 1804 - - - 2206.1 *
0.00 - 0.00 - 1.00 (3) 0 90.9 - 0 91.95 - 0 94 - x * * -8 *
0.60 - 0.20 - 0.20 (4) 30 99.05 7952 80 99.75 24582 100 100 33693 * x * -2.4 *
0.20 - 0.60 - 0.20 (5) 30 98.8 11458 70 99.6 24547 100 100 39088 * x * -2.4 *
0.20 - 0.20 - 0.60 (6) 0 94.35 - 0 96.25 - 0 97.45 - * * * -4.15 *
0.33 - 0.33 - 0.33 (7) 0 97.3 - 20 98.7 39884 45 99.4 60362 * * * -3.75 *

Table 6: Results for iAS on MBF for different distributions. The differences in performance com-
pared to the cGA are shown in the right-most column (20,000 FEs). Column ‘Sig’ indicates if the
differences are significant (*) and the % symbol indicates the number of trials solved successfully.

20,000 FEs 50,000 FEs 100,000 FEs
k cGA iAS Diff Sig cGA iAS Diff Sig cGA iAS Diff Sig
1 0.7105 0.7119 0.0014 x 0.7108 0.7120 0.0012 x 0.7112 0.7120 0.0009 x
2 0.7363 0.7403 0.0040 x 0.7374 0.7412 0.0038 x 0.7380 0.7421 0.0041 x
3 0.7448 0.7581 0.0134 * 0.7469 0.7609 0.0140 * 0.7483 0.7619 0.0137 *
4 0.7490 0.7634 0.0144 * 0.7517 0.7669 0.0152 * 0.7536 0.7700 0.0164 *
5 0.7473 0.7645 0.0172 * 0.7521 0.7657 0.0136 * 0.7530 0.7683 0.0153 *
6 0.7385 0.7535 0.0150 * 0.7419 0.7587 0.0169 * 0.7435 0.7615 0.0179 *
7 0.7388 0.7500 0.0111 * 0.7417 0.7535 0.0117 * 0.7438 0.7552 0.0114 *
8 0.7285 0.7457 0.0171 * 0.7308 0.7497 0.0189 * 0.7339 0.7508 0.0168 *
9 0.7251 0.7382 0.0131 * 0.7302 0.7426 0.0124 * 0.7307 0.7455 0.0148 *
10 0.7233 0.7370 0.0136 x 0.7287 0.7412 0.0124 x 0.7301 0.7442 0.0141 *

Table 7: Comparison of iAS and cGA on NK for different values of k given different limits on the
number of FEs allowed. Column ‘Sig’ indicates if the differences are significant (*).

inversion of which is beneficial. In other words, the approach taken by iAS seems to work despite
significant overlap (epistasis) of linkage sets in the problem space.

Results Problem 3: MKP

This section highlights the potential of iAS for other, more realistic, problems. In particular, it is
shown how iAS may be used to solve constrained and permutation based optimisation problems.
The constrained optimisation problem chosen is the MKP and iAS may be employed as usual.
However, whenever a segment is inverted, the inversion is carried out as follows (starting with a
feasible solution): first, all 1s are inverted to 0s. It is safe to do this because the exclusion of an item
will never invalidate a solution. Secondly, all bits which were originally 0 are inverted (in random
order), if possible. This approach ensures that the inverted segment is as close as possible to a
fully inverted segment while obeying the constraints imposed by the problem. This is the simplest
approach that ensures feasibility and more sophisticated techniques may be developed that should
produce superior results. In particular, it is clear that problem specific knowledge such as the
average value-weight ratio of all items, may be used here to determine the order of bits considered
for inclusion. Nevertheless, as the results in table 8 show, iAS is able to solve at least one trial in
almost all instances and again, iAS produces better results in almost all instances given a higher
limit on the number of FEs allowed.

It is also possible to apply iAS to permutation based problems. The greatest difficulty in this
case is the definition of what an ‘alternative expression’ is. This is straightforward in the binary
case, but much less clear in the case of permutations because there is no single unique ‘inversion’.
In this case, the group membership as well as the order within the group matters. iAS may thus
be extended to include another test at each step that evaluates a certain number of randomly
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20,000 FEs 100,000 FEs
Instance % avg % avg
hp1 60 3405.15 75 3409.5
hp2 45 3151.85 70 3168.6
pb1 50 3069.45 65 3080.1
pb2 15 3142.1 45 3154.85
pb4 65 93882.55 85 94683.05
pb5 60 2132.2 85 2136.45
pb6 55 769.7 80 773.2
pb7 20 1027.8 50 1031.15
pet2 100 87061 100 87061
pet3 100 4015 100 4015
pet4 100 6120 100 6120
pet5 55 12394.5 100 12400
pet6 5 10565 40 10594.65
pet7 0 16448.35 5 16475.7
sent01 20 7755.7 20 7758.25
sent02 0 8701.45 0 8710.4
weing1 100 141278 100 141278
weing2 100 130883 100 130883
weing3 100 95677 100 95677
weing4 90 118986.4 100 119337
weing5 100 98796 100 98796
weing6 100 130623 100 130623
weing7 0 1094227.25 0 1095209.7
weing8 25 620728.1 35 621543.2
weish01 100 4554 100 4554
weish02 60 4534 60 4534
weish03 85 4105.55 100 4115

