
 
 

 

  

Abstract— A common problem in speech technology is the 
alignment of representations of text and phonemes, and the 
learning of a mapping between them that generalizes well to 
unseen inputs. The state-of-the-art technology appears to be 
symbolic rule-based systems, which is surprising given the 
number of neural network systems for text to phoneme 
mapping that have been developed over the years. This paper 
explores why that may be the case, and demonstrates that it is 
possible for neural networks to simultaneously perform text to 
phoneme alignment and mapping with performance levels at 
least comparable to the best existing systems.  

I. INTRODUCTION 
Many speech technology applications rely on having a good 
mapping from text to phonemes that not only performs 
perfectly on known words, but also generalizes well to new 
words, such as previously unseen proper nouns [8].  

Alignment of the text and phonemes is the first stage of 
data processing necessary to provide useable training data 
for many text to phoneme conversion systems, including the 
most successful symbolic rule-based systems [8, 10] and 
most neural network systems [14, 16, 17]. The state-of-the-
art for this alignment process appears to be the rule-based 
Expectation-Maximization (EM) algorithm of Damper et al. 
[9], and data aligned in that way has been employed in the 
rule-based Pronunciation by Analogy (PbA) system of 
Damper et al. [8, 9] to provide state-of-the-art text to 
phoneme mappings for English [10].  

Given the number of neural network based systems that 
have been developed over the years, it seems surprising that 
they are not more competitive in this area. One reason is that 
most of the older neural network models [3, 6, 14, 16] were 
aimed mainly at modeling psychological data and 
understanding human language abilities, rather than 
producing high performance applications for speech 
technology. They therefore concentrated on producing 
human-like performance on small-scale empirically testable 
data-sets rather than large-scale systems useable for real 
world applications. Moreover, the computational resources 
required for training such neural networks has prevented 
scaling them up to larger data-sets. However, computers are 
now much more powerful, and a simple scalable neural 
network based approach for dealing with both the alignment 
and mapping problems has existed in the psychological 
modelling literature for some time [3, 4, 5, 6], so it is worth 
exploring what can now be achieved with a neural network 
approach to this problem.  
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In the remainder of this paper, it is described how that 
neural network approach works, various issues are addressed 
that relate to scaling up from simple psychological models to 
practical large scale alignment and mapping systems, and the 
results achieved are compared with those obtained with the 
Damper et al. approach [9]. The advantage of the approach 
here is not only in the good performance, but also in the fact 
that the text to phoneme conversion neural network performs 
the alignment as part of the standard learning phase. 

II. THE BASIC NEURAL NETWORK 
Whether building psychological models of reading, or more 
practical text-to-phoneme conversion applications, aligning 
the text (i.e. letters/graphemes) and phonemes is a crucial 
first step. As Damper et al. [9] discussed in detail, some 
individual letters (e.g., “X”) can sometimes correspond to 
more than one phoneme, and other strings of letters can 
correspond to only one phoneme (e.g., “TH”). Consequently, 
given a string of letters and the corresponding string of 
phonemes, it is not always obvious which letters map to 
which phonemes. Early neural network systems such as the 
NETtalk model of Sejnowski & Rosenberg [17] used pre-
aligned training data to bypass the problem. Later models by 
Seidenberg & McClelland [16] avoided pre-alignment by 
being based on Wickelfeatures (letter and phoneme trigrams) 
but had relatively poor performance levels. Then Plaut et al. 
[14] developed improved models, but returned to pre-aligned 
training data to get good performance. This led Bullinaria to 
explore extensions of the NETtalk model that were able to 
learn appropriate alignments at the same time as learning the 
mapping process [3, 5, 6].  

Those models used a standard fully connected feed-
forward neural network architecture [2] similar to the 
original NETtalk model [17], with one block of Nletters input 
units (each representing one letter of the alphabet) for each 
potential input letter, one block of Nphonemes output units 
(each representing one phoneme type) for each phoneme 
output, and Nhidden hidden units in between. Each input word 
starts off with its first letter aligned with the middle input 
block, and then slides to the left, one letter at a time, until its 
last letter is aligned with that block. The network is trained 
so that, at each stage, the output phonemes correspond to the 
letter represented by the central input block, in the context of 
the letters surrounding it. Letters corresponding to more than 
one phoneme are accommodated by having more than one 
output block, and strings of letters corresponding to shorter 
strings of phonemes are accommodated by allowing a “null 
phoneme” or “blank output” to be represented along with the 
real phonemes. For standard English words, two blocks of 
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Fig. 1. The neural network architecture with two output phonemes per word presentation.  The output phonemes P1 and P2 correspond to the target letter T 
in the centre of the input window, in the context of the letters L1, L2, … to its left and the letters R1, R2, … to its right. 
 

phonemes are sufficient, but this will result in a few words 
(such as “XMAS”) having less than optimal alignment.  
These considerations lead to the neural network architecture 
shown in Figure 1. 

