

Abstract— A common problem in speech technology is the
alignment of representations of text and phonemes, and the
learning of a mapping between them that generalizes well to
unseen inputs. The state-of-the-art technology appears to be
symbolic rule-based systems, which is surprising given the
number of neural network systems for text to phoneme
mapping that have been developed over the years. This paper
explores why that may be the case, and demonstrates that it is
possible for neural networks to simultaneously perform text to
phoneme alignment and mapping with performance levels at
least comparable to the best existing systems.

I. INTRODUCTION
Many speech technology applications rely on having a good
mapping from text to phonemes that not only performs
perfectly on known words, but also generalizes well to new
words, such as previously unseen proper nouns [8].

Alignment of the text and phonemes is the first stage of
data processing necessary to provide useable training data
for many text to phoneme conversion systems, including the
most successful symbolic rule-based systems [8, 10] and
most neural network systems [14, 16, 17]. The state-of-the-
art for this alignment process appears to be the rule-based
Expectation-Maximization (EM) algorithm of Damper et al.
[9], and data aligned in that way has been employed in the
rule-based Pronunciation by Analogy (PbA) system of
Damper et al. [8, 9] to provide state-of-the-art text to
phoneme mappings for English [10].

Given the number of neural network based systems that
have been developed over the years, it seems surprising that
they are not more competitive in this area. One reason is that
most of the older neural network models [3, 6, 14, 16] were
aimed mainly at modeling psychological data and
understanding human language abilities, rather than
producing high performance applications for speech
technology. They therefore concentrated on producing
human-like performance on small-scale empirically testable
data-sets rather than large-scale systems useable for real
world applications. Moreover, the computational resources
required for training such neural networks has prevented
scaling them up to larger data-sets. However, computers are
now much more powerful, and a simple scalable neural
network based approach for dealing with both the alignment
and mapping problems has existed in the psychological
modelling literature for some time [3, 4, 5, 6], so it is worth
exploring what can now be achieved with a neural network
approach to this problem.

John A. Bullinaria is with the School of Computer Science, University of

Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK.
(e-mail: j.a.bullinaria@cs.bham.ac.uk).

In the remainder of this paper, it is described how that
neural network approach works, various issues are addressed
that relate to scaling up from simple psychological models to
practical large scale alignment and mapping systems, and the
results achieved are compared with those obtained with the
Damper et al. approach [9]. The advantage of the approach
here is not only in the good performance, but also in the fact
that the text to phoneme conversion neural network performs
the alignment as part of the standard learning phase.

II. THE BASIC NEURAL NETWORK
Whether building psychological models of reading, or more
practical text-to-phoneme conversion applications, aligning
the text (i.e. letters/graphemes) and phonemes is a crucial
first step. As Damper et al. [9] discussed in detail, some
individual letters (e.g., “X”) can sometimes correspond to
more than one phoneme, and other strings of letters can
correspond to only one phoneme (e.g., “TH”). Consequently,
given a string of letters and the corresponding string of
phonemes, it is not always obvious which letters map to
which phonemes. Early neural network systems such as the
NETtalk model of Sejnowski & Rosenberg [17] used pre-
aligned training data to bypass the problem. Later models by
Seidenberg & McClelland [16] avoided pre-alignment by
being based on Wickelfeatures (letter and phoneme trigrams)
but had relatively poor performance levels. Then Plaut et al.
[14] developed improved models, but returned to pre-aligned
training data to get good performance. This led Bullinaria to
explore extensions of the NETtalk model that were able to
learn appropriate alignments at the same time as learning the
mapping process [3, 5, 6].

Those models used a standard fully connected feed-
forward neural network architecture [2] similar to the
original NETtalk model [17], with one block of Nletters input
units (each representing one letter of the alphabet) for each
potential input letter, one block of Nphonemes output units
(each representing one phoneme type) for each phoneme
output, and Nhidden hidden units in between. Each input word
starts off with its first letter aligned with the middle input
block, and then slides to the left, one letter at a time, until its
last letter is aligned with that block. The network is trained
so that, at each stage, the output phonemes correspond to the
letter represented by the central input block, in the context of
the letters surrounding it. Letters corresponding to more than
one phoneme are accommodated by having more than one
output block, and strings of letters corresponding to shorter
strings of phonemes are accommodated by allowing a “null
phoneme” or “blank output” to be represented along with the
real phonemes. For standard English words, two blocks of

Text to Phoneme Alignment and Mapping for Speech Technology:
A Neural Networks Approach

John A. Bullinaria

Fig. 1. The neural network architecture with two output phonemes per word presentation. The output phonemes P1 and P2 correspond to the target letter T
in the centre of the input window, in the context of the letters L1, L2, … to its left and the letters R1, R2, … to its right.

phonemes are sufficient, but this will result in a few words
(such as “XMAS”) having less than optimal alignment.
These considerations lead to the neural network architecture
shown in Figure 1.

