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Abstract:  This paper is concerned with the large scale structure of

the human brain, how that relates to human behaviour, and how

certain types of modularity could have emerged through evolution as a

result of a combination of fitness advantages and neurophysiological

constraints.  It is argued that computational modelling involving

evolutionary neural network simulations is the best way to explore

such issues, and a series of simulation results are presented and

discussed.  The incorporation of known neurophysiological constraints

into the models is seen to be of crucial importance.

Introduction

Cognitive neuropsychology and fMRI studies have provided a great deal of information

about large scale brain structure.  Numerous neuropsychological studies of brain damaged

patients have examined patterns of deficits and observed double dissociations (Teuber, 1955)

that have been taken to provide evidence of modularity (Shallice, 1988).  More recently, the

modular structures inferred in that way have been further refined by fMRI studies (e.g.,

Huettel, Song, & McCarthy, 2004; Binder, et al., 2005), and many large scale “modules” are

now thought to consist of collections of lower level modules, some of which are actually used

more widely (e.g., Duncan & Owen, 2000; Duncan, 2001; Bookheimer, 2002; Marcus 2004).

Despite this large body of research, there remain many controversies concerning modules and

modularity.
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First, there is disagreement over how to define modules.  The hard-wired, innate and

informationally encapsulated modules of Fodor (1983), are, for example, rather different

from the modules in the cognitive models of Coltheart et al. (1993).  What Bullinaria (2005a)

would call a module, Plaut (1995) would claim is not a module.  The range of different

definitions has been discussed by Seok (2006), and it is becoming clear that it is quite

appropriate to use different definitions across different applications and different levels of

description (e.g., Geary & Huffman, 2002, Seok, 2006).

Next, there is disagreement whether particular data implies modularity or not.  For

example, doubt has been cast on the inference of modularity from double dissociation (e.g.,

Dunn & Kirsner, 1988; Van Orden, Pennington & Stone, 2001; Bullinaria, 2005a; Plunkett &

Bandelow, 2006), while other earlier claims have been shown to be mere artifacts of the

models involved (Bullinaria & Chater, 1995).

Finally, even when it is agreed that certain types of modularity exist, there remains

disagreement over the extent to which it is innate rather than learned during the individual’s

lifetime, and what cost-benefit trade-offs affect that distinction (e.g., O’Leary, 1989; Elman

et al., 1996; Jacobs, 1999; Geary & Huffman, 2002).  It is known that the costs of learning

can drive the evolution of behaviours which reduce that cost, and eventually result in the

learned behaviours being assimilated into the genotype - a process often referred to as the

Baldwin Effect (Baldwin, 1896; Bullinaria, 2003).  It may well be that modular processing is

first learned and only later becomes assimilated, or partially assimilated, into the genotype by

such a process.  On the other hand, if the tasks to be performed change too quickly for

evolution to track them, or if the necessary neural structures are too complex for easy genetic

encoding, then the need to learn them will persist.

One promising approach for making progress on the issue of brain modularity, while

avoiding much of the existing controversy, is to consider from a theoretical point of view

what are the possible advantages and disadvantages of modularity.  This may then inform

why and how and when it may have emerged in brains as a result of evolution.  A reliable

approach for testing such ideas is to build computational (neural network) models that

perform simplified behavioural tasks, and study the various trade-offs inherent in them.  Such
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models can be built “by hand”, but simulating the evolution of such systems is often a more

productive approach (Bullinaria, 2005b).  Natural selection will presumably have resulted in

the most advantageous structures for biological systems, and what emerges from the

evolutionary models can be compared with what is believed to be known about real brains.

Of course, the evolution of brains is constrained by various biological practicalities (Allman,

1998; Striedter, 2005), and realistic models need to reflect this.  Interestingly, evolutionary

simulation results show that imposing known physical/neurophysiological constraints on the

models can have a drastic effect on what emerges from them.  Moreover, such models can

also begin to explore the interaction of learning and evolution, and thus explicitly address the

nature/nurture debate with regard to brain structures.

The remainder of this paper is structured as follows:  In the next section, the main

advantages of neural modularity are reviewed.  Then an approach is described for simulating

the evolution of neural networks that must carry out pairs of simple tasks, and it is shown

how this can be applied to studying the evolution of modularity in such systems, with

particular reference to the accommodation of known neurophysiological constraints on the

emergent structures.  Empirical results are presented from a series of computational

experiments that are designed to explore the circumstances under which modularity will

emerge.  The paper ends with some discussion and conclusions.