For pre-aligned training data one can use a standard neural 
network learning algorithm [2] such as traditional gradient 
descent connection weight updating (the back-propagation 
algorithm) so that the correct outputs are produced for each 
word in each input position. A more sophisticated learning 
algorithm is clearly required if it must do the alignment too. 
As Damper et al. [9] explained in detail, there is no unique 
correct alignment (e.g., the phoneme corresponding to a 
“TH” could equally well be aligned with the “T” as with the 
“H”), but some alignments are clearly more appropriate than 
others. Consider the word “THAT” which maps into three 
phonemes: “dh ae t” in the BEEP notation [15]. If “_” 
represents a blank (null phoneme), then either “dh _ ae t” or 
“_ dh ae t” would be equally acceptable alignments, but 
“dh ae t _” would not be, because mapping the letter “A” to 
the phoneme “t” would be highly irregular compared with 
mapping the letter “T” to the phoneme “t”. The key idea 
here is the concept of regularity: good alignments are highly 
regular, whereas poor alignment contain many irregularities. 
Fortunately, neural networks are very good at identifying 
regularities in data, and using them to their advantage.  

This led to the idea of multi-target training [3, 5] in which 
each input has a whole set of possible output targets, but the 
network is trained only on the target that already exhibits the 
lowest output error (e.g., the lowest sum-squared difference 
between the actual network outputs and the target outputs). 
If the multiple targets are the full set of possible text-to-
phoneme alignments, then, even starting from random initial 
network weights, this process can settle down to using the 
set of targets that correspond to a good regular set of 
alignments. The reason this works is that, even with totally 
random starting alignments, the coherent regular weight 
updates tend to build up, while the irregular incoherent 
weight updates tend to cancel out, with the net effect that the 
regular alignments will have their output errors reduced by 
more that the irregular alignments. This, of course, means 
that in the next round (epoch) of updates, the more regular 
alignments will tend to have lower errors and be chosen as 
targets, rather than the irregular alignments, and the good 
alignments will dominate the weight updates even more. 
This process snowballs until the good alignments totally 
dominate the chosen targets, and the alignment process is 

complete. The same good set of alignments are then chosen 
every time until all the output activation errors are reduced 
to their chosen low levels. 

This basic architecture and learning algorithm formed the 
basis of a series of models of reading aloud, including 
human-like generalization ability for reading non-words, 
accounts of frequency and regularity effects in reaction 
times, and models of developmental and acquired surface 
dyslexia [3, 6]. Relatively straightforward extensions of it 
were also used to model the harder reverse task of spelling, 
i.e. phoneme-to-text conversion [4, 6]. One might wonder, 
therefore, why this process has not been applied to text-to-
phoneme mapping more generally. The reason is probably 
that those earlier models were all rather small scale, and 
there are various practical technical issues that need to be 
addressed before it can be applied to large scale datasets 
such as the British English Example Pronunciation (BEEP) 
dictionary [15] used in the Damper et al. [9] study. 

III. SCALING UP THE NEURAL NETWORK 
The main scaling-up problem one faces is the combinatorial 
explosion in the number of possible target alignments for 
longer words, which proves particularly troublesome for 
words that are more than eight or nine letters long. In the 
BEEP dictionary [15] there are approximately 200,000 
words, up to 28 letters long, with over 25% of them eleven 
or more letters long. This means that, in practice, one will 
eventually need to restrict the number of possible alignments 
that are considered, but to do that in such a way that it 
catches a large proportion of the best alignments. 

Another problem one has with very large training data sets 
is that the network weight updates corresponding to highly 
irregular mappings (e.g., the letters “LB” being pronounced 
“p aw n d”) are swamped by those coming from more 
regular mappings, and this renders them extremely difficult 
to learn. In psychological models this is usually less of a 
problem, because one takes word usage frequency into 
account in the training process, and since irregular words 
tend to be higher frequency as a result of language evolution 
[12], this tends to compensate sufficiently [6, 14, 16]. When 
word frequency information is not available (e.g., as with the 
BEEP dictionary data), an alternative approach is to stop 
updating the weights for words that have already reached 
some threshold output error level (e.g., that have each output 
unit activation within 0.2 of its target value). This proved to 
work very well and was adopted as standard here.  



