
1. Introduction

In recent years, increasingly sophisticated techniques
have become available for formulating control systems
and this is allowing these systems to become more and
more ‘intelligent’. Powerful optimization techniques are
already commonly used to adjust the parameters in
standard control models to satisfy the required
constraints such as limits on the acceptable response
times, overshoots, and so on. Often, however, the
system’s requirements are significantly more complex
than this. Consider a typical human control system. To
see objects clearly at different distances, our oculomotor
control system must produce appropriate eye rotations
(vergence) and focus changes (accommodation). These
responses are correlated and driven by a range of
different cues (blur, disparity, looming, parallax, texture,
etc.) that vary in accuracy, reliability and availability
across different viewing conditions. Transitions between
targets at different locations in the visual field need to be
as quick as possible whilst minimizing the overshoots
and oscillations that can arise from discontinuous
requirements and time delayed feedback. The system
must also deal with numerous age dependent factors,
such as the disparity cue not becoming available until
about four months of age, and the ability to
accommodate falling steadily between the end of
childhood and about sixty years of age. It also needs to
adapt on several timescales, initially to compensate for
maturational factors such as the growing inter-pupillary
distance, later to correct for eye damage (or the use of
new spectacles), and also to reduce the strain under
constant conditions such as repeated near work. To

program such a system would be a formidable task, yet
evolution has resulted in an oculomotor control system
that learns efficiently to organise itself to perform
appropriately. Many real-world engineering control
systems have analogous operating requirements of equal,
or greater, complexity [1]. It makes good sense to
explore human-like solutions for these systems, since
they may prove superior to the optimization techniques
currently in use.

Several engineering style control models based on
empirical human data already provide a good account of
the performance of the adult oculomotor control system
for unpredictable target sequences [2]. Neural network
models loosely based on the human brain have an
advantage over these systems in that, rather than being
set up by hand to simulate adult performance, they are
set up to learn to perform the given task as best they can
[3, 4]. Moreover, if we require that the adult system be
able to adapt, for example to deal better with changing
operating conditions or degradation in performance of
the plant, it is an important additional advantage to have
it stable with respect to learning at the outset of its
adaptation. Such neural models are refined by repeated
comparisons against human data of: (1) their pattern of
learning, (2) their final performance, and (3) their ability
to adapt. These comparisons all provide important clues
on how to set up our systems to learn most effectively.
Naturally, our artificial neural networks are vast over-
simplifications of the biological neural systems that are
found in the human brain, but nevertheless, these simple
models can account for a surprisingly wide range of
human abilities. Moreover, they are powerful
computational devices which can learn to perform

NEURAL NETWORK CONTROL SYSTEMS THAT LEARN TO PERFORM
APPROPRIATELY

JOHN A. BULLINARIA & PATRICIA M. RIDDELL
Department of Psychology, The University of Reading, Reading, RG6 6AL, UK

j.bullinaria@physics.org , p.m.riddell@reading.ac.uk

Setting up a neural network with a learning algorithm that determines how it can best operate is an efficient way
to formulate control systems for many engineering applications, and is often much more feasible than direct
programming. This paper examines three important aspects of this approach: the details of the cost function that
is used with the gradient descent learning algorithm, how the resulting system depends on the initial pre-learning
connection weights, and how the resulting system depends on the pattern of learning rates chosen for the different
components of the system. We explore these issues by explicit simulations of a toy model that is a simplified
abstraction of part of the human oculomotor control system. This allows us to compare our system with that
produced by human evolution and development. We can then go on to consider how we might improve on the
human system and apply what we have learnt to control systems that have no human analogue.

exceedingly well, and it would be foolish not to consider
their use in engineering applications. We can also go on
to explore how we might improve on the human system
for analogous engineering control systems, and carry
what we have learnt over to other control systems that
have no human analogue.

In principle, the engineering system building process
is straightforward when a corresponding human system
exists. The basic neural network architecture is given by
known physiology and/or the existing control models.
We know what the network is meant to be learning to do,
for example, minimizing blur and disparity in the case of
oculomotor control. So we ‘simply’ need to use some
form of gradient descent based connection weight
learning to minimize an appropriate cost function, and
then compare the resulting network performance with
empirical developmental and adult data.