Advantages of Modularity

The literature already suggests numerous (overlapping) reasons while modularity may be

advantageous for information processing systems such as brains.  In fact, it can be regarded

as a general design principle for both vertebrates and invertebrates (e.g., Leise, 1990).

Perhaps the most obvious advantage of modularity corresponds to the familiar idea of

breaking a problem into identifiable sub-tasks and making effective use of common

processing sub-systems across multiple problems (e.g., Marcus, 2004; Reisinger, Stanley &

Miikkulainen, 2004; Kashtan & Alon, 2005).  This is certainly standard practice when

writing complex computer programs, and Chang (2002) has presented a specific cognitive

model in which modularity is shown to allow improved generalization in complex multi-
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component language processing tasks.  In fact, numerous different types of modular neural

networks and their associated successful applications were reviewed some time ago by Caelli,

Guan & Wen (1999).  Such forms of modularity might have evolved in brains specifically to

deal with particular existing tasks.  It is also possible that new ways were discovered to use

existing modules that gave individuals abilities they did not have before, and that these

provided such an evolutionary advantage that they were quickly adopted into the whole

population.  In fact, it has been argued that modularity will prove particularly advantageous

when adaptation to changing environments is required (e.g., Lipson, Pollack & Suh, 2002;

Kashtan & Alon, 2005), especially since the opportunity to employ useful modules from a

rich existing source will invariably be more efficient than generating a new ability from

scratch.  That modularity can act to improve robustness and evolvability is certainly not a

new idea (e.g., Wagner, 1996).

Another way of thinking about brain modularity is in terms of low level neural processes.

It seems intuitively obvious that attempting to carry out two distinct tasks using the same set

of neurons and connections will be less efficient than having separate modules for the two

tasks.  This intuition was explored in a series of simple neural network simulations by

Rueckl, Cave, & Kosslyn (1989), in which standard Multi-Layer Perceptron neural networks

were trained using gradient descent to perform simplified visual object recognition.  This

involved carrying out separate “what” and “where” classification tasks on images presented

as a 5×5 input grid, as shown in Figure 1.  They found that disruptive interference between

connection weight updates for the two tasks did result in poorer learning performance for a

single network compared to a network with separate modules (blocks of hidden units) for the

two tasks.  The problem with such a simulation approach, however, is that the learning

algorithms used were far from biologically plausible, and it is possible that brains have

evolved better learning algorithms that do not suffer such disruptive interference.  In fact, it

was later shown that a slightly different learning algorithm (equally biologically implausible)

did perform significantly better, did not suffer such disruptive interference, and performed

better when the neural architecture was non-modular (Bullinaria, 2001).  This naturally cast

doubt on the whole idea that low level disruptive interference was relevant for modularity.
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In an attempt to clarify this matter, an extensive follow-up study was carried out to

explore further the trade-off between minimizing interference and restricting the allowed

neural architecture (Bullinaria, 2007b).  First, by using simulated evolution to optimize the

neural architecture for various fixed gradient descent learning algorithms, for the same

simplified what-where task studied by Rueckl et al. (1989), it was confirmed that learning

algorithms prone to significant learning interference between independent tasks tended to

lead to modular architectures, whereas learning algorithms that did not suffer such

interference led to non-modular architectures emerging.  Then, if the learning algorithm was

allowed to evolve alongside the architecture, the learning algorithm least prone to cross-task

interference consistently emerged, along with non-modular architectures, and it was shown

that this set-up did indeed provide the best performance on the chosen tasks.

The problem remaining was that the simplified what-where learning task, used in

virtually all the earlier studies, was far removed from the kind of tasks that are faced by real

biological individuals.  Rather than learning a small set of input-output mappings by repeated

exposure to them, they typically experience steady streams of input patterns drawn from

continuous distributions, and they need to learn classification boundaries that allow them to

generalize in order to respond correctly to inputs they have never seen before.  To explore

more realistic learning scenarios of this type, a series of artificial data sets were generated

based on various decision boundaries in a two dimensional input space normalized to a unit

square.  Some examples are shown in Figure 2.  Such inputs might correspond to observable

features of other animals (shapes, sizes, etc.), and the output classes could represent

important properties of them (dangerous, edible, etc.).  The neural networks experience a

stream of random data points from the input space, and their fitness corresponds to how well

they perform the right classifications before learning from that experience.  Evolving the

neural network learning algorithms to perform well on such generalization tasks invariably

led to the better (less interference prone) learning algorithm emerging, but the associated

architectures were now more variable (Bullinaria, 2007b).  There was a trade-off between

leaving the learning algorithm more freedom to use all the available network connections,

versus minimizing the task interference by placing restrictions on how the connections were
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used.  Whether that trade-off favoured modularity or non-modularity proved to be rather task

dependent, affected by numerous factors, such as the number of classes that need to be

learned, the complexity of the various classification boundaries, and the relative difficulties

of the two tasks.  For example, Task Pair A in Figure 2 leads to non-modular architectures,

while Task Pair B usually results in modular architectures.

