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Abstract

We use hierarchical cluster analysis, principal component
analysis, multi-dimensional scaling and discriminant analysis
to investigate the internal representations learnt by a recent
connectionist model of reading aloud.  The learning
trajectories of these representations may help us understand
reading development in children and the results of naming
latency experiments in adults.  Studying the effects of
network damage on these representations seems to provide
insight into the mechanisms underlying acquired surface
dyslexia.  The discussion of the various techniques used may
also prove useful in analysing the functioning of other
connectionist systems.

Introduction

Connectionist models (e.g. Seidenberg & McClelland, 1989)
have begun to play an important role in the long running
debate concerning the processes underlying the act of
reading aloud (e.g. Coltheart et al., 1992).  It was recently
shown (Bullinaria, 1993, 1994) how the NETtalk model of
reading (Sejnowski & Rosenberg, 1987) could be modified
to work without the need for pre-processing of the training
data to align the letters and phonemes prior to training.
This modified model not only has superior learning and
generalization performance than other models trained on the
same words (e.g. Seidenberg & McClelland, 1989), but also
has the advantage that it does not require the use of
complicated input and output representations.
Consequently, it has become feasible to analyse the internal
representations of this model with view to better
understanding the working of the model under normal
conditions (e.g. has it learnt ‘rules’ or is it merely operating
by analogy with particular words occurring in the training
data) and after damage (e.g. can we model acquired
dyslexias without the need for separate sub-systems for the
regular and exception words).

There are numerous possible variations of the original
NETtalk model discussed in Bullinaria (1994). The
‘standard’ extension to be investigated here is a fully
connected feedforward network with sigmoidal activation
functions and one hidden layer of 300 units.  The input layer
consists of a window of 13 sets of units, each set having one
unit for each letter occurring in the training data (i.e. 26 for
English).  The output layer consists of two sets of units,
each set having one unit for each phoneme occurring in the

training data (i.e. 38 units). The network was trained using
back-propagation on a standard set of 2998 monosyllabic
words with the corresponding pronunciations - see
Seidenberg & McClelland (1989) for details and notation.
The input words slide through the input window, starting
with the first letter of the word at the central position of the
window and ending with the final letter of the word at the
central position, with each letter activating a single input
unit.  The output phonemes correspond to the letter in the
centre of the input window.  Usually the output consists of
one phoneme and one phonemic null (e.g. ‘t’ →  /t–/),
occasionally it consists of two phonemes (e.g. ‘x’ →  /ks/)
and for silent letters we get two phonemic nulls (e.g. ‘e’ →
/––/).  The three possibilities cause the so-called alignment
problem because it is not obvious from the training data
how the letters and phonemes should line up.  The
advantage of this model over the original NETtalk is that,
rather than doing the alignment by hand prior to training, a
multi-target approach (Bullinaria, 1993) allows the network
to learn the appropriate alignments during the training
process.  Given a word such as ‘huge’ →  /hyUdZ/, the
network considers all possible output target alignments (e.g.
/hy Ud –– Z–/) and trains only on the one that already gives
the smallest total output activation error.  Even if we start
from random weights, the sensible regular alignments will
tend to over-power the others, so that eventually the
network settles down to using only the optimal set of
alignments (e.g. /hy U– dZ ––/).

This network achieved perfect performance on the
training data (including many irregular words) and 98.8%
on a standard set of 166 non-words used to test
generalization.  It also correlates well with various naming
latency experiments and provides several possible accounts
of developmental and acquired surface dyslexia.

Internal Representations

In this model, different regions of hidden unit activation
space are selected by the output weights to produce different
output phonemes and the learning process consists of
judiciously choosing these regions and mapping the input
letters to appropriate regions depending on the context
information (i.e. surrounding letters).  Since the consistent
weight changes corresponding to regularities will tend to
reinforce whereas others will tend to cancel, the network
tends to learn the most regular mapping possible and hence
we also get good generalization performance.
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For our purposes, the main advantage of connectionist
models over humans is that we can relatively easily examine
their internal representations with view to understanding
how they (and possibly humans) operate under normal and
abnormal conditions.  In the following sections we will
consider several techniques that have previously been used
to study the internal representations learnt by connectionist
systems and then apply the best to various aspects of our
model.

Hierarchical Cluster Analysis

One way to map out what is going on in hidden layer
activation space is to perform a Hierarchical Cluster
Analysis (HCA) of the points corresponding to each
presentation of each word (Sejnowski & Rosenberg, 1987;
Elman, 1989).  Rather than trying to look at all the 12744
points representing our training data, we begin by looking at
the mean activations for each of the main 65 letter to
phoneme mappings.  A simple Euclidean clustering gives

Figure 1a and we get a similar picture using an L1 norm.
The overall pattern is as expected - vowels together, silent
letters together, consonants together and so on down to the
likes of /dZ/ sounds together.