 
 

 

There are also a number of very long range dependencies 
that have to be dealt with.  For example, in the words 

PRECONSIDERATIONS    ⇒   p r iy k ax n s ih d ax r ey sh n z 

  RECONSIDERATIONS    ⇒      r iy k ax n s ih d ax r ey sh ax n z 

the pronunciation of the “ION” depends on the initial “P”. 
BEEP is generated from many different sources, and is 
known to contain errors [13], so it is debatable whether this 
is a real idiosyncrasy of English, or simply an error in the 
dictionary. Either way, the algorithm will need to deal with 
it and have a big enough input window to accommodate the 
“P” while the “ION” is in the centre position. To cope with 
this, an input window of 41 letters was used, with 20 context 
letters each side of the crucial central position. This results 
in a total of 1066 input units, and quite large neural networks 
to train. This could cause computational resource problems 
for a naïve implementation of the network, but in practice it 
is possible to simply ignore at each stage any input units that 
are not activated, because they do not contribute to any 
activations or weight updates. This means using, on average, 
only nine inputs rather than the full 1066. 

A side effect of needing a large amount of context 
information for some words, is that it may be misused for 
other words. Underlying the concept of regularity here is the 
idea that the text-to-phoneme mapping consists of a whole 
hierarchy of rules embodied in the neural network 
connection weights, and that the simpler and more general 
that rule set is, the better it is likely to generalize. This 
implies making the minimum use of the available context 
information that is consistent with performing the mapping 
accurately. In other words, long range context information 
should only be used when more local context is insufficient. 
Since the gradient descent learning in neural networks will 
update the weights connected to any useable input 
information, this could be problematic. One solution would 
be to have different learning rates for the weights connected 
to different blocks of inputs: large for the central block, and 
increasingly smaller for more distant blocks. This does 
work, but it proves extremely difficult to have the rates fall 
off with distance sufficiently fast without considerably 
slowing down the training time of the network.  A simple 
alternative solution derives from the idea that children are 
generally taught to read shorter words before being exposed 
to longer words. This actually works extremely well for 
training the neural networks. The system starts off learning 
words of length one, and only when a fixed proportion (95% 
in the standard case) have been learned correctly, does it 
move on to words of length two or fewer. At each stage it 
waits till 95% are learned correctly, before increasing the 
maximum word length by one more. This continues until it 
is training on all the words, and then it keeps going until all 
the words have been learned. 

This incremental learning approach also proves useful for 
dealing with the combinatorial explosion of the target 
alignments mentioned above. One can easily deal with the 
different word length sets in different ways. There are only 
829 words of three or fewer letters, and these are easy to 
align by hand. The earlier studies [3, 5, 6] showed that this 
was not actually necessary for achieving good alignments, 

but it does allow the removal of some of the arbitrariness of 
the resulting alignments, which makes the subsequent 
analysis and evaluation easier. In particular, for the hand-
aligned words a non-blank is only allowed in the right-hand 
phoneme block when there is already one in the left-hand 
block, and when two letters map to a single phoneme, that 
phoneme is always aligned with the left most letter. Of 
course, once the networks move on to the longer unaligned 
word-sets, which no longer include fixed alignments for the 
words of three or fewer letters, it will be free to change the 
alignments it was forced to learn previously, but it will only 
do that if there is some advantage in it. 

As the network moves on to learning each new larger 
word-set, most of the shorter words are already pronounced 
correctly, and many of the new words are also already 
correct without needing any further training, because they 
are regular and the neural network automatically generalizes 
well to them. There is clearly no need to check for better 
target alignments in any of those cases. This means that for 
word-sets with a maximum of up to 15 letter words, it is 
actually computationally feasible to search through all the 
possible alignments for each incorrect word at each stage of 
training. For longer words, a full search does become 
impractical. However, by then, around 195,000 words (i.e. 
about 98% of the whole training set) will have already been 
aligned and learned correctly, and the principal alignment 
rules are firmly established in the network weights. Many 
other words will only be pronounced incorrectly because of 
subtle variations in the vowel sounds, but their alignment 
will be correct. Beyond 15 letter words, there are actually no 
new words introduced that have no letters at all aligned and 
pronounced correctly, and those letters that are correct will 
strongly restrict how the rest are aligned. It turns out that all 
one needs to do is identify the existing non-blank outputs for 
each word, and “patch-up” the errors to result in the right 
number of output phoneme positions, and those provide a 
very good indication of where each target phoneme should 
go. Then going though a simple check of how swapping 
each blank with each non-blank affects the total error, gives 
a confirmation that the alignment is good, and occasionally 
one can find an improved alignment to use. This faster 
process still sounds computationally costly, but since all the 
output activations are already computed, it usually has 
negligible cost compared with passing the activations 
through the network and computing the outputs in the first 
place. Even if this mechanism does not identify the best 
possible alignment for a particular word, it will not be totally 
wrong, and the combination of weight updates for all words 
will improve the alignments ready for the next round. In the 
same way that random initial alignments sort themselves out, 
so do any less than perfect choices of output targets here. 