It seemed then that the emergence of modularity depended both on the power of the

learning algorithm and on the properties of the tasks, but the simulations did provide an

explanation of why low level neural modules should evolve.  The third factor explored by

Bullinaria (2007b), after the learning algorithm and task type, related to the fact that there are

numerous neurophysiological constraints placed upon biological brains that were absent in

the previous models.  The remainder of this paper will describe the approach that was used to

investigate these factors, and expand upon the analysis and discussion of what emerged from

those simulations.

Simulating the Evolution of Modularity

The idea of applying simulated evolution by natural selection to neural networks is now well

established (e.g., Yao, 1999; Cantû-Paz & Kamath, 2005).  In principle, all aspects of the

neural networks can be evolved (the architecture, the properties of the neurons, the

connection weights, the learning algorithm, the data preprocessing, and so on), but for

modelling brains it is most natural to have an innate learning algorithm to adjust the

connection weights during the individual’s lifetime, rather than having them evolved (Elman,

et al., 1996).  The evolution will generate appropriate neural architectures, learning

algorithms, and initial weight distributions, that allow the learning to take place most

effectively.  There are still many different ways this can be done, as discussed by Bullinaria

(2007a), all involving a population of neural networks, each specified by an innate genotype

that represents the various evolvable parameters.  However, the key results concerning

modularity appear to be quite robust with respect to the details of the evolutionary process, as

demonstrated by the identical outcomes from the generational approach of Bullinaria (2007b)

in which the populations are simulated one generation at a time, and the more biologically
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inspired approach of Bullinaria (2001) involving populations of individuals of different ages

with competition, procreation and deaths each simulated year.  Since it seems not to be

crucial which evolutionary process is used, this paper will adopt the computationally simpler

approach of Bullinaria (2007b).

The neural networks used are standard Multi-Layer Perceptrons (MLPs) with a single

hidden layer, sigmoidal processing units, and trained using a gradient descent learning

algorithm with a cost function E that is an evolvable linear combination of Sum-Squared

Error (SSE) and Cross Entropy (CE).  This allows the evolutionary process to choose

between SSE as used in the study of Rueckl et al. (1989), and CE which is now known to be

more appropriate for classification tasks (Bishop, 1995).  The weight update equation for the

connection weight wij between hidden unit i with activation hi and output unit j with

activation oj and target tj  then takes the form

€ 

Δwij = −ηHO
∂E
∂wij

= ηHOhi(t j − o j ) (1−µ)(1− o j )o j  +  µ[ ]

in which µ ∈ [0, 1] specifies the learning cost function, with µ = 0  being pure SSE, and µ = 1

being pure CE.  The intermediate value of µ ~ 0.1 is equivalent to using SSE with a Sigmoid

Prime Offset, which was suggested by Fahlman (1988) as a way of resolving some of the

learning difficulties inherent in using pure SSE.  Note that it has already been established that

having independent evolvable learning rates ηL for the distinct network components L (input

to hidden weights IH, hidden unit biases HB, hidden to output weights HO, and output biases

OB) can lead to massive improvements in performance over a single learning rate across the

whole network (Bullinaria, 2005b).  Similarly, it proves advantageous to evolve different

uniform ranges [–lL, +uL] from which to draw the random initial weights for each component

L.  In total, then, the network initialization and learning process is specified by 13 evolvable

parameters (four ηL, four lL, four uL and µ), and the evolutionary process is expected to

optimize these to give the best possible learning performance on the given tasks.

In this context, modularity can be defined in terms of the pattern of connectivity in the

network, ranging from fully modular with separate sets of hidden units for each task, to fully

distributed with all hidden units used for all tasks.  For two tasks, this can conveniently be
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parameterized as shown in Figure 3, with the total number of hidden units Nhid partitioned

into Nhid1 that only participate in task 1, Nhid2 that only participate in task 2, and Nhid12

that participate in both.  If Nhid is fixed, that leaves two parameters which need to be evolved

to specify the neural architecture, in addition to the 13 learning parameters.