In practice, determining some of the crucial details is
not so straightforward. The first problem we face is to
choose the cost function for learning. For oculomotor
control, some function of blur and disparity is a fairly
obvious error component, but making an appropriate
choice for the regularization (i.e. smoothing) component
is not so straightforward, and we will need to have a
convenient parameterization of the trade-off between
them. The second complication is the need to determine
the effect of using different starting points for the
learning process, as it is possible that a wrong choice
will lead to a far from optimal local minimum of the cost
function, or result in the system taking an unacceptably
long time to find any minimum at all [5]. A third,
related, question is the effect of choosing different
learning rates for the various system components, as a
bad choice here can have similar consequences to
picking a wrong starting point. The starting point and
learning rate differences may either be explicit features
of the model, or implicit in the choice of the model’s
parameterization. This paper explores the consequences
of these three design choices by explicit simulation of a
series of neural network control models that have been
appropriately simplified to retain the crucial features,

whilst freed of any application specific complications.
We shall see that our conclusions will be applicable to
neural network control systems more generally.

2. The Neural Network Model

The study to be presented in this paper is based on a toy
model derived from an abstraction of the human oculo-
motor control system. The control systems for vergence
and accommodation are actually of a very similar form
[2, 4, 6], so for clarity of analysis we shall concentrate
on a simplified version of the vergence system. Figure 1
shows the structure of what has become the traditional
engineering style linear control model of this system [2,
6, 7]. The system’s plant output is the vergence response
(i.e. the difference between the directions of the two
eyes) which gets fed back with a time lag to the disparity
sub-system which calculates the output error relative to
the system’s input (i.e. the appropriate vergence for the
visual target). This error signal is passed through
proportional and integral controllers with gains/strengths
VS and VF to activate the plant. A leaky integrator tonic
component of strength T V reduces the strain under
conditions of constant demand, and a bias signal of
strength BV maintains a convenient resting state.

The neural network modelling approach begins by
formulating a natural neural architecture of sufficient
generality that the existing traditional control systems
models can arise from it as a special case. This
guarantees that the neural system will be able to perform
at least as well as the existing models, though getting the
network to learn how to do this for itself will not
necessarily be an easy task. Figure 2 shows the simplest
natural neural network extension of the vergence model
of Figure 1. Each “neuron” and the plant in the network
model are leaky integrators with the same empirically
determined time constants τ as the traditional model.
From a physiological point of view, the “neurons”
represent the action of assemblies of real neurons, and
the plant is a good approximation to the human ocular
muscles [7]. The system processes information by

disparity plant

Negative Feedback

BV

 cues

VS
τPs + 1

VF

TV
τTs + 1

+ +

Figure 1: Traditional simplified linear control systems model of the human vergence system.

having activation flow between the components via the
weighted connections shown. The direct correspondence
with the equivalent engineering style control model is
easy to see. The first pair of fast and slow neurons
correspond to the proportional and integral components
of the standard phasic sub-system (τP = 5s), the slow
tonic and bias correspond to the standard tonic sub-
system (τΤ = 20s), and the plant corresponds to the usual
first-order control model plant (τΕ = 0.15s). In a
complete oculomotor control model, there are thought to
be additional cross-links to and from the accommodation
system, that connect between the phasic and tonic sub-
systems [2, 4, 6], but we shall ignore such complications
for the current study. The system’s plant output is the
vergence response which gets fed back with a time lag of
0.15s to the disparity sub-system which calculates the
output error signal that is fed through the network.
Obviously, in the real system, this feedback loop will be
external to the system, but for the purposes of simulation
we have a fully dynamical recurrent neural network.