IV. IMPLEMENTATIONAL DETAILS 
Neural networks are usually started with all their weights 
and biases drawn from the same uniform distribution of 
random numbers. However, it is now known that more 
complicated set-ups tend to emerge in studies in which 
different initial weight distributions for each part of the 
network are optimized by processes such as simulated 
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Fig. 2.  Average absolute weight magnitudes (AW) for the 41 input blocks, on a linear scale (left) and log scale (right).  The weights for the long range 
context blocks are lowest for the standard network, more for non-incremental learning, and highest for a flat initial weight distribution.  
 

evolution by natural selection [7], so it is worth considering 
more carefully what is most appropriate here. As noted 
above, when one thinks in terms of the hierarchy of rules 
determining the correct phoneme outputs for each letter, it is 
reasonable to expect that it would be best to only use long 
range context information when the more local context is 
insufficient. In neural network terms, that would imply that 
the average magnitudes of the weights connecting the more 
central input blocks to the hidden units should be higher than 
those connecting the less central input blocks. Ultimately, it 
is the learning algorithm which determines the weight 
values, but it may help if the random initial values for the 
input to hidden unit weights are not set too high as a starting 
point. This is particularly important for the incremental 
approach adopted here, to prevent any disruption caused by 
the increased number of context blocks suddenly introducing 
additional random activations into the network each time the 
maximum word length is increased. The standard neural 
network approach here takes this idea to the extreme and has 
all the initial input to hidden layer weights start from zero, to 
minimize any unnecessary contributions from the outer 
context blocks. It also starts all the hidden unit and output 
unit biases from zero. Only the hidden unit to output weights 
start from a traditional uniform distribution of random 
values in the range [-1,+1]. This will later be compared 
empirically with the more conventional approach of starting 
all the network weights and biases with a flat distribution of 
random values in the range [-1,+1].  

Given the above architecture and learning algorithm, there 
remain a few other details that need to be specified. First, 
one must set an appropriate number of hidden units for the 
neural network. Obviously, there needs to be enough units 
that the associated connection weights can accommodate all 
the pronunciation rules, but not so many that the network 
takes too long to train. One does not have to worry too much 
here about restricting the numbers to avoid over-fitting – in 
this case the “noise” in the training data is the irregular 
pronunciations, and we do want to learn them. A good 
compromise for the BEEP data was found to be 2000 hidden 
units. The earlier studies [3, 5, 6] all used the standard sum-

squared error measure for the gradient descent learning, but 
it has since been established that the cross-entropy error 
measure works better for binary mappings [2, 7], so that is 
used here. Finally, a gradient descent learning rate of 0.1 
proved to result in learning that was reasonably fast, but not 
so fast that networks settled prematurely on inappropriate 
alignments, or kept on switching unnecessarily between 
different target alignments.  

V. NEURAL NETWORK LEARNING RESULTS 
The neural network system described above was trained on 
198618 words from the BEEP dictionary [15], consisting of 
the same 198632 words used in the Damper et al. study [9] 
except for 14 very non-standard “words” that had many 
more phonemes than letters (e.g., “X” pronounced “e k s”, 
and “UNIV” pronounced “y uw n ih v er s ih t iy”) which 
was a clear indication that they deviated considerably from 
standard English pronunciation. Twenty such runs, each 
using different random number seeds, and numerous further 
sets of runs designed to explore variations in the details and 
parameters specified above, all achieved 100% correct 
pronunciation on the training data.  

The first issues explored were the effects on the final 
learned weights of the non-traditional distribution of initial 
weights and the incremental learning approach. Figure 2 
shows the final average absolute weight distributions for the 
standard networks, the equivalent networks that start from a 
more conventional flat (uniform) distribution of initial 
weights, and the equivalent networks that learn from all the 
training words throughout, rather than the incremental 
process that has the shorter words largely learned before 
moving on to longer words. It is clear that the standard 
network does, as hoped, make less unnecessary use of the 
longer range context information. 