Having specified each neural network by its 15 innate parameters, a fitness measure for

that network must be determined, to which the simulated natural selection process can be

applied.  For current purposes, fitness can be conveniently measured in terms of the number

of training epochs required to reach the first full epoch of perfect performance (Bullinaria,

2007a,b).  For the what-where task (of Figure 1), an epoch corresponds to the full set of 81

training items, and performance is measured on that training set.  For the online

generalization tasks (of Figure 2), an epoch is defined as a block of 400 training items and

performance is measured on those items before training on them.  In both cases, the random

sequence of training patterns and online learning will introduce a stochastic element into the

fitness measurement.  This will combine with the various other sources of randomness (such

as the choice of initial populations, the selection of mates for reproduction, the crossover and

mutation processes, and the initial weights of each new individual) to give a certain

variability across runs, as will be seen in the simulation results plotted later.

Each simulated evolution run starts with a population of 100 networks with randomly

allocated innate parameters.  The learning and initial weight parameters are taken from

ranges that span those values generally used in hand-crafted networks, namely [0, 4], and the

learning algorithm and architecture parameters are taken from their full valid ranges.   Each

network starts with random weights drawn from its innately specified ranges, and trains until

it reaches its first epoch of perfect performance, which determines its fitness.  The next

generation is then made up of the fittest half of the population, plus their children.  These

children inherit innate parameters taken randomly from the ranges spanned by their two

parents (representing crossover), with random adjustments applied from a Gaussian

distribution (representing mutation).  The whole new generation is then initialized and the

learning and selection process repeated.  Over many generations the innate parameters are

optimized and the individual performances improve (Bullinaria, 2007a,b).
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As noted above, the neural architectures that emerge from simulated evolution of this

type depend on the pair of tasks that need to be performed (Bullinaria, 2007b).  The aim of

this paper is to consider further how known neurophysiological constraints will affect what

evolves.  There are two obvious factors that need to be considered:  First, the fact that real

brain sizes are constrained by numerous factors such as growth costs, energy/oxygen

consumption, heat dissipation, and such like.  Second, that space and other requirements

preclude full connectivity within the brain.  The next two sections present results from a

series of simulations that explore these issues.

The Effect of Brain Size

In the artificial neural networks studied here, it is the number of hidden units that corresponds

to brain, or brain region, size.  If all the learning parameters are optimized, the more hidden

units employed, the fewer epochs of training are generally required.  However, most

simulations have the hidden units processed serially on conventional computers, rather than

in parallel as in real brains, so it usually works out more computationally efficient to keep

their numbers as low as possible.  The relevant lower bound on the number of hidden units

will depend mainly on the complexity of the task at hand.  Brains have rather different

processing overheads, with their sizes constrained by various physical factors, such as growth

costs, energy/oxygen consumption, heat dissipation, and such like.  The various “design

problems” that are encountered as brains get bigger or smaller have been discussed by

Kaas (2000), and it is not surprising that brain sizes should vary so much across species when

the range of demands placed on them by different animals and environments are taken into

account.  Striedter (2005, ch. 4 & 5) provides a good review of evolutionary changes in the

sizes of brains and brain regions.

The problem that faces brain modelers here is the enormous difficulty in reliably

matching the scales of the simplified neurons, representations, learning algorithms, tasks, and

so on, in the models against the corresponding components found in real brains.  What can,

and should, be done, however, is to run the models many times, with a wide range of

numbers of hidden units, to determine how the precise numbers affect the results.   In fact,
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doing this in previous neuropsychological modelling studies has revealed serious modelling

artifacts, with neural networks behaving rather differently when they have barely enough

hidden units to carry out the given tasks, compared to when they have brain-like magnitudes

of resources (e.g., Bullinaria & Chater, 1995; Bullinaria, 2005a).  Moreover, it has also been

suggested that restrictions on the number of available neurons can lead to advantages for

modularity for representing complex high dimensional spaces (Ballard, 1986), and that is

obviously of direct relevance to the current study.

The way to explore this issue is clearly to run the simulations described in the previous

section with a wide range of different numbers of hidden units.  Figure 4 shows the results

obtained for the What-Where problem, with Task 1 being What and Task 2 being Where.  In

the top-left graph it is seen that the more efficient CE learning algorithm emerges across the

full range of values.  However, the evolved learning rates do vary considerably with the

number of hidden units, as seen in the top-right graph.  This confirms the importance of

allowing the learning rates for the various network components to vary independently, and of

evolving them rather than attempting to set them by hand.  The bottom-left graph shows that

the evolved architectures remain totally non-modular from near the minimal network size

required to perform the given task (9 hidden units) right up to over a hundred times that size

(1000 units).  Finally, the average evolved network fitness (inverse number of training

epochs) is seen in the bottom-right graph to increase approximately logarithmically with the

number of hidden units.  This is why the total number of hidden units itself has not been

allowed to evolve in the simulations, because if it were, it would just keep on increasing to

whatever limit was imposed on it.  From a practical point of view, this would slow down the

simulations unnecessarily (in real time on a non-parallel processor) because of the increased

computations required, rather than having the process settle down as the optimal

configuration emerges.

