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This paper presents the results of simulations of a new class of artificial neural network models 
of reading. Unlike previous models, they are not restricted to mono-syllabic words, require no 
complicated input-output representations such as Wickelfeatures and, although based on the 
NETtalk system of Sejnowski & Rosenberg (1987), require no pre-processing to align the letters 
and phonemes in the training data. The best cases are able to achieve 100% performance on the 
Seidenberg & McClelland (1989) training corpus, in excess of 90% on pronounceable non-words 
and on damage exhibit symptoms similar to acquired surface dyslexia. 

Introduction 

The world of cognitive science has recently enjoyed a 
lively debate concerning the processes underlying the 
act of reading aloud, i.e. the human act of converting 
strings of letters into strings of phonemes. One camp 
(recently championed by Coltheart, Curtis & Atkins, 
1992) argues that the process can only be described by 
a dual route model, with one route consisting of a 
series of letters to phonemes rules (which are 
necessary in order to be able to read new words or 
pronounceable non-words) and another route that acts 
as a lexicon (necessary to deal with irregular/exception 
words which do not follow the rules). The other camp 
(as exemplified by Plaut, Seidenberg & McClelland, 
1992) believe that a single route is sufficient and have 
constructed explicit neural network models of reading 
that are able to learn the words (including exception 
words) in their training data and also read new non- 
words with accuracies comparable to human subjects. 
This paper will describe another class of neural 
network models of reading and compare the 
performance of the simplest cases with that of 
previous models and humans. 

The first thing to be decided for any model of 
reading is the representation to use for the inputs 
(letters) and outputs (phonemes). If there were a one- 
to-one correspondence between the letters and 
phonemes of every word, it would be fairly easy to set 
up a neural network to map from letter strings to 
phoneme strings. Unfortunately, however, the 
mapping is many-to-one (up to four letters can map to 
one phoneme in English, e.g. ‘ough’ + /0/ in 
‘though’), so more complicated models are necessary. 
We use the phoneme notation of Seidenberg & 
McClelland (1989) throughout. 

One of the first successful neural network systems 
to get round this problem was NETtalk by Sejnowski 
& Rosenberg (1987) who simply pre-processed the 
training data by inserting special continuation (i.e. no 
output) characters into the phoneme strings to align the 
letters and phonemes. For many, this degree of pre- 
processing is considered unacceptable. 

A more sophisticated model by Seidenberg & 
McClelland (1989) used a system of distributed 

Wickelfeatures in which each letter and phoneme 
string is split into sets of triples of characters 
(Rumelhart & McClelland, 1986). This certainly 
bypasses the problem of aligning the letters and 
phonemes, but makes the interpretation of the 
networks output difficult and presents difficulties in 
understanding the nature of the internal 
representations. This model is also restricted to mono- 
syllabic words and performs poorly on non-words. 

A more recent neural network model by Plaut et 
al. (1992) uses 108 orthographic input units (one for 
each of the Venezky graphemes occurring in the initial 
consonant, vowel and final consonant clusters) and 57 
phonological output units. This model does very well 
at learning the training data and at reading non-words 
but is still restricted to mono-syllabic words. 

Meanwhile, Coltheart et al. (1992), as part of their 
dual route model, developed a rule based non-neural 
network system which had good success in reading 
non-words, but (by construction) was poor at reading 
the non-regular words in the original training set. 

The class of neural network models presented in 
this paper might be considered to be a neural network 
implementation of this Grapheme Phoneme 
Conversion (GPC) Rule system of Coltheart et al. 
(1992). However, given that an exception word 
mapping can be thought of as a very low frequency 
high powered rule (i.e. a rule that is activated only for 
one specific word and over-rides all other potentially 
useful rules) such a model should be able to handle 
exceptional words as well. Regular words will be 
pronounced according to simple rules, exception 
words will be pronounced according to complicated 
special purpose rules (effectively a lexicon) that must 
over-rule the simpler rules. There will clearly be a 
continuous spectrum between these two classes of 
words and since there are very few (if any) ‘exception’ 
words that do not contain any regular features at all, 
the need for true lexical entries will be minimal. The 
success of the model depends on the network 
maximizing its use of simple rules whilst minimizing 
its use of special purpose rules, In this way, when 
presented with new words or non-words, none of the 
special purpose rules will fire and the network will 
output phonemes according to a full set of regular 
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(GPC) rules, yet it will still be able to pronounce the 
exceptional words it has been trained on. 