Of course, it is not the weight distributions that are most 
important, but the quality of the resulting network outputs. A 
crucial question for this paper is: how well do the resulting 
alignments compare with the Damper et al. approach [9]?  In 
their paper, they compared the various alignments by 
measuring the corresponding generalization performance on 



 
 

 

 C Average  C Std. Dev.  C Maximum Ensemble C 
Standard NN 0.5606 0.0012 0.5619 0.5630 

Non-incremental NN 0.5553 0.0055 0.5625 0.5560 
Flat initial weights NN 0.5590 0.0013 0.5613 0.5610 

MT only to length 7 NN 0.5610 0.0014 0.5620 0.5629 
No MT at all NN 0.4868 0.0076 0.5012 0.4934 
Naïve Alignment 0.2276 – 0.2276 – 
Damper et al. [9] 0.5630 – 0.5630 – 

 
Table 1. Alignment consistencies C (average, standard deviation, maximum and ensemble average over 20 runs) for the standard neural 
network studied in this paper, four variations of it, the naïve alignment, and the alignment generated by Damper et al. [9].   
 

the Pronunciation by Analogy (PbA) system [8]. It is not 
totally obvious that such pronunciation performance is really 
the best measure of alignment. All the neural networks here 
achieved 100% on the training data, despite spanning a 
range of different qualities of alignments, but it is reasonable 
to expect that a more consistent or regular alignment will 
allow a better hierarchy of rules to emerge (particularly in a 
rule based system like PbA) and that will result in better 
generalization. Such a measure will therefore be considered 
in the next section, but first it seems prudent to consider a 
more direct measure of alignment quality. 

Actually, Wolff, Eichner & Hoffmann [18] have already 
presented a suitable grapheme to phoneme consistency 
measure. The idea is that, given aligned strings of graphemes 
g ∈ G and phonemes f ∈ F, and associated probabilities 
p(g), p(f) and p(g,f), one can define the entropy 

€ 

H = − p(g, f ) log p(g, f )
g∈G , f∈F
∑  

and mutual information 

€ 

I = p(g, f )log p(g, f )
p(g)p( f )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

f ∈F
∑

g∈G
∑  

so that C = I/H is a measure of mapping consistency.  
If the G-F mapping were totally random, that consistency 

C would be zero, while a perfect 1-1 mapping with each 
grapheme corresponding to a single distinct phoneme would 
have a consistency of one. Natural languages fall somewhere 
in between. Wolff et al. [18] suggest that German and Dutch 
have consistencies around 0.75, and English around 0.65. 
However, large dictionaries containing mixtures of regional 
variations and a significant number of errors will have lower 
consistencies, even if the alignment is carried out as well as 
possible. Moreover, the sizes of the grapheme and phoneme 
sets can vary across different dictionaries or representations 
for the same language [9]. This renders absolute consistency 
evaluation difficult, but C can certainly be used to compare 
different alignments on the same dictionary. 

The neural networks map individual letters to either zero, 
one or two phonemes. It therefore makes sense to take the 
“graphemes” G here to be the letters, and the “phonemes” F 
to be the set of possible outputs. Table 1 summarizes the 

alignment consistencies C then achieved by the key neural 
networks studied, showing the averages, standard deviations, 
and maxima over 20 runs. The standard neural network here 
achieves a consistency of 0.5606, which is significantly 
better than both the non-incremental learning approach 
(0.5553, unpaired two-tailed t-test, p = 0.0004) and the flat 
initial weight distribution approach (0.5590, p = 0.0005). A 
computationally faster variation that switches from the full 
multi-target learning approach to the simplified “patch-up 
mechanism” at word length 8, instead of 16, does not give 
significantly different results to the standard case (0.5610, 
p = 0.25). However, using the “patch-up mechanism” 
throughout, totally replacing the multi-target approach, does 
lead to a large reduction in consistency (0.4868, p < 10-10). 
This confirms that the simplified “patch-up” approach is 
good enough, as long as it is not introduced too soon. 
Explorations of variations in the various learning parameter 
values have so far failed to identify any significant 
improvements over the standard network. In particular, 
varying the output error training tolerance from 0.2 to either 
0.1 or 0.3 led to no significant difference in the alignment 
consistency, and nor did varying the performance level 
which initiates a new stage of incremental learning from 
95% to 99%, 90%, 80% or even 60%. 