For the two generalization tasks of Figure 2, the corresponding dependences of the

evolved network architectures on the number of hidden units are shown in Figure 5.  The

results here are much noisier than for the What-Where task, particularly for the very small

networks.  As noted before, Task Pair A leads to non-modular architectures evolving, and
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there is broad independence of the total number of hidden units.  For Task Pair B, modular

architectures evolve reliably for large numbers of hidden units (200 or more), but for smaller

numbers there is an increasing tendency for varying degrees of non-modularity to occur.

It is possible to check the quality of the evolved architectures by generating contour

plots of average fitness as a function of architecture, using the evolved learning parameters

(Bullinaria, 2001).  Figure 6 shows such plots for Task Pairs A and B for 18 hidden units in

total.  The apex of each triangle corresponds to a fully distributed architecture, with Nhid12 ∼

Nhid, while the base represents full modularity, with Nhid12 ∼ 0.  The contours represent

epochs of training, running from the lowest value up to 1.3 times that lowest value, with

darker shading indicating higher fitness.  Even though the evolutionary runs result in variable

results for such low numbers of hidden units, these plots show clear non-modularity for Task

Pair A and clear modularity for Task Pair B, as is found in the evolutionary runs for higher

numbers of hidden units.  As has already been observed in other studies (e.g., Bullinaria &

Chater, 1995; Bullinaria, 2005a), to achieve reliable results it is best to avoid using networks

that have close to the minimal number of hidden units required to perform the given tasks.

The fact that in each case, for reasonably large networks, the emergent architectures are

independent of network size means that it is possible to set the number of hidden units at

some convenient value and not be too concerned that there remains considerable uncertainty

in how exactly a network size maps onto a real brain region size.

The Effect of Neural Connectivity Levels

An important factor related to the size of the brain, or brain region, is that of the neural

connectivity levels within in it.  As the number of neurons grows, so does the number of

potential connections between them, but those connections would take up valuable space in

the brain, corresponding to the volume that would need to be occupied by workable axons

and dendrites.  Moreover, the longer range connections required to fully connect large brains

would also reduce the speed of neural computation.  Beyond a certain size, full connectivity

becomes an inefficient use of resources, as Ringo (1991) has demonstrated with an explicit

model.  Such biological factors and their consequences for brain structure have also been
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discussed in some detail by Stevens (1989), Kaas (2000), Changizi (2001) and Karbowski

(2003), with the general conclusion that the degree of connectedness should fall as the brain

size increases.  The ways by which evolution might have optimized neural circuits in the light

of these issues (i.e. to minimize conduction delays, signal attenuation, connection volumes,

and so on) has been considered by Chklovskii et al. (2002), and they concluded that

approximately 60% of the space should be taken up by the wiring (i.e. axons and dendrites),

which is close to the proportion actually found.  It is clear that the issue of neural

connectivity imposes important constraints on real brain structures, and should therefore be

taken into account in any reliable models of their emergence.

The most obvious way to minimize the volume of connections and increase the rate of

information flow would be to keep the connections as short as possible.  Jacobs & Jordan

(1992) considered how such a bias towards short connections in neural network models

would affect the neural architecture, and found that it led to a tendency to decompose tasks

into sub-tasks, which is clearly of direct relevance to the issue of modularity.  Similar

architecture issues were studied in the computational embryogeny approach of Bowers &

Bullinaria (2005) in which processes were evolved that allowed neurons to grow from stem

cells to connect up input and output neurons and learn to perform simple mappings between

them.  The problem with such models is that there is always a danger of identifying factors as

physical constraints when they are actually unconstrained physical solutions to other

problems, and this could introduce a bias into what the models subsequently tell us.  For

example, it could be that short connections emerged as the best way to implement modularity

that has evolved because of its computational advantages, rather than as a consequence of the

physical space taken up by the connections, in which case short connections should not be

built into models as a constraint on what can evolve.