Figure 1b shows that the good clustering persists right
down to the level of individual words.  However, we see
that irregular words (such as ‘give’ → /giv/ and ‘pint’  →
/pInt/) are clustered with their regular counterparts (‘gibe’
→  /gIb/ and ‘tint’ →  /tint/) rather than the other words
pronounced in the same way.  Also, we find whole sub-rules
(e.g. ‘ind’ →  /Ind/) apparently in the wrong high level
cluster.  Since the network itself doesn’t make use of
Euclidean (or other) distance measures on the hidden unit
space it is not surprising that HCA can lead to slightly
misleading results.  Indeed, all the distances are very similar
here (mean 4.0, s.d. 0.6 for Figure 1a; mean 3.8, s.d. 0.8 for
Figure 1b), so clustering doesn ’t make much sense anyway.
The networks’ output weights work by projecting out
particular sub-spaces of the hidden unit space, so to get a
better understanding of the internal representations we really

Figure 1:  Hierarchical Cluster Analysis of (a) phoneme means, (b) sample words.
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need to see more accurately how the words are positioned in
hidden unit activation space.

Principal Component Analysis

For our model we deliberately chose to use a large number
of hidden units (i.e. 300), about ten times as many as
actually needed to learn our training data.  The reason for
this was that we were particularly interested in modelling
the effects of brain damage and acquired dyslexia.  To do
this realistically we needed a system that was fairly resilient
and degraded gracefully when damaged.  This required a
highly distributed internal representation for which the
removal of any single hidden unit or connection has very
little effect on the network’s performance.

We succeeded in this aim, but we now have the difficult
problem of visualising points in a 300 dimensional space.
We clearly need to reduce the number of dimensions to
something more manageable, i.e. two or three.  The easiest
way to do this is to use Principal Component Analysis
(PCA): We change the coordinate basis to diagonalise the

covariance matrix S and then restrict ourselves to the
dimensions which carry the most variance.  This approach
was used to good effect by Elman (1989), but in our
network the variance is distributed over too many
components (the first three normalized eigenvalues for the
full set of training data are 0.096, 0.078, 0.067).  Taking any
two or three components on their own gives a very poor
representation of what’s happening.

Multi-Dimensional Scaling

A useful non-metric approach to dimensional reduction is
provided by Multi-Dimensional Scaling (MDS).  A gradient
descent algorithm is used to adjust iteratively the positions
of the points in a low dimensional space until the rank order
of the inter-point distances correspond as closely as possible
to those in the original space (Kruskal, 1964).

For small numbers of points, MDS works quite well.  The
average phoneme data of Figure 1a resulted in the two
dimensional MDS plot shown in Figure 2.  The correlation
with the original data is 0.82 compared with 0.50 for a 1D

Figure 2:  MDS plot of mean phoneme positions in hidden unit activation space.
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plot, 0.88 for a 3D plot and 0.56 for the first two principal
components.  We can see more clearly how the points are
clustered and understand anomalies in the HCA, e.g. why
the ‘k-k’ point was grouped with the silent letters.  We can
also get good plots for the individual words, with the
exception words and sub-rules appearing at the edges of
clusters as close as possible to the clusters of their regular
counterparts.  However, for larger numbers of points the
correlations become weaker and often words that we know
from cluster analysis should be close together do not appear
together on the MDS plots.  In these cases it is clearly
dangerous to make detailed predictions from MDS plots,
since it is difficult to know which lost information is
responsible for the breakdown in correlation.  What we
really need is a procedure for plotting true distances.

Canonical Discriminant Analysis

Clearly, we cannot represent the whole of our network’s
internal representation in two dimensions.  What should be
feasible and more useful, however, is to plot a small subset
of the representation, for example the distinction between
the long and short ‘i’  sounds (/I/ and /i/).  This approach, in
the form of Canonical Discriminant Analysis (CDA), was
successfully applied by Wiles & Ollila (1992) to study
combinatorial structure in hidden unit space.  If we know
which of g groups each point in hidden unit space belongs to
(i.e. which output phoneme it corresponds to) we can
partition the total covariance matrix  S = B + W  into the
between groups covariance B and the within groups
covariance W.  Then, by solving the eigenvalue problem for
S-1 B, we obtain a matrix M which projects our space onto a
rank B  ≤  g – 1  dimensional subspace that maximises the
ratio |B| / |S|, i.e. clusters the points into groups with the
maximum between group separations and minimum within
groups dispersion.