For comparison, Table 1 also shows the results of a naïve 
alignment and the Damper et al. alignment [9]. The naïve 
alignment, that simply assigns one phoneme to each letter 
from left to right till they run out, not surprisingly results in 
very low consistency (0.2276). Computing the consistency 
for the Damper et al. [9] approach is complicated by the fact 
that they specify their alignments by inserting both “null 
letters” and “null phonemes”. The null phonemes act in the 
same way as in the neural network approach, but rather than 
allowing more than one output phoneme per letter, any extra 
phonemes are aligned with null letters. For example, the 
word AXE leads to the 3-letter mapping “A X E ⇒ ae k+s _” 
in the neural network approach, and the 4-letter mapping 
“A X _ E ⇒ ae k s _” in the Damper et al. approach. Here 
one can take the “graphemes” G to be the letters plus null, 
and the “phonemes” F to be the actual phonemes plus null. 
That gives a consistency C of 0.5560. To get a fairer 
comparison with the approach of this paper, the null letters 
can be removed, and the phonemes associated with them 
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Fig 3. Generalization performance (percentage correct) against number of millions of words of training (MW) for leniency parameter K = 0, 0.2, 0.6, 0.99.  
Two distinct learning patterns arise: the standard incremental approach (left) and the non-incremental equivalent (right). 
 

assigned to adjacent real letters, to match the neural network 
representation. For a null letter at the beginning or end of a 
word, it is clear which letter the corresponding phoneme 
should be associated with. When they appear mid-word, it is 
not so obvious, but it matches the neural representation most 
closely if the phoneme is associated with the real letter that 
comes first. One can then compute the letter to phonemes 
consistency in the same way as for the neural networks, and 
that results in the increased value of 0.5630. 

So the average consistency achieved by any of the neural 
networks is still slightly below that of the Damper et al. [9] 
approach. Indeed, even the best individual network does not 
do better. One possible reason is that not allowing a letter to 
map to more than two phonemes is a restriction which the 
Damper at al. approach doesn’t have, and this can cause 
anomalous alignment problems that result in reduced 
consistency. This would not be a big problem for standard 
English, but the BEEP dictionary contains numerous entries 
that appear to be incorrect pronunciations, e.g.    

   DISGUSTEDNESS      ⇒    d ih s ih n t r ax s t ih d n ax s 

   IMPROBABLENESS   ⇒     ih m p r ae k t ih k ax b l n ax s 

   RECONGELATION     ⇒     r eh k ax n g r ae ch uh l ey sh ax n 

and such errors are likely to be difficult to avoid completely 
in any very large pronunciation dictionary [13]. For such 
words, it can be impossible with only two phonemes per 
letter to accommodate the extraneous phonemes at the 
appropriate position, and that can throw out the alignment 
for the letters that are actually pronounced correctly. 
Fortunately, the restriction to two output blocks is not a 
fundamental limitation of the multi-target learning approach. 
For example, the same kind of multi-target learning network 
has been shown to work well mapping one phoneme to up to 
four letters in a spelling model [4, 6]. However, the number 
of potential alignments, and hence target outputs, rises 
rapidly with the number of output blocks, so computational 
resource limitations prevent this paper from presenting an 
exploration of the potential improvements that might result 
from allowing more than two output phonemes per letter.  

Another relevant issue is the inherent variance in the 
neural network outputs that arise from the random factors 
involved, in particular due to the different random initial 
weights and different random order of presentation of the 
training words. However, it has been known for some time 
now that ensembles of neural networks can be combined 
together as a voting committee machine to result in 
improved performance over the average, and sometimes 
even over the best individual [1, 11]. This approach will 
work whenever the errors made by individual networks are 
relatively rare and uncorrelated, so they can be out-voted by 
the rest of the ensemble. Table 1 shows the consistencies C 
of the ensemble alignments for the main neural network 
variations. The ensemble of standard neural networks is best, 
with an alignment consistency that surpasses all the 
individual neural network results, and also matches that of 
the Damper et al. [9] approach (to four decimal places!). 

VI. NEURAL NETWORK GENERALIZATION RESULTS 
For pronunciation systems, it is the generalization ability 
that is the ultimate test of performance, i.e. how well the 
trained networks perform on unseen inputs. Damper et al. [9] 
used a leave-one-out cross-validation scheme to measure 
that, but training a new neural network for each word in the 
training set is not practical. Instead, generalization here was 
measured using a 10-fold cross-validation approach. The full 
set of training data was split randomly into 10 sub-sets, and 
a new network trained on each of the ten combinations of 
nine sub-sets, and tested on the unseen sub-set. 