The safest way to proceed is to assume nothing about the physical brain structures other

than the fact that full neural connectivity is not possible.  The idea is to see what architectural

changes will emerge simply by restricting the proportion of connections, without regard to

any physical properties like the neuron locations and connection lengths.  The natural

assumption is that, for any constrained level of connectivity, evolution will result in the
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various physical costs being minimized by a suitable neuronal layout.  Various aspects of this

assumption have already been studied in some detail:  Mitchison (1991) considered how

different branching patterns affect the minimization of cortical wiring.  Cherniak (1995)

looked at neural component placement with a similar aim.  Zhang & Sejnowski (2000)

developed models that explained the empirical universal scaling law between gray and white

matter.  Chklovskii (2004) argued that under certain biologically plausible constraints the

optimal neuronal layout problem has an exact solution that is in broad agreement with the

layouts found in real brains.  Striedter (2005, ch. 7) provides a good overview of the current

beliefs concerning the evolution of neuronal connectivity.

It is reasonably straightforward to extend the evolutionary neural network approach

described above to test the effect of restricted neural connectivity levels.  The only extra

feature needed is a restriction on the degree of connectivity between layers to some fraction f

of full connectivity, where full connectivity means that each node of each layer is connected

to each node of the next layer.  One way this reduced connectivity can be achieved is by

randomly removing a fraction 1–f of connections from the fully connected network.  Within

the block structure of Figure 3, full connectivity means Nhid12 = Nhid  and Nhid1 = Nhid2 =

0, where Nhid is the total number of hidden units.  Here, the total connectivity levels can also

be reduced more systematically by increasing the module sizes Nhid1 and/or Nhid2 at the

expense of Nhid12, or by reducing the total number of connected neurons Nhid1 + Nhid2 +

Nhid12 below the maximum allowed number Nhid.  The evolutionary process will determine

the best way to reduce the connectivity level, by being free to adjust the innate degree of

connectivity fHO between the blocks of hidden and output units (achieved by randomly

removing a fraction 1–fHO of allowed connections) as well as the existing architecture

parameters Nhid1, Nhid2 and Nhid12.  The total proportion of connectivity between the

hidden and output layers is then easily calculated to be

€ 

f =
Nhid1+ Nhid12( ).Nout1+ Nhid2 + Nhid12( ).Nout2

Nhid. Nout1+ Nout2( )
f HO

The idea is to run a number of simulations to explore how the outcomes vary for different
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values of f.  In each simulation, f is set to be a particular fixed value, and the architecture

parameters are allowed to evolve as before, but now the equation needs to be inverted to

compute the value of fHO that gives the right total connectivity level f.

The results of doing this for the What-Where task with 72 hidden units are shown in

Figure 7.  The learning algorithm parameter µ and the learning rates ηL remain fairly steady

as the level of connectivity is reduced, at least until around f ~ 0.25 where there remain so

few connections left that the network is unable to perform the task reliably.  The fitness,

measured as the inverse of the number of epochs of training required, falls steadily as the

connectivity is reduced.  The interesting discovery is that the number of hidden units shared

by both output tasks, Nhid12, falls almost linearly with f until it reaches one half, when it

stays close to zero for all lower levels of connectivity.  Modules emerge for each of the two

output tasks with their relative sizes in proportion to the difficulty of the tasks, with a slight

floor effect as the connectivity level gets close to the minimum required for the tasks.  That

smaller modules are needed for the linearly separable Where task, compared to the non-

linearly separable What task, was found in the earlier studies too (Rueckl et al., 1989;

Bullinaria, 2001).  The minimum workable connectivity level can be decreased by increasing

the total number of hidden units, but modularity still emerges as the preferred architecture for

all connectivity fractions below one half.  When connections need to be removed to achieve a

lower value of f, the choice is effectively between randomly removing them from anywhere,

versus systematically removing them from hidden units that contribute to both tasks to

increase the modularity, and the simulated evolution shows that increasing the modularity is

the better option.   Connectivity levels in human brains are certainly considerably below one

half, and even in much simpler organisms they are likely to be below that level (Chklovskii

et al., 2002).  It seems then, that a reason has been found why modularity should emerge in

simple neural structures performing multiple tasks.