The traditional control systems models are linear. If
our neurons are also linear over their operating ranges,
we can use the standard rules of matrix multiplication to
simplify our network to a single layer of learnable
weights. In other words, we can set four of the nine
connection parameters shown to convenient values
without loss of generality. We therefore normalise the
four weights VS = VF = FV = TV = 1, leaving just the
middle layer of weights and the bias to be learnt.
Comparing the network of Figure 2 with the traditional
model of Figure 1, reveals that exact correspondence is
achieved by setting the five weights SF = ST = FF = FT
= FV = 1. Some simple algebra then shows that we have
direct equivalence between our chosen neural network
parameterisation and the traditional control systems
models if our network’s remaining free parameters SF,
ST, FF, FT and BV satisfy ST.FF = SF.FT.

As noted above, an important feature of our neural
network systems is that, rather than setting their free
parameters by hand so that their performance matches

that of human adults, we allow them to learn the
parameter values that enable them to perform as best
they can. This learning is achieved by carrying out
gradient descent on an appropriate cost function. What
gets learnt can potentially depend on the learning
algorithm, the cost function, and the initial conditions.
In Section 3 we deal with the problem of choosing an
appropriate cost function. Then in Section 4 we look at
the effect of using different starting weights and different
learning rates in our models. In the human system there
will often also be various maturational factors, such as
the quality of the vergence cues changing with age, that
affect the learning process [4]. Clearly, if we can always
minimize the cost function to a unique global minimum,
such details of the learning algorithm, initial conditions
and maturational factors will not matter, but in practice
they tend to interact with each other, and we can end up
in different minima. In fact, one of the original reasons
for formulating these models was to understand the
causes of abnormal developmental trajectories in
children with a view to identifying precursors and
designing remedial actions. Naturally, there are
analogous considerations for engineering systems. This
is why we believe it is so important to investigate these
factors, and to explore the significance of the selection
of the cost function when compared with these other
choices that may potentially lead to even larger
variations in the learnt parameters.

A final consideration of crucial importance for
control systems is the question of stability and bounded
outputs. The stability of traditional linear systems is
usually analysed in terms of the locations of the poles in
the closed loop transfer function [1, Ch 9]. One major
advantage of neural network modelling, and Optimal
Control Design in general, is that optimizing a suitable
performance index will, under rather mild assumptions,
select system variables that will automatically guarantee
closed-loop stability [1, Ch 48]. In a sense, when given
appropriate training data and cost function, our neural
network systems will learn to be stable.

disparity

 slow
neuron

 fast
neuron

bias
slow
tonic

 fast
neuron

plant

Negative Feedback

SF
BV

FV

TV

FT

ST

FF

VS

VF
 cues

Figure 2: Simplified neural network model of the vergence system with learnable connection weights.

3. Choosing the Cost Function

The standard approach to neural network learning we
shall follow involves iteratively updating each free
parameter (i.e. connection weight) w to perform gradient
descent on some cost function E. We thus have the
weight update equation

∆w
E

w
 = − η ∂

∂

with learning rate η. Related algorithms, such as
learning with momentum or conjugate gradient learning,
are well known to be able to speed up the learning
process considerably, but for the present purposes we
can avoid these complications. A classic application is
the standard neural network regularization approach [8]
which attempts to recover a function f(x) from a set of
data points { (xi , yi) ∈ Rd × R} i

N
1= obtained by random

sampling with noise, by minimizing the cost function

E f f y fi
i

N

i[] (()) [] = − +
=
∑ x

1

2 λΦ .

This involves a parameterized trade-off between a sum-
squared error term that keeps f close to the data, and a
regularization term Φ[f] that enforces some form of
smoothness.

The problem of optimizing the performance of our
control model might appear to be rather different, but we
can actually formulate a similar solution. We have a
fully dynamical feedback system with training data
parameterized by the time t. The network outputs
(vergence responses) f(x(t)) are required to match the
inputs (vergence cues) x(t) as closely as possible given
the network architecture and the constraint that f(x(t)) be
suitably smooth despite the time lag in the feedback loop
and x(t) frequently being discontinuous. Again there is a

trade-off between error and smoothness components, so
it makes sense to re-use the above regularization cost
function with the summation over i replaced by an
integral over t,

E f f x t x t dt f[] ((()) () []= − +∫) 2 λΦ .