For pre-aligned training data one can use a standard neural
network learning algorithm [2] such as traditional gradient
descent connection weight updating (the back-propagation
algorithm) so that the correct outputs are produced for each
word in each input position. A more sophisticated learning
algorithm is clearly required if it must do the alignment too.
As Damper et al. [9] explained in detail, there is no unique
correct alignment (e.g., the phoneme corresponding to a
“TH” could equally well be aligned with the “T” as with the
“H”), but some alignments are clearly more appropriate than
others. Consider the word “THAT” which maps into three
phonemes: “dh ae t” in the BEEP notation [15]. If “_”
represents a blank (null phoneme), then either “dh _ ae t” or
“_ dh ae t” would be equally acceptable alignments, but
“dh ae t _” would not be, because mapping the letter “A” to
the phoneme “t” would be highly irregular compared with
mapping the letter “T” to the phoneme “t”. The key idea
here is the concept of regularity: good alignments are highly
regular, whereas poor alignment contain many irregularities.
Fortunately, neural networks are very good at identifying
regularities in data, and using them to their advantage.

This led to the idea of multi-target training [3, 5] in which
each input has a whole set of possible output targets, but the
network is trained only on the target that already exhibits the
lowest output error (e.g., the lowest sum-squared difference
between the actual network outputs and the target outputs).
If the multiple targets are the full set of possible text-to-
phoneme alignments, then, even starting from random initial
network weights, this process can settle down to using the
set of targets that correspond to a good regular set of
alignments. The reason this works is that, even with totally
random starting alignments, the coherent regular weight
updates tend to build up, while the irregular incoherent
weight updates tend to cancel out, with the net effect that the
regular alignments will have their output errors reduced by
more that the irregular alignments. This, of course, means
that in the next round (epoch) of updates, the more regular
alignments will tend to have lower errors and be chosen as
targets, rather than the irregular alignments, and the good
alignments will dominate the weight updates even more.
This process snowballs until the good alignments totally
dominate the chosen targets, and the alignment process is

complete. The same good set of alignments are then chosen
every time until all the output activation errors are reduced
to their chosen low levels.

This basic architecture and learning algorithm formed the
basis of a series of models of reading aloud, including
human-like generalization ability for reading non-words,
accounts of frequency and regularity effects in reaction
times, and models of developmental and acquired surface
dyslexia [3, 6]. Relatively straightforward extensions of it
were also used to model the harder reverse task of spelling,
i.e. phoneme-to-text conversion [4, 6]. One might wonder,
therefore, why this process has not been applied to text-to-
phoneme mapping more generally. The reason is probably
that those earlier models were all rather small scale, and
there are various practical technical issues that need to be
addressed before it can be applied to large scale datasets
such as the British English Example Pronunciation (BEEP)
dictionary [15] used in the Damper et al. [9] study.

III. SCALING UP THE NEURAL NETWORK
The main scaling-up problem one faces is the combinatorial
explosion in the number of possible target alignments for
longer words, which proves particularly troublesome for
words that are more than eight or nine letters long. In the
BEEP dictionary [15] there are approximately 200,000
words, up to 28 letters long, with over 25% of them eleven
or more letters long. This means that, in practice, one will
eventually need to restrict the number of possible alignments
that are considered, but to do that in such a way that it
catches a large proportion of the best alignments.

Another problem one has with very large training data sets
is that the network weight updates corresponding to highly
irregular mappings (e.g., the letters “LB” being pronounced
“p aw n d”) are swamped by those coming from more
regular mappings, and this renders them extremely difficult
to learn. In psychological models this is usually less of a
problem, because one takes word usage frequency into
account in the training process, and since irregular words
tend to be higher frequency as a result of language evolution
[12], this tends to compensate sufficiently [6, 14, 16]. When
word frequency information is not available (e.g., as with the
BEEP dictionary data), an alternative approach is to stop
updating the weights for words that have already reached
some threshold output error level (e.g., that have each output
unit activation within 0.2 of its target value). This proved to
work very well and was adopted as standard here.

There are also a number of very long range dependencies
that have to be dealt with. For example, in the words

PRECONSIDERATIONS ⇒ p r iy k ax n s ih d ax r ey sh n z

 RECONSIDERATIONS ⇒ r iy k ax n s ih d ax r ey sh ax n z

the pronunciation of the “ION” depends on the initial “P”.
BEEP is generated from many different sources, and is
known to contain errors [13], so it is debatable whether this
is a real idiosyncrasy of English, or simply an error in the
dictionary. Either way, the algorithm will need to deal with
it and have a big enough input window to accommodate the
“P” while the “ION” is in the centre position. To cope with
this, an input window of 41 letters was used, with 20 context
letters each side of the crucial central position. This results
in a total of 1066 input units, and quite large neural networks
to train. This could cause computational resource problems
for a naïve implementation of the network, but in practice it
is possible to simply ignore at each stage any input units that
are not activated, because they do not contribute to any
activations or weight updates. This means using, on average,
only nine inputs rather than the full 1066.