Naturally, it would not be wise to base such a conclusion on one particular problem.  The

robustness of the result needs to be tested on other pairs of tasks.  Figure 8 shows the

corresponding results for the Generalization Task Pair A shown in Figure 2, for 200 hidden

units.  For full connectivity, a purely non-modular architecture evolves, as for the What-
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Where tasks, and the result of restricting the connectivity level follows a similar pattern.  The

learning parameters are less tightly constrained in this case, indicating that they have less

influence on the performance.  The magnitudes of the evolved learning rates are also rather

different for this task, as one might expect given the different numbers of input and output

units and the training data distributions, but they are again fairly steady across the range of

connectivity levels.  Most importantly, the degree of modularity again falls almost linearly

from full to half connectivity, and the architecture remains purely modular for all lower

connectivity levels.

It can be seen more clearly how the performance on this task depends on the network

architecture in the fitness versus architecture contour plots of Figure 9, generated in the same

way as those of Figure 6.  Even though the fitness levels are averaged over 500 individuals

each, the plots are still rather noisy, but the patterns are easy to see, and the evolutionary

pressure is clearly enough for the preferred architectures to emerge.  The top-left graph is for

the evolved networks with full connectivity, with the best performance clearly around the

fully non-modular region.  The top-right graph is for networks with a connectivity level of

f = 0.75, and the peak performance area has now shifted to the intermediate regions near the

centre of the triangle.  The bottom-left graph is for networks with a connectivity level of

f = 0.5, and the peak performance area is now clearly in the modular region.  As a consistency

check, the bottom-right graph shows the performance of the evolved f = 0.5 networks when

fHO is left unconstrained at 1 for all architectures.  In this case, even though all the other

network parameters have been optimized to deal with restricted connectivity, as soon as the

restriction to keep f at 0.5 for all values of Nhid12 is removed, the advantage of non-

modularity returns.  It seems that the increase of modularity as the connectivity level reduces

is a robust effect.

Finally, for completeness, it is worth checking how reduced connectivity levels affect

networks evolved to deal with task pairs for which modularity consistently emerges even

when full connectivity is possible.  Figure 10 shows such results for the Generalization Task

Pair B shown in Figure 2, for 200 hidden units.  Again the learning parameters are fairly

stable across connectivity levels and the fitness increases with connectivity.  In this case the
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architecture simply remains modular throughout.

Interestingly, below connectivity levels of 0.5, the networks evolved to perform the

generalization tasks employ a different connection reduction strategy to those for the What-

Where learning task.  Rather than removing random connections by reducing fHO, they instead

use the architecture parameters to reduce their usage of the available pool of hidden units by

having some of them not connected to any output units.  This is seen more clearly in Figure

11.  Given the small number of output units driven by each module hidden unit in these tasks,

this strategy makes good sense.  That the simulated evolution automatically determines such

sensible strategies, that may easily have been missed by human modelers, is another reason

why the evolutionary approach shows such good promise in this area.

Discussion and Conclusions

This paper has shown how simulations of the evolution of simple neural networks, that must

learn to perform pairs of simple tasks, can be used to explore the factors that might lead to the

emergence of modularity in brains.  It noted that particular attention needs to be paid to two

important high level physical constraints that affect real brains, namely the restrictions placed

on brain size and the associated levels of neural connectivity  However, to understand the

reasons for particular brain structures, it is always important to distinguish between the

physical properties that really do constrain those structures and the computations they

perform, and those physical properties that could potentially be different if the associated

advantages were sufficient to cause them to evolve.  For this reason, models across the

spectrum were studied, ranging from the kind of unconstrained systems often used when

building the best possible artificial systems, to those with levels of constraint approaching

those found in biological systems.

It is clear from the plots of fitness in Figures 4, 7, 8 and 10 that there is a fitness

advantage for larger networks and higher levels of connectivity.  However, as discussed

above, there are strong biological reasons which make that infeasible.  Once those biological

factors are incorporated into the models, modular architectures emerge automatically as the

best approach for dealing with those constraints.  This confirms empirically earlier



17

suggestions that this would happen (e.g., Kaas, 2000).

The tasks and neural networks that have been discussed in this paper are, of course, far

removed from the levels of complexity seen in the higher organisms alive today, but they

may be more directly relevant to the low level processing requirements of simpler organisms

at earlier stages of evolutionary history.  There remains a good deal of controversy in the

field of early nervous system evolution (e.g., Holland, 2003), but having demonstrated how

simple low level modules can emerge, it is reasonable to conjecture that evolution will find

ways of using them as building blocks for creating higher level modules, and eventually

whole brains as they exist today (e.g., Alon, 2003).  Certainly, the kinds of “distinct output

tasks” used in the simulations presented in this paper will almost certainly correspond to

separate components or sub-tasks of more complex higher level systems.  Exploring how the

prior existence of simple low level modules of the type considered here will facilitate (or not

facilitate) the emergence of more complex modules (with their higher level advantages)

would clearly be a fruitful area of future research.