Naturally, we still have to specify the details of Φ[f]. In
this paper we shall consider three natural forms of the
regularization functional:

 a) Φ[]f = 0

 b) Φ[]
()

f
f t

t
dt

m

= ∫
∂

∂

 c) Φ[] ()f F dm= ∫ ω ω ω2 2 , where

F f t e dti t() ()ω ω= −∫ .
In practice, our simulations will involve performing
discrete approximations to these integrals over finite
ranges, so the simple mathematical relation between the
m = 2 case b and the m = 1 case c is broken. Clearly,
case a is identical to the λ = 0 limits of cases b and c, but
it is worthy of separate consideration since it reveals the
problem of output overshoots and oscillation and the
need for regularization in the first place. Case b attempts
to reduce these problems by attaching cost to the
velocity of the eyes’ movement as has been suggested
previously [4]. Case c attempts to deal with the output
oscillations more directly. Working with the Fourier
transform F(ω) and the power |F(ω)|2 at frequency ω,
allows us to penalize the high frequency components and
reduce the oscillations in that way [8, 9]. The best
values for the integer powers m, and the question of
whether the extra computation involved in case c can be

3210
9

10

11

12

Time (secs)

R
es

po
ns

e

3210

9

10

11

12

Time (secs)

R
es

po
ns

e

Figure 3: The neural network control system responses for (a) un-regularized and (b) regularized training.

justified by improvement in the obtained results, are two
of the main factors under investigation.

The trade-off between our chosen regularization and
the output error is parameterized by λ and will clearly
also depend on the error function that is used. For a
network with one real valued output f(t) the natural class
of error terms to consider is

 f x t x t dt
n

(()) ()−∫ .

Taking n = 1 gives the integral of the standard L1 norm
|f(x(t)) – x(t)|, and for n = 2 we have the traditional sum-
squared error term shown above. The remainder of this
Section presents explicit simulation results that explore
the consequences of the E[f] choices as a function of λ.
Then in the following Section we investigate the extent
to which their differences are significant compared with
those caused by other factors, in particular, differences in
the initial weights and learning rates.

Our investigation involved repeatedly training the

network to asymptote on random sequences of natural
vergence values, with the gradient descent weight update
equation being applied in an online fashion after every
80s sub-sequence of the training data. Each training run
was started from a set of small initial weights chosen
from a flat random distribution in the range [0, 0.02].
The learning rate was chosen to make the training as fast
as possible without allowing the random variations
between blocks of training data to generate large
fluctuations in the weights. The cost functions are rather
insensitive to the bias BV and consequently its value has
little effect on the discussion that follows. It does,
however, tend to learn to take on a value related to the
mean output level, and so, for convenience, we started
each training run with BV near that value (namely at 2.0)
and thus training had negligible effect on it.

To understand our simulation results we begin by
looking at the trained networks’ output responses.
Figure 3a shows the model’s response to a step change
of input when trained without regularization (case a).

1 01.1
0

1

2

3

ST

SF

FT

FF

Lambda

W
e

ig
h

t

1 01.1

0

1

2

3

Error cost

FT cost

Vel cost

Overshoot

Lambda

C
os

t

Figure 4: λ dependence of the weights and costs for an L1 error term and Velocity regularization.

1 01.1
0

1

2

3

ST

SF

FT

FF

Lambda

W
e

ig
h

t

1 01.1

0

1

2

3

Error cost

FT cost

Vel cost

Overshoot

Lambda

C
os

t

Figure 5: λ dependence of the weights and costs for an L1 error term and Fourier transform regularization.

There is considerable overshoot and oscillation, which is
not observed in humans. Such under-damped responses
are likely to be equally unacceptable in many other
control systems. Figure 3b shows the smoother and
more human-like response to the same input step that is
produced by an appropriately regularized model.

Determining the most appropriate regularization will
clearly require a systematic study. We do this by
comparing the network performance resulting from
training with each of the different cost functions
discussed above, across a wide range of trade-off
parameters λ. To ease the comparison between the
different regularization models, in each case we shall
plot the L1 (n = 1) error and both m = 1 regularization
costs, irrespective of the cost function actually used to
train the model. We shall also plot an overshoot
measure defined as the total response change (summed
over oscillations) in the direction opposite to the
standard step producing it.