The Models 

The basic model consists of a standard fully connected 
feedforward network with one hidden layer set up in a 
similar manner to the NETtalk model of Sejnowski & 
Rosenberg (1987). The input layer consists of a 
window of nchar sets of units, each set consisting of 
m e  unit for each letter occurring in the training data 
(i.e. 26 for English). The output layer consists of one 
unit for each phoneme occurring in the training data 
(i.e. about 40 units). The input words slide through 
the input window which is nchar letters wide, starting 
with the first letter of the word at the central position 
of the window and ending with the final letter of the 
word at the central position. Each letter activates a 
single input unit. If there were a one-to-one 
correspondence between the letters and the phonemes, 
the activated output phoneme would then correspond 
to the letter occurring in the centre of the window. 
Since there can be a many-to-one correspondence 
between the letters and phonemes, some of the outputs 
must be blanks (i.e. no phoneme output). It is the 
problem of not knowing where to put the blanks in the 
training data that has hampered progress with this type 
of model in the past. 

The solution proposed here is to allow the set of 
phonemes corresponding to each word in the training 
data to be padded out with blanks (to the same number 
of phonemes as there are letters in the word) in all 
possible ways. If there are nl letters and n p  
phonemes, then there are ntarg = P I E  ! / np ! (111 - np) ! 
ways that the phonemes can be padded out. Clearly, 
we only want the network to train on one of these 
ntavg possible targets. The surprising thing is that by 
calculating for each input word the total error 
corresponding to each of the possible targets and only 
propagating back the error from the target with the 
least error, the network is (with a suitably diverse set 
of training words) able to learn which is the 
appropriate target for each word. 

For example, consider the word ‘ace’ and the 
corresponding phonemes /As/. This training example 
will be presented nl = 3 times, each with ntarg = 3 
possible target outputs: 

For each of the three input presentations the error is 
calculated for each of the three target outputs. The 
sum of the errors for each target over the three input 
presentations is then computed and the target with the 
minimum total error is used to update the weights in 
the appropriate manner. With a realistic set of training 
patterns the regular correspondences will dominate 
and eventually the network learns that the appropriate 

presentation inputs target outputs 

1. - -  - a c e -  A A - 
2. - - a c e - -  s - A  
3. - a c e - - -  - s s  
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target is /As-/ rather than /A-$/ or /-As/. 
The networks were trained using the back- 

propagation algorithm (Rumelhart, Hinton &, 
Williams, 1986) with the extended Seidenberg & 
McClelland training corpus of 2998 monosyllabic 
words consisting of the original Seidenberg & 
McClelland (1989) set plus 101 other words missing 
from that set. The small initial weights were chosen 
randomly with a rectangular distribution in the range 
-0.1 to 0.1. After some experimentation, the back- 
propagation learning rate was fixed at 0.05, the 
momentum factor at 0.9 and the sigmoid prime offset 
at 0.1. Over-learning was controlled by not 
propagating back the error signal for words that 
already had the correct phoneme outputs and a total 
error less than some threshold errcrit. Once trained 
the output phoneme of the network is simply defined 
to be the phoneme corresponding to the output unit 
with the highest activation. 

Results from the Simulations 

For each simulation, against the number of training 
epochs (on a logarithmic scale), were plotted the 
percentages learnt correctly and mean square errors for 
the full set of training data plus various interesting 
subsets (homographs, regular words, highflow 
frequency exceptions, etc.). To test the networks 
generalization ability (i.e. its success at learning the 
GPC rules) the percentages of three sets of non-words 
that were pronounced ‘acceptably’ and the 
corresponding errors were also plotted. 

As in Plaut et al. (1992), the three sets of non- 
words used were the regular non-words and exception 
non-words of Glushko (1979, Experiment 1) and the 
control non-words of McCann & Besner (1987, 
Experiment 1). The allowable pronunciations of the 
non-words were derived from the training data-base by 
matching word segments (particularly rimes) in the 
non-words with the same segments in the training data 
and constructing possible non-word pronunciations by 
concatenating the pronunciations of the segments from 
the training data. 

Due to the large amount of processing power 
required for these simulations, only 25 fairly small 
runs have so far been carried out and it is often 
difficult to distinguish real improvements caused by 
parameter or architecture changes from statistical 
fluctuations. A detailed analysis of the learning 
trajectories, how the models’ performance varies with 
the window size, number of hidden units, errcrit, etc., 
what structures are actually being represented in the 
hidden units, the relationship between errors and 
naming latencies, developmental dyslexias and how 
the model responds to different types of damage will 
be presented in a necessarily longer paper elsewhere 
(Bullinaria, 1993). Here we will just make a few 
general comments and plot some of the results from 
one typical successful run. 

Since the Seidenberg & McClelland corpus 
contains 13 pairs of homographs it is clear that the 
network can never achieve total success at learning 
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Figure 1. Typical Learning Curves. 

this training data. Experiments were therefore carried 
out on the use of context flags to resolve these 
ambiguities. As a preliminary investigation, this was 
implemented by introducing an extra character into the 
input alphabet and appending that character to the least 
regular input word of each pair of homographs. This 
not only allowed the network to achieve 100% success 
rate on the homographs (compared with a maximum of 
50% before) but also seemed to improve its 
performance on certain non-homographs as well. That 
such a simple flag works so well also gives us hope 
that similar flags could be used to flip the network 
between accents and languages as effortlessly as in 
humans. 