Since we know our network performs a similar clustering
(Gallinari et al., 1991), it is tempting to assume that this
procedure will give a good representation of what is
happening in hidden unit space.  Consider our /I/ versus /i/
case again.  We can separate the words into two groups and
use CDA to obtain a projection vector in hidden unit space
that best discriminates between the long and short sounds.
The quality of the discrimination depends on the number of
data points we use.  If we have many less points than the
number of hidden units, then the discrimination is
essentially perfect (B/S = 1.0000 for 160 points).  In fact,
we get equally good discrimination even if we assign the
points to groups at random (B/S = 1.0000).  It is clear that
we are not getting a good picture of the true internal
representation.  If we use all the points in the training data
(239 /I/’s and 272 /i/ ’s) we do better : B/S = 0.98 for the true
groups and B/S = 0.61 for random groups (and, as we
should expect, for random groups we fail to get good
clusters at all and have many overlaps).  However, testing
the projection on new non-words fails to classify them
properly (even when the network itself does).  To define the
projection more accurately we clearly need more data
points, particularly for the borderline region between the
two groups.  To this end we generated a set of 14766 words

and non-words of the form  ‘C1 V C2’   and  ‘C1 V C2 e’
where C1 was one of a set of 58 initial consonant clusters, V
was one of the set {i, ia, ie, y} and C2 was one of a set of 58
final consonant clusters.  The CDA gave us a projection
with B/S = 0.83, but there was a large overlap between the
two groups: maxi = -0.15, mini = -0.38, maxI = -0.23, minI
= -0.46 with  2454 /I/ words greater than mini and 3828 /i/
words less than maxI.

It is clear that our CDA is not  giving us a good
representation of the true internal representation.  When the
network learns, it certainly maximizes the between group
distances  mini - maxI, but it has no need to minimize the
within group dispersions.  A simple iterative gradient
descent procedure was employed to adjust the projection
vector so that it correctly classified all 14766 data points –
this gave B/S = 0.73.  Unfortunately this was still not good
enough.  For a good representation, we would expect the
borderline cases in the projections to correspond to
borderline output phonemes - in fact, the correlation was
very poor.  Moreover, the same iterative procedure even
managed to find a projection vector that could classify the
set of training data points into our assigned random groups
(B/S = 0.49).

Output Weight Projections

Actually, for our simple one hidden layer architecture, it is
easy to make the projections correlate with the outputs:  We
just use the projections the network itself has learnt –
namely the output weights.  If we project the hidden unit
activations using the output weights wo(h,p) and redefine
the zero points using the output thresholds θo(p), our
projection is then simply the output before passing through
the sigmoid.  We are guaranteed correlation.  We thus have
a suitable projection vector for each phoneme and these 38
vectors turn out to be nearly orthogonal (mean angle 84°,
s.d. 5°).  These can be viewed in pairs to examine the
relation-ships between the clusters, or the above techniques
may be used to study any interesting sub-spaces of this 38
dimensional space (e.g. the four dimensional /i/, /I/, /e/, /E/
subspace may be studied to investigate the various
pronunciations of ‘ie’).  Figure 3 shows the resultant
discrimination for our /I/ and /i/ phonemes.  Projection on to
the /i/ – /I/ diagonal gives us B/S = 0.72.  On this graph,
points corresponding to other phonemes would appear in the
bottom left quadrant.  Each point has a positive projection
onto the line in hidden unit space corresponding to that
phoneme and a negative projection onto the lines
corresponding to all the other phonemes.  Plotting
trajectories on such graphs may help us understand both
developmental effects (e.g. developmental dyslexia) and
how the network performs after damage.

Learning Trajectories

With small random initial weights, all points start near
A(p)  =  1/2  ∑h wo(h,p) –  θo(p)  and step towards the
appropriate quadrant.  There are several effects that
determine the final position of each word presentation.
First, as is clear from our HCA and MDS plots, similar
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words will tend to follow similar trajectories and end up in
similar regions of hidden unit space.  High frequency words
of all types will tend to have had time to get well into the
right quadrant.  The positions for the lower frequency words
will be more variable.  Words containing no ambiguity will
head directly to the correct quadrants.  Ambiguous
phonemes in exception words and closely related regular
words (often referred to as regular inconsistent words), will
be pulled towards two (or more) different quadrants with
strengths proportional to their relative frequencies.
Although the network eventually learns to use the context
information to resolve these ambiguities, these points will
still be the last to cross into the right segments and be the
ones left closest to the axes.  Strange words (e.g. ‘sieve’),
that have very rare spelling patterns, may also be left near
the axes depending on their word frequency.