Figure 4 shows the effect of λ on the final weights

and costs when the model is trained with the L1 error
term and simple velocity regularization (case b, n = 1,
m = 1). We see that, as expected, there is a clear trade-
off between error and over-shoot as we increase λ.
Figure 5 shows the equivalent plots for the L1 error term
with a simple Fourier transform regularization (case c,
n = 1, m = 1). In this case we have to suffer a much
larger error in order to remove the overshoot. Figure 6
shows what happens with a sum squared error term and
sum squared velocity regularization (case b, n = 2,
m = 2). The error required for zero overshoot is larger
again. Finally, Figure 7 shows that no better results are
obtained using the sum squared error term with simple
Fourier transform regularization (case c, n = 2, m = 1).
The remaining permutations and values of m and n are
found to perform even less well.

Taken together, Figures 4 to 7 show that, whilst an
increase in trade-off parameter λ for any cost function
results in the expected reduction in each of the velocity
cost, Fourier transform cost and overshoot at the expense

1 01.1
0

1

2

3

ST

SF

FT

FF

Lambda

W
e

ig
h

t

1 01.1

0

1

2

3

Error cost

FT cost

Vel cost

Overshoot

Lambda

C
os

t

Figure 6: λ dependence for the Sum squared error term and Squared velocity regularization.

1 01.1
0

1

2

3

ST

SF

FT

FF

Lambda

W
e

ig
h

t

1 01.1

0

1

2

3

Error cost

FT cost

Vel cost

Overshoot

Lambda

C
os

t

Figure 7: λ dependence for the Sum squared error term and Fourier transform regularization.

of increased error, there is considerable variation
between cases. Finding a convenient cost function that
results in responses with human-like smoothness is not
enough to justify a claim that we have found the unique
accurate model of human performance, nor that we have
found the best performing artificial system.

From an engineering systems building perspective,
there is more detailed information to be learnt from our
results. First, we can see the exact nature of the error
versus overshoot (or regularization cost) trade-off in
each case. It is good to see that it is the simplest case
(shown in Figure 4) that also gives the best overall
results. The choice of λ will clearly depend on the
details of the system. The human oculomotor control
system has evolved to allow a slight overshoot but no
oscillation. Other systems may view the trade-off
differently. A second important feature to note is that, as
λ increases, some of the weights become relatively
small, or even negative. This may make the learning
very slow or unstable depending on the learning rates we
use. In this case it may be a good idea to help out the
learning process by using different learning rates for the
different components, or by using a different pattern of
starting weights. The consequences of doing this are
something we needed to explore anyway.

4. Initial Weights and Learning Rates

Figures 4 to 7 reveal a recurring feature of the trained
models in all cost function cases, namely the tendency
for SF ~ FT to be several times ST ~ FF. This is very
different from the structure of the traditional control
systems models [2, 6] which, as we noted above, are
generally set up such that in our notation ST.FF = SF.FT.
For comparison, Figure 8 shows what happens when the
models of Figure 4 are trained from scratch under this
traditional model constraint. We get a radically different

pattern of final weights, yet the output response curves
and costs are hardly distinguishable. Moreover, if we
remove the constraint on the weights and continue the
training, we find that the weights are stable, suggesting
that we have at least two roughly equivalent cost
function minima widely separated in weight space.

This confirms our suspicion that the details of our
trained networks depended on their initial conditions [5].
We consequently carried out a systematic study of the
effect of starting the training with different initial
weights. There are clearly many combinations we had to
consider, and we shall present just one representative
example that will suffice to reveal the extent of this
effect. Figure 9 shows how the learnt weights (for the
L1 error and simple velocity regularization case with
λ = 2) change as we vary the initial value of the weight
SF whilst keeping the initial values of the other weights
ST, FT and FF near zero. We can now see that the results
from Figures 4 and 8 are just two points on a continuum
of stable solutions that are allowed by a trade-off of
contributions from the similar SF and FT pathways.