The generalization performance was typically found to be 
in the region of 80%, which seems quite low. Damper et al. 
[9] achieved around 86% using their leave-one-out cross 
validation approach on a reduced data-set. They had to omit 
about 10% of the full word set because their alignments 
involved “null letters” which the PbA system could not 
accommodate. Those missing words are likely to be the ones 
that any alignment system will find most difficult to 
accommodate. In fact, removing those words leads to the 
Damper et al. [9] alignment consistency C increasing from 
0.5630 to 0.5711, which means that reduced word set is 



 
 

 

 K = 0 K = 0.2 K = 0.4 K = 0.6 K = 0.8 K = 0.9 K = 0.99 
Standard NN 80.67 85.40 87.98 92.35 94.85 96.65 98.95 

Non-incremental 79.49  * 84.61  * 87.27  * 91.06  * 93.66  * 95.39  * 97.64  * 
Flat initial weights 80.54 84.84  * 87.47  * 91.78  * 94.31  * 96.08  * 98.35  * 

No MT learning 79.47  * 83.67  * 85.81  * 88.64  * 90.91  * 92.61  * 94.65  * 
Aligned std. data 80.86 85.84  * 88.45  * 92.77  * 95.23 97.00 99.37  * 

Aligned std., Non-inc 79.77  * 84.96 87.74 92.26 94.92 96.80 99.29 
Aligned std., Flat wts 80.67 85.67 88.29 92.58 95.11 96.93 99.30 

Naïve aligned data 52.97  * 58.90  * 60.71  * 63.63  * 65.73  * 69.53  * 72.98  * 
Damper et al. subset 79.62  * 85.06 87.81 92.51 95.27  * 97.23  * 99.29  * 

 
Table 2. Generalization performances (percentages correct) for the neural network variations and a range of leniency parameters K. Values 
that differ significantly (unpaired two-tailed t-test p < 0.01) from the corresponding standard network results are indicated by a “*”. 
 

likely to over-estimate the generalization performance on the 
full word set. Damper et al. [9] note that if all those omitted 
words were counted as wrong, they would still achieve a 
generalization performance of 76.1%, which they considered 
“a very respectable result on such a sizeable dictionary”. Of 
course, no such word removals are needed for the approach 
of this paper, so it appears that the new neural network 
generalization results are actually quite good compared to 
those of the existing symbolic approaches.  

Another complication is that the whole concept of correct 
generalization is not straightforward here. First, the full 
BEEP data set actually contains multiple pronunciations for 
many words, and only the first for each word was selected to 
give a consistent set for training [9]. One could always use 
the full set for testing purposes, but there is no guarantee that 
the BEEP dictionary contains the full set of possibilities. In 
fact, given the range of acceptable regional variations in 
pronunciation, it seems likely that it is actually far from 
complete. Moreover, the BEEP dictionary contains a number 
of items of dubious accuracy [13], and there is little chance 
of any system generalizing to get those correct. 

For the earlier smaller-scale reading models, which were 
usually trained on a standard set of mono-syllabic words, it 
was feasible to test them on a standard representative set of 
hand-crafted non-words, many of which had a range of 
acceptable pronunciations [6, 14, 16]. Such a hand-crafted 
approach is obviously never going to be feasible for testing 
the large-scale systems of interest here, and producing a 
reliable automatically generated set is effectively what we 
are trying to do with the neural network model. 

One way to proceed is to use the best set of alignment 
data to identify acceptable generalizations that differ from 
the test set pronunciation. Clearly, simply taking the highest 
frequency phoneme for each letter will not be sufficient. 
First, there is often no clear winner, particularly for the 
vowels. For example, in the most consistent alignment 
found, the top three pronunciations for the letter “A” are the 
phonemes “ae” (30%), “ax” (25%) and “ey” (17%), leaving 
28% for the others. Moreover, standard pronunciation rules 
are then lost, like the length of a vowel sound depending on 

the presence or absence of a final letter “E”, e.g., “PAN” 
pronounced “p ae n” and “PANE” pronounced “p ey n”.  

What one can do is look at a sequence of generalization 
measures, starting with only allowing the pronunciation 
listed in the test set, and then being increasingly lenient 
about what variations are allowed. One can truncate the 
frequency ordered list of phoneme alignments for each letter 
at the point at which the total coverage (as a proportion of all 
mappings) is K. Clearly, K = 0 means only counting as 
correct the test set pronunciations. Then K = 0.2 corresponds 
to also allowing the most common phoneme for each letter, 
i.e. a total of up to 26 extra matches. Increasing to K = 0.8 
allows multiple possibilities for all the vowels and some 
consonants (“C” and “S”), totaling 51 matches. By K = 0.99, 
only the letter “V” matches a single phoneme, and there are 
121 allowable extra matches in total, none of which are 
obvious errors. Finally, for K = 1.00 there are 838 matches, 
many of which would be considered unacceptable by most 
English speakers. The number of generalizations counted as 
correct will clearly increase with K, and there is still no 
guarantee that the choice of variation follows any kind of 
appropriate pronunciation rule, but it does enable individual 
users to choose which cut-off they consider most appropriate 
for their purposes. 