20,000 FEs 100,000 FEs
Instance % avg % avg
weish04 100 4561 100 4561
weish05 100 4514 100 4514
weish06 35 5546.8 55 5550.15
weish07 80 5562.35 100 5567
weish08 55 5602.55 100 5605
weish09 95 5244.3 100 5246
weish10 55 6322.85 80 6332.6
weish11 50 5611.35 95 5637.75
weish12 70 6320.6 100 6339
weish13 100 6159 100 6159
weish14 60 6938.35 80 6947.8
weish15 100 7486 100 7486
weish16 55 7287.2 75 7288.2
weish17 30 8623.85 95 8632.3
weish18 5 9561.35 35 9572.9
weish19 35 7672.25 65 7686.6
weish20 55 9442.3 80 9446
weish21 70 9063.6 90 9070.35
weish22 25 8908.4 30 8927.8
weish23 10 8319.35 25 8332.95
weish24 20 10202.35 80 10216.25
weish25 10 9919.45 35 9927.7
weish26 35 9547 55 9566.65
weish27 60 9779.45 90 9806.7
weish28 50 9453.75 70 9485.1
weish29 30 9360.4 70 9397.55
weish30 50 11178.75 70 11189.55

Table 8: Results for iAS on MKP using a partial repair function and two different limits on the
number of FEs allowed. The % symbol indicates the number of trials solved successfully.

generated permutations within each half. In other words, at each stage, q divisions are tested and
for each test, z permutations within each half are tested as well. The average fitness value of all z
permutations is subsequently used to guide the search. This requires significantly more FEs, but
may be beneficial for difficult problems that consist of relatively few variables, such as the quadratic
assignment problem, or in cases where the number of FEs allowed is sufficiently large.

5.4 Discussion

iAS has been tested on three different problems and has been compared to the cGA on two of
them. In both cases, iAS significantly outperformed the cGA in the majority of cases. The ability
of iAS to invert large numbers of bits simultaneously allows the algorithm to escape from local
optima. This is evident in the constant increase in performance once the limit on the number of
FEs allowed is increased. Nevertheless, each iteration of iAS requires a significant cost in terms of
FEs required to successfully invert a segment which could pose a problem, if resources are very
limited.

The tests on the fully deceptive MBF seem to indicate that iAS works especially well on
problems where deception leads to sub-optimal solutions that are maximum Hamming distance
from the globally optimum sub-solution. However, this attribute is not necessarily restricted to
fully deceptive problems as any local optimum in a binary search space is some Hamming distance
away from the global optimum and it has been shown that iAS was able to solve at least some trials
in almost all instances when tested on a constrained real-world problem. Further work is required
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to investigate in more depth the kind of problems iAS may be expected to do well on. This will be
left for future work.

6 Conclusions and Future Work

This chapter has presented two novel algorithms that are inspired by Alternative Splicing (AS), an
important cellular process found in higher eukaryotes. Loosely speaking, AS affects the expression
of individual genes by affecting the choice of modules (exons and introns) that contribute towards
the protein. This modular composition of genetic information is strongly related to the concept of
linkage in Evolutionary Computation (EC), and the idea of tightly linked informational Building
Blocks (BBs) is evident in both algorithms presented.

The first algorithm, explicit Alternative Splicing (eAS), has been applied to a dynamic opti-
misation problem and systematically groups the variables of a problem according to their value
across a series of finite states. This systematic grouping allows for the efficient reuse of acquired
information in cases when the dynamic environment returns to a previously visited state. eAS is
essentially an implicit memory approach that attempts to capture the state of a variable across
multiple different states. Linkage groups in this case do not describe the sub-structures of the base
problem, but instead capture the properties of a succession of different instances of the base prob-
lem. The ability to recall states from memory allows eAS to deal efficiently with dynamics, at least
in the cases considered here. It does not, however, help the algorithm to solve the base problem,
and it is expected that other, more sophisticated, operators may have a significant impact on the
overall performance of eAS.

The second algorithm, implicit alternative splicing (iAS), uses a top-down search process to
locate a segment for which inversion has a non-negative impact on the encoding’s fitness. The
search starts with a large, randomly chosen initial segment which is systematically reduced in
size. At each iteration, the current segment is halved and each half is inverted and the resulting
encoding is evaluated. These intermediate fitness values are used to guide the search towards a
successful inversion. This algorithm is able to solve fully deceptive problems if given sufficient time.
Furthermore, iAS significantly outperformed a canonical GA on two test problems, and managed
to solve the majority of instances in the multiple knapsack problem using a partial random repair.

Both algorithms are based upon a simple (1+1) EA. The reason for choosing this particular
underlying framework was mainly driven by the fact that individual encodings require multiple
function evaluations (FEs) to produce a candidate solution (although in the case of eAS, multiple
FEs are only required if a change has occurred). In nature, most cellular processes rely upon the
massive parallelism evident in animal populations, but in EC such luxuries are usually unavailable
and compromises have to be made (i.e. population size reductions). If resources are available, we
would expect either algorithm to work well in a population based framework.

6.1 Future Work

We are currently expanding our work on the iAS algorithm. In particular, the algorithm seems
highly suitable for use in dynamic domains, cyclic or not, as it should be able to deal efficiently
with a variety of different transitions. Initial experiments have shown promise, but further testing is
required to determine the full power of the approach. Furthermore, efforts are underway to analyse
the behaviour of iAS analytically, and to draw some general conclusions regarding its running time
for selected problems. The methodology employed in iAS is fairly general, and it should be possible
to refine the performance further using local search or statistical processing to guide the choice of
divisions. Finally, it may also be of interest to combine the two approaches to exploit the benefits
each of them has to offer.
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The Handbook of Evolutionary Computation, pages B2.7:2–B2.7:10. Oxford University Press,
1997.

[2] B. S. Baker. Sex in flies: The splice of life. Nature, 340:521–524, 1989.
[3] D. L. Black. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of

Biochemistry, 72:291–336, 2003.
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