A related factor that will also affect the final weights
is the learning rates. There is no fundamental reason
why each weight should learn at the same rate. Actually,
in Laplace transform notation [1, Ch 6], there is a natural
ambiguity whether the neurons should be represented as

1

1

1

11τ
τ

ττs s s+ +
=

+
 or .

Clearly, the multiplying gains/weights can easily be
adjusted to compensate for the additional factor of τ. If
the gains/weights are fixed by hand this makes no
difference, but in our networks that learn by gradient
descent, the extra factor scales the weights and hence the
learning rates. We clearly need to check whether simple
alternative choices of parameterization like this can have

1 01.1
0

1

2

3

4

ST

SF

FT

FF

Lambda

W
e

ig
h

t

1 01.1
0

1

2

3

Error cost

FT cost

Vel cost

Overshoot

Lambda

C
os

t

Figure 8: λ dependence for the traditionally parameterised version of the network used for Figure 4.

a significant effect on the trained networks. In fact, we
need to check the effect of having different learning rates
more generally. Again there are many combinations we
had to consider, and we shall present just one
representative example to illustrate what can happen.
Figure 10 shows how the learnt weights (again for the L1
error and simple velocity regularization case with λ = 2)
change as we vary a scale factor multiplying only the
learning rate of the weight ST. Throughout, we start the
training from random near zero initial weights. We see
that a small scale factor results in a smaller final value of
the weight ST, and this has a big effect on the trade-off
between the weights SF and FT, but little effect on the
error or regularization costs.

Having discovered empirically that the initial weights
and learning rates do have a big effect on the final
network weights, it is natural to wish to understand in an
analytical fashion how this can happen, if only to within
a certain degree of approximation. In fact, in the
approximation that the neurons are purely linear, the fast
neurons are infinitely fast, all the leaky integrators are
simulated with no loss of accuracy, and the weights are
sufficiently stable despite the random online training
data, it is not too difficult to study the crucial part of our
networks’ operation analytically. In this case the
transfer function of the central portion of our network
can be written in Laplace transformed notation as

X s
s

SF
s

ST
s

FT
s

FF

P

P

P

P

T

T

T

T

()

. .

 . .1 + . .

 + . .

=
+ + +

+
+

τ
τ

τ
τ

τ
τ

τ
τ

1 1 1

1
1

1 1

where τP and τT are the time constants of the slow phasic
and tonic neurons. A little elementary algebra allows
this to be written in the simplified form

X s
a s b s c

s s
P T

()
. .

()()
 = + +

+ +

2

1 1τ τ

in which we have defined the constants

a FF

b FF FF FT SF

c FF SF FT ST

P T

P T P T P T

P T P T

=
= + + +
= + + +

. .

.

. . . .

τ τ
τ τ τ τ τ τ

τ τ τ τ

Clearly, if these take on the values that minimize the cost
function we can work backwards to determine the under-
specified weight values. This gives

FF
a

SF
a b c

ST

FT
a b c

ST

P T

P P

T P P

P T

T P

T T

T P T

P T

T P

=

= − + −
−

+
−

= − +
−

−
−

τ τ

τ τ
τ τ τ

τ τ
τ τ

τ τ
τ τ τ

τ τ
τ τ

.

. .

()

.

()

. .

().

.

()

2

2

2

2

If, for example, we allow ST to take any value, then the
other weights can compensate to restore the optimal
network performance. Figure 11 shows the pattern of
weights this gives for values of a, b and c determined
from the single empirical set of weights corresponding to
the λ = 2 case of Figure 4 (the same L1 error and
velocity regularization case used for Figures 9 and 10).
Figure 12 shows the actual pattern found in our
simulated networks by re-plotting Figures 9 and 10 with
the weight ST as the independent variable. We see that
our approximate analytical treatment does provide a
rather good account of our networks’ properties.

It is clear then, that empirically the initial weights
and learning rates do have a large effect on the learnt
weights, and that to a pretty good approximation the
distribution of final weights span a whole space of

86420- 2
-2

-1

0

1

2

3

4

5
ST

SF

FT

FF

Pre Training SF

W
e

ig
h

t

 Figure 9: Dependence on the starting value of SF.