Figure 3 shows how a range of generalization measures 
progressed during training for the standard incremental 
approach and the non-incremental equivalent. Having access 
to the whole training data set at once does lead to a faster 
improvement in performance for all values of the leniency 
parameter K, but by the end of training, the incremental 
approach is performing better, and the total number of 
training word presentations needed to reach the stopping 
criterion is fewer.  

Table 2 presents the final generalization performances for 
the key neural network variations using a range of values for 
the leniency parameter K. The standard network achieves the 
best results on non-aligned training data for all values of K. 
For the non-incremental learning variation, there is a small 
(~1.0%) but significant reduction in performance compared 
to the standard approach. The variation using a flat initial 



 
 

 

weight distribution results in an even smaller performance 
reduction (~0.5%) compared to the standard approach, but 
the difference is still significant for all values of K except 0. 
If the full multi-target learning approach is replaced by the 
faster “patch-up mechanism”, there are significant bigger 
and more variable reductions (>1.2%). Not surprisingly, the 
equivalent networks trained with the naïve aligned data have 
the worst results, with very large (>25%) and highly 
significant reductions compared with the standard network. 
The various generalization performance reductions are in 
line with the reductions in alignment consistency seen in 
Table 1, providing further confidence that the consistency 
measure C really is a useful and reliable indicator of the 
alignment quality and of the level of generalization 
performance that can be expected to result from it. 

A remaining important question is whether the standard 
multi-target learning neural network performs as well as an 
equivalent neural network learning from the best pre-aligned 
training data throughout. This was tested by carrying out the 
training using the best alignment previously achieved, 
namely that from the ensemble of 20 standard networks. 
Table 2 shows that there is only a slight generalization 
improvement (~0.4%) to be achieved in that way, and the 
difference is only significant for four of the seven K values 
tested, and not including the pure test-set (K = 0) case. Using 
the incremental learning approach is still crucial for the pre-
aligned version. Without it, the standard network is then 
significantly better for the K = 0 case, and for other values of 
K is not significantly different. If pre-aligned training data is 
used with a flat distribution of initial weights, there are no 
significant differences to the standard network results.  So 
any improvements from pre-alignment are lost due to non-
incremental learning or flat initial weights.  

Unfortunately, it is not possible to test the full Damper et 
al. [9] alignment by training on a neural network, because of 
the significant number of words it has which include null 
letters. As noted above, to accommodate those words in the 
neural network representation requires the null letters to be 
removed and the associated phonemes treated as additional 
phoneme outputs for the adjacent real letters. However that 
results in a number of letters that are mapped to more than 
two phonemes and cannot be accommodated by the two 
output blocks of the neural network. If those (3625) words 
are simply removed from the data set, the Damper et al. [9] 
alignment consistency C increases from 0.5630 to 0.5685. 
Nevertheless, as seen in Table 2, the generalization results 
are mixed: significantly worse (~1.0%) for the K = 0 case, 
and significantly better (~0.4%) for  K ≥ 0.8. If one were less 
generous and counted all the removed words as wrong, that 
would reduce the Damper et al. percentages in Table 1 by a 
factor of 0.9818, which renders them significantly worse 
than the standard neural network for all values of K. 

VII. CONCLUSIONS 
This paper has shown how earlier neural network models of 
reading [3, 5, 6] can be scaled up to cope with the much 
larger dictionaries and word lengths required for modern 
speech technology. The resulting text to phoneme alignment 
consistencies and pronunciation generalization performances 

have been demonstrated to be at least comparable to the 
existing state-of-the-art symbolic rule-based systems [9, 10]. 
Moreover, the networks automatically learn the alignment 
and mapping simultaneously, and variations in the neural 
network approach (such as non-standard initial weight 
distributions, incremental training regimes, computational 
speed-ups, and different parameter values) have been 
explored, with the best approaches identified. It has also 
been demonstrated how a simple neural network ensemble 
approach [1, 11] can lead to even better performance than 
the individual networks.  

The ideas and neural networks presented here can now be 
applied fairly straightforwardly elsewhere, in particular, to 
the reverse mapping (i.e. from phonemes to graphemes as 
required for spelling), to alternative English dictionaries, and 
to other languages.  
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