It has been argued that there should be a correlation
between network output error scores and naming latencies
in humans (Seidenberg & McClelland, 1989).  Thus, since
the closeness of each point to the axes is a measure of the
output error score we can read off from our graphs the

model’s predictions for naming latency experiments: High
frequency words will not show a type effect, low frequency
exception words will be slower than regular inconsistent
words which will be slower than consistent regular words
and strange words will also have an increased latency effect.
These predictions turn out to be fairly accurate, (for a
detailed discussion see Bullinaria, 1994).

Damage Trajectories

The main reason for wanting to investigate the internal
representations was to gain insight into how various forms
of acquired dyslexia may occur in the model.  Connectionist
models that can deal with regular and exception words in a
single system have cast doubt on the traditional dual route
models of reading with their separate phonemic and
semantic routes.  However, a minimum requirement for
them to replace the dual route model completely is for them
to be able to exhibit both surface dyslexia (lost exceptions)
and phonological dyslexia (lost non-words) when damaged
appropriately (e.g. Coltheart et al., 1992).  We will consider
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six forms of damage and examine the kinds of output errors
they produce (see Bullinaria, 1994, for more details).  In
each case the degree of damage is increased from zero to a
level where the network fails to produce any correct outputs
at all.  Patients with varying degrees of dyslexia will
correspond to particular intermediate stages.

1.  Weight Scaling.  The simplest form of damage we can
inflict is to scale all the weights and thresholds by a constant
scale factor  0 < α < 1.  The effect of decreasing α  is to
flatten all the sigmoids and, since the winning output
phoneme is independent of the flatness of the output
sigmoids, all the effect can be seen at the hidden units.  As
the hidden unit sigmoids are flattened, all the hidden unit
activations tend to 0.5 and all the projections head back to
the A(p) defined above.  It turns out that all the A(p) are
large and negative (mean -50.3, s.d. 10.2) so all the points
drift more or less parallel to the bottom left diagonal.  The
flow is fairly laminar, so the first points to cross the
phoneme borders tend to be those that started off nearest to
the borders.  Thus the errors are predominantly on low
frequency exceptions rather than regular words and the
errors for small amounts of damage tend to be
regularisations.  This is precisely the pattern of errors
commonly found in surface dyslexics.

2. Weight Reduction.  Reducing each weight by constant
amounts also causes each point to head for A(p).  The flow
is less laminar than with scaling, and the output layer also
gets affected, but there is still a strong tendency for the
borderline cases to cross over first.  Again we get symptoms
similar to surface dyslexia.

3.  Adding Noise.  We can consider adding Gaussian
noise to all the weights.  In the extreme limit all the weights
become random, the hidden unit activations tend to 0.5 and
again each point tends towards A(p).  The random walk we
produce by adding more and more noise is not laminar but
on average more borderline points have crossed over than
others, so again we model surface dyslexia.

4.  Removing Connections.  As connections are removed
at random, the hidden unit activations will tend towards the
sigmoids of the thresholds.  In these networks we find the
hidden unit thresholds are predominantly negative (mean -
1.3, s.d. 0.7) so most of the activations end up in the range
~0.12 to ~0.38.  The points in hidden unit space thus end up
scattered around ~A(p)/2.  Again the flow is into the bottom
left quadrant and again the random walk will lead to surface
dyslexic effects.

5.  Removing Hidden Units.  As the hidden units are
removed, the projections tend towards the output thresholds
(mean 0.9, s.d. 1.4).  For large numbers of hidden units we
can expect a reasonably ordered drift with the borderline
cases crossing first, otherwise we get a random walk with
similar effects.  We thus have more surface dyslexia.

6. Weight Clipping.  To show that damage can occur
without resulting in surface dyslexia we consider weight
clipping, i.e. imposing a maximum value that the weights
may take.  The effect of clipping depends crucially on the
input units activated and varies radically between different
words and phonemes.  The flow in hidden unit space,
although again towards A(p), is extremely non-uniform and
words that begin nearest the borderlines are not necessarily

the ones that cross first.  Consequently we get no rule/
exception effect.

Discussion

We have seen that using output weight projections is the
best way to view the internal representations of our reading
model and that several other traditional techniques (such as
HCA, PCA, MDS and CDA) cannot be reliably used.
Similar conclusions can be expected even if we replace the
moving window system by a more psychologically plausible
system of recurrent connections (e.g. Jordan, 1986).  We can
see how the developmental and naming latency effects arise.
We can also understand how five different kinds of damage
all lead to symptoms similar to surface dyslexia.  Moreover,
it is reasonable to expect that, as we increase the number of
hidden units, the different kinds will better approximate to
the cleanest example of weight scaling.  However, there
appears to be no way for the model to exhibit acquired
phonological dyslexia - so the dual route model is not dead
yet!
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