1 01.1.01
-2

-1

0

1

2

3

4

5

ST

SF

FT

FF

ST Learning Rate Scale Factor

W
e

ig
h

t

 Figure 10: Dependence on the ST learning rate.

mathematically equivalent network transfer functions.
At this stage it is natural to ask whether there is any real
need to worry about the possibility of ending up in
different local minima depending on the initial weights
and learning rates we use.

Perhaps the first question we should consider is
whether these effects are merely artefacts of the over
simplification of our model that will be absent in more
complex models and in real human systems. Certainly,
in more realistic models, the mathematical simplicity
that allows the main pathway trade-off effect we have
observed, namely that between the SF and FT routes, is
likely to be broken. However, we can expect similar
trade-off complications to arise in any system (either
artificial or human) that is complex enough to allow
more than one strategy for carrying out the given task
with near optimal efficiency. If the different learnt
configurations are always mathematically equivalent,
then the differences can probably be ignored. However,
there may be important conditions under which the
differences reveal themselves and could prove crucial.
Consider the human oculomotor control system again.
Our preliminary investigations of models of the full
accommodation and vergence system [4, 10] indicate
that different initial weights and learning rates here do
lead to different internal configurations that all perform
equally well under normal conditions. However, if we
interfere with these systems by removing one of the
primary input cues (i.e. either blur or disparity) by
opening one of the two feedback loops, we can reveal
the wide range of underlying differences between the
models. Empirical studies on human subjects have
shown that the same kinds of individual differences are
also observed in the real human system [11]. We can
clearly expect a similar situation to arise in artificial
engineering systems as well. It seems, therefore, that the
kind of initial weight and learning rate dependencies we

have observed and studied in our simplified model will
continue to be important in more complex systems.

What remains for us to understand are the processes
that constrain the systems and limit the ranges of
individual differences that could be caused by many
factors, including different initial weights and learning
rates. The natural assumption is that, in biological
systems, evolutionary factors will have provided the
constraints and the corresponding limits [10]. There are
at least two distinct factors at play here. First, evolution
may favour a particular sub-set of weight configurations
from the space of possibilities that give the same optimal
responses, because they provide advantages over the
other choices (such as robustness to noise, or loss of
inputs, or changing environments) that are not included
in the cost function used by the learning algorithm.
Second, it is now well known that learning and evolution
interact and that genetic assimilation of learnt behaviour
may occur without Lamarckian inheritance [12, 13].
This process can lead to particular distributions for the
initial weights and learning rates, with corresponding
particular distributions for the learnt weights. This has
been demonstrated explicitly in a preliminary study of
the evolution by natural selection of populations of
simulated simplified control models of the type studied
in this paper [14]. It was shown in some detail in that
study how appropriate constrained distributions of initial
weights and learning rates will evolve naturally.

5. Conclusions

This paper began by presenting a systematic study of the
use of different cost functions for the gradient descent
training of neural network control systems. It was found
that both the L1 and sum-squared error cost, with either
velocity or Fourier transform regularization, all gave
good, but slightly different, final network performance.

1.00.80.60.40.20.0
-2

-1

0

1

2

3

4

5
SF

FT

FF

BV

ST

W
e

ig
h

t

Figure 11: Analytically predicted Figure 12 weights.

1.00.80.60.40.20.0
-2

-1

0

1

2

3

4

5
SF

FT

FF

BV

SFFTFFBV

ST

W
e

ig
h

t

 Figure 12: Weights from Figures 9 and 10 re-plotted.

Moreover, we could see exactly how the regularization/
error trade-off parameter λ affected the network’s
responses in each case. We continued by investigating
the degree to which starting the network training from
different initial weights, and/or using different learning
rates, could result in large differences to the patterns of
learnt weights with very little difference to the networks’
output responses. In particular, we found that the usual
default of starting the training with small random initial
weights, and using equal learning rates for all the
weights, resulted in networks which had equivalent
performance but somewhat different internal structure to
that assumed in the traditional engineering style control
system models [2, 6, 7]. An approximate analytical
treatment of the problem revealed how we can go about
understanding such effects.