Having established that modularity emerges as the result of restricted connectivity levels,

the next question to ask is how are those restricted connectivity levels actually implemented

in biological brains.  Chklovskii (2004) has considered the issue of optimal neuronal layout in

some detail.  Even highly modular architectures will still need long range connections

between modules.  It seems most probable that something like “small world” or scale free

networks (Watts & Strogatz, 1998) will prove to be the most efficient organizational

structure, as has been discussed by Sporns et al. (2000), Buzsáki, et al. (2004), and Sporns,

et al. (2004).  Moreover, it has been suggested that the trade-off between computational

requirements and physical constraints may be responsible for the diversity of interneurons in

the mammalian cortex (Chklovskii, et al., 2002; Buzsáki, et al., 2004).  Such neural

structures, of course, go way beyond the simple architecture of Figure 3, and more complex

neural representation schemes will be required to extend the evolutionary neural network

approach in that direction.

Perhaps the best way to make further progress in this area would be to allow increasingly

general neural structures to evolve.  Bowers & Bullinaria (2005) started looking at this by
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evolving systems that grew neural structures from stem cells, with connections growing along

chemical gradients.  Approaches such as this will obviously require significantly more than

the two evolvable parameters needed to specify the architecture in Figure 3, and that will

make the evolutionary process considerably more demanding, but it will allow an almost

unlimited range of neural structures to emerge.  It will also allow appropriate structures to

emerge in response to the training data, rather than being fixed innately, and this could begin

to address questions about what degree of modularity should be innate and how much should

be learned within a lifetime.  Taking the evolving neural network approach in this direction

will be difficult, but the results presented in this paper suggest that it could be an extremely

profitable way to make further progress in understanding brain structures.
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Figure 1:  The simplified What-Where training data studied by Ruekl et al. (1989) and most

subsequent studies.  There are nine distinct 3×3 images (What) that may appear in any of nine

positions (Where) in the 5×5 input grid.
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TASK PAIR A

TASK PAIR B

Figure 2:  Two representative pairs of classification generalization tasks based on a two

dimensional input space.  The upper pair (A) has one two-class task and one three-class task,

both with circular boundaries.  The lower pair (B) has two two-class tasks, one with circular

boundary and one with linear boundary.
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Figure 3:  The neural network architecture designed to study the evolution of modularity.

Rectangles represent sets of neurons and arrows represent full connectivity.  There is a

common set of input units, a set of output units for each task, and a set of hidden units

partitioned according to which output set the neurons connect to.

Outputs – Task 1

Inputs – Both Tasks

Nhid1 Nhid2Nhid12

Outputs – Task 2
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Figure 4:  Dependence of the evolved What-Where networks on their number of hidden units.

The learning cost function parameter µ (top-left), learning rates ηL (top-right), architecture

parameters (bottom-left), and average fitness (bottom-right).
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Figure 5:  Dependence of the evolved generalization task network architectures on their total

number of hidden units: Task Pair A (left) and Task Pair B (right).
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Figure 6: Contour plots of network learning performance as a function of architecture for 18

hidden units in total, with higher fitness shown darker.  Task Pair A (left) and Task Pair B

(right).
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Figure 7:  Dependence of the evolved What-Where networks on the fraction f of full neural

connectivity.  The learning cost function parameter µ (top-left), learning rates ηL (top-right),

architecture parameters (bottom-left), and average fitness (bottom-right).
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Figure 8:  Dependence of the evolved Generalization Task Pair A networks on the fraction f

of full neural connectivity. The learning cost function parameter µ (top-left), learning rates ηL

(top-right), architecture parameters (bottom-left), and average fitness (bottom-right).
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Figure 9:  Contour plots of network learning performance as a function of architecture, for

Task Pair A and 200 hidden units, with higher fitness shown darker.  The evolved full

connectivity networks (top-left), 0.75 connectivity networks (top-right), 0.5 connectivity

networks (bottom-left), and 0.5 connectivity networks without the connectivity level enforced

(bottom-right).
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Figure 10:  Dependence of the evolved Generalization Task Pair B networks on the fraction f

of full neural connectivity. The learning cost function parameter µ (top-left), learning rates ηL

(top-right), architecture parameters (bottom-left), and average fitness (bottom-right).
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Figure 11: Proportional usage of the available hidden units as the connectivity level is

restricted.  The evolved What-Where task networks (WW) are seen to behave rather

differently to those evolved for the Generalization Task Pairs (A and B).