Networks with a window size of 9 characters and 
as few as 40 hidden units were able to learn all but one 
of the training examples, namely ‘though’ + /DO/. 
The reason the network fails on this word is that the 
baining data also includes the word ‘thought’ -+ /T*t/ 
in which the sub-word ‘though’ has to be pronounced 
as /T*/ and unless the input window is large enough to 
have the final ‘t’ in the window while the initial ‘t’ is 
in the centre of the window, the network has no way of 
resolving the ambiguity. By increasing the window 
size to 13 this long range dependency can be handled 
and the network achieves 100% success rate on its 
training data. To confirm the networks’ capability of 
handling long range dependencies and also its ability 
to deal with more complex words, some runs with the 
words ‘photographic’ + /fotOgrafik/ and 
‘photography’ -+ /fot*grafE/ incorporated into the 
training data were carried out. With a window size of 
13 the network was able to learn both words without 
any difficulty. With a window size of 11 (for which 
the crucial ‘i’ and ‘y’ fall outside the window while 
the problematic ‘0’ is in the central position) the 
network failed to learn the two words. 

Figure 1. shows the learning curves for a typical 
network with 120 hidden units, a window size of 13 
characters, errcrir = 0.01 and a context flag to resolve 
homograph ambiguities. It achieved 100% 
performance on the training data and for non-words 
plateaued at 95.3% for regulars, 93.0% for exceptions 

and 92.5% for controls. Comparisons with other 
models are complicated by different authors using 
hfferent non-word sets and scoring criteria, so bearing 
this in mind, the Seidenberg & McClelland model 
achieved 97.3% on the training data and about 65% on 
Glushko non-words, Plaut et al. (1992) achieved 
99.9% and 97.7%, Coltheart et al. (1992) achieved 
about 77% and 98% and for human subjects we would 
typically have about 100% and 96%. 

Although our networks generally performed fairly 
well, and many of the non-word errors would be 
acceptable under more generous criteria of 
acceptability (e.g. ‘wuff‘ + /wuf/ is counted as wrong 
by the above rules), there still remain a few errors of 
the kind humans would never make (e.g. ‘zute’ -+ 
/hyt/). Whether these problems can be removed by the 
introduction of recurrent connections, clean up units, 
different learning algorithms/parameters is not clear at 
present. However, for small networks it was found 
that increasing the number of hidden units improved 
generalization. It was also noticed that if smaller 
training sets were used, then obviously incorrect 
grapheme-phoneme correspondences could be learnt 
(e.g. ‘ace’ + /-Ad instead of /As-/) without affecting 
the output performance on that training set. It is 
likely, therefore, that simply using larger networks and 
training sets could further improve our performance on 
non- words. 

Discussion 

An important method of constraining cognitive models 
is to examine their performance after damage (e.g., 
Coltheart et al., 1992). Of particular importance for 
models of reading are two forms of acquired dyslexia: 
Patients with phonological dyslexia exhibit a 
dissociation between word and non-word naming - 
there can be complete failure to read non-words whilst 
maintaining around 90% success on words (Funnell, 
1983). Patients with surface dyslexia exhibit a 
dissociation between regular and exception word 
naming - for example 80% success on regular words 
against 35% on very irregular words (Shallice, 
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Figure 2. Typical Damage Curves. 

Warrington & McCarthy, 1983). 
Since no form of damage to our model seems to 

be able to produce the loss of rules (i.e. non-words) 
but not the words (nor even the high frequency 
exceptions) we should not consider it to be a realistic 
single route model. Phonological dyslexia must 
presumably still be explained by losing the GPC route, 
but not the lexical/semantic route, of a dual route 
model (Coltheart et al., 1992). It would seem 
appropriate, therefore, to consider our model to be an 
implementation of the GPC route of a dual route 
model. However, given our models inherent success 
with non-words, losing the lexical/semantic route but 
not the GPC route is not enough to explain surface 
dyslexia. We must, at the same time, lose the 
exceptions but not the rules in our GPC route. 
Fortunately, a form of damage whereby all the weights 
(i.e. synaptic strengths) are globally reduced in 
magnitude seems to do just that. In Figure 2, is plotted 
(for the same network as Figure 1.) the network 
performance as its weights are reduced by successive 
amounts of 0.05. We see that the exception words are 
preferentially lost over the regular words, so that at the 
point where the weights have been reduced by a total 
of 0.6 we have regular word performance at 90% 
compared with exception word performance at 37%. 
The exact percentages seem to vary somewhat with 
different network parameters, in particular the number 
of hidden units, but they are generally not far from 
those found in human patients. 

In conclusion then, a class of neural network 
models have been presented which, given their 
simplicity, performance and room for improvement, 
seem to be promising candidates for the GPC route of 
a dual route model of reading. 
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