From the brain modelling point of view, our study
indicates that it is no longer so clear that the existing
control system models should be considered as good
starting points for our neural network models simply
because they already provide a good account of adult
human responses [4]. Rather, we should start again from
known physiology, and if our models learn different
structures from the existing control models, we must
either find fault with the performance of those traditional
models, or think more carefully about our modelling
assumptions.

From the engineering systems perspective, our
simulation results suggest that, even if we use near
optimal values for the regularization parameters λ, m and
n, factors other than the details of the cost function can
have a more significant influence on the weights that are
learnt. Allowing individual weights to have different
starting values and/or different learning rates can result
in the systems ending up with very different final
weights. In humans, evolutionary factors will have
placed limits on these variables, as well as the cost
function. Other constraints on the weight patterns, such
as might arise from innate brain layout, may also have a
big effect. Whilst these complications are problematic
for modelling human systems, they may actually be
advantageous for artificial system building, in that they
leave us with additional degrees of freedom with which
we may optimize aspects of the systems’ performance
not included in the learning cost function. Evolution has
no doubt constrained the details of the human system in
a manner appropriate for its environment, such as
improving the speed of learning, robustness, and such
like. Efficient engineering system building is likely to
come in two analogous stages – first the evolution of
proficient learning systems, and then the learning of
appropriate performance by those systems under the

required operating conditions [10, 14]. We are left with
the option of implementing other criteria for the learning
systems, which can deviate from those of human
evolutionary history, and may allow more effective
artificial systems to be built.

References

1. Levine, W.S. (Ed.) (1996). The Control Handbook. Boca
Raton, FL: CRC Press.

2. Eadie, A.S. & Carlin, P.J. (1995). Evolution of control
system models of ocular accommodation, vergence and
their interaction. Medical & Biological Engineering &
Computing, 33, 517-524.

3. Bullinaria, J.A., Riddell, P.M. & Rushton, S.K. (1999).
Regularization in oculomotor adaptation. In Proceedings
of the European Symposium on Artificial Neural
Networks, 159-164. Brussels: D-Facto.

4. Riddell, P.M. & Bullinaria, J.A. (1999). Incorporating
developmental factors into models of accommodation and
vergence. Technical Report – Submitted for Publication.

5. Kolen, J.F. & Pollack, J.B. (1991). Back propagation is
sensitive to initial conditions. Complex Systems, 4, 269-
280.

6. Schor, C.M., Alexander, J., Cormack, L. & Stevenson, S.
(1992). Negative feedback control model of proximal
convergence and accommodation. Ophthalmic and
Physiological Optics, 12, 307-318.

7. Krishnan, V.V. & Stark, L. (1983). Model of the disparity
vergence system. In C.M. Schor & K.J. Ciuffreda (Eds),
Vergence Eye Movements: Basic and Clinical Aspects,
349-371. Boston, MA: Butterworths.

8. Girosi, F., Jones, M. & Poggio, T. (1995). Regularization
theory and neural network architectures. Neura l
Computation, 7, 219-269.

9. Duchon, J. (1977). Spline minimizing rotation-invariant
semi-norms in Sobelov spaces. In W. Schempp & K.
Zeller (Eds), Constructive Theory of Functions of Several
Variables, Lecture Notes in Mathematics, 571. Berlin:
Springer-Verlag.

10. Bullinaria, J.A. & Riddell, P.M. (2000). Learning and
evolution of control systems. Neural Network World, 10,
535-544.

11. Horwood, A.M., Turner, J.E., Houston, S.M. & Riddell,
P.M. (2000). Variations in accommodation and
convergence responses in a naturalistic setting. Optometry
and Vision Science, under revision.

12. Baldwin, J.M. (1896). A new factor in evolution. The
American Naturalist, 30, 441-451.

13. Belew, R.K. & Mitchell, M. (Eds) (1996). Adaptive
Individuals in Evolving Populations. Reading, MA:
Addison-Wesley.

14. Bullinaria, J.A. (2000). Exploring the Baldwin Effect in
evolving adaptable control systems. To appear in:
Proceedings of the Sixth Neural Computation and
Psychology Workshop. London: Springer.