A side effect of needing a large amount of context
information for some words, is that it may be misused for
other words. Underlying the concept of regularity here is the
idea that the text-to-phoneme mapping consists of a whole
hierarchy of rules embodied in the neural network
connection weights, and that the simpler and more general
that rule set is, the better it is likely to generalize. This
implies making the minimum use of the available context
information that is consistent with performing the mapping
accurately. In other words, long range context information
should only be used when more local context is insufficient.
Since the gradient descent learning in neural networks will
update the weights connected to any useable input
information, this could be problematic. One solution would
be to have different learning rates for the weights connected
to different blocks of inputs: large for the central block, and
increasingly smaller for more distant blocks. This does
work, but it proves extremely difficult to have the rates fall
off with distance sufficiently fast without considerably
slowing down the training time of the network. A simple
alternative solution derives from the idea that children are
generally taught to read shorter words before being exposed
to longer words. This actually works extremely well for
training the neural networks. The system starts off learning
words of length one, and only when a fixed proportion (95%
in the standard case) have been learned correctly, does it
move on to words of length two or fewer. At each stage it
waits till 95% are learned correctly, before increasing the
maximum word length by one more. This continues until it
is training on all the words, and then it keeps going until all
the words have been learned.

This incremental learning approach also proves useful for
dealing with the combinatorial explosion of the target
alignments mentioned above. One can easily deal with the
different word length sets in different ways. There are only
829 words of three or fewer letters, and these are easy to
align by hand. The earlier studies [3, 5, 6] showed that this
was not actually necessary for achieving good alignments,

but it does allow the removal of some of the arbitrariness of
the resulting alignments, which makes the subsequent
analysis and evaluation easier. In particular, for the hand-
aligned words a non-blank is only allowed in the right-hand
phoneme block when there is already one in the left-hand
block, and when two letters map to a single phoneme, that
phoneme is always aligned with the left most letter. Of
course, once the networks move on to the longer unaligned
word-sets, which no longer include fixed alignments for the
words of three or fewer letters, it will be free to change the
alignments it was forced to learn previously, but it will only
do that if there is some advantage in it.

As the network moves on to learning each new larger
word-set, most of the shorter words are already pronounced
correctly, and many of the new words are also already
correct without needing any further training, because they
are regular and the neural network automatically generalizes
well to them. There is clearly no need to check for better
target alignments in any of those cases. This means that for
word-sets with a maximum of up to 15 letter words, it is
actually computationally feasible to search through all the
possible alignments for each incorrect word at each stage of
training. For longer words, a full search does become
impractical. However, by then, around 195,000 words (i.e.
about 98% of the whole training set) will have already been
aligned and learned correctly, and the principal alignment
rules are firmly established in the network weights. Many
other words will only be pronounced incorrectly because of
subtle variations in the vowel sounds, but their alignment
will be correct. Beyond 15 letter words, there are actually no
new words introduced that have no letters at all aligned and
pronounced correctly, and those letters that are correct will
strongly restrict how the rest are aligned. It turns out that all
one needs to do is identify the existing non-blank outputs for
each word, and “patch-up” the errors to result in the right
number of output phoneme positions, and those provide a
very good indication of where each target phoneme should
go. Then going though a simple check of how swapping
each blank with each non-blank affects the total error, gives
a confirmation that the alignment is good, and occasionally
one can find an improved alignment to use. This faster
process still sounds computationally costly, but since all the
output activations are already computed, it usually has
negligible cost compared with passing the activations
through the network and computing the outputs in the first
place. Even if this mechanism does not identify the best
possible alignment for a particular word, it will not be totally
wrong, and the combination of weight updates for all words
will improve the alignments ready for the next round. In the
same way that random initial alignments sort themselves out,
so do any less than perfect choices of output targets here.

IV. IMPLEMENTATIONAL DETAILS
Neural networks are usually started with all their weights
and biases drawn from the same uniform distribution of
random numbers. However, it is now known that more
complicated set-ups tend to emerge in studies in which
different initial weight distributions for each part of the
network are optimized by processes such as simulated

20100-10-20
0.0

0.5

1.0

1.5

Block

AW
Flat

Non-inc

Standard

Input
20100-10-20

.0001

.001

.01

.1

1

10

Block

AW

Flat

Non-inc

Standard

Input
Fig. 2. Average absolute weight magnitudes (AW) for the 41 input blocks, on a linear scale (left) and log scale (right). The weights for the long range
context blocks are lowest for the standard network, more for non-incremental learning, and highest for a flat initial weight distribution.

evolution by natural selection [7], so it is worth considering
more carefully what is most appropriate here. As noted
above, when one thinks in terms of the hierarchy of rules
determining the correct phoneme outputs for each letter, it is
reasonable to expect that it would be best to only use long
range context information when the more local context is
insufficient. In neural network terms, that would imply that
the average magnitudes of the weights connecting the more
central input blocks to the hidden units should be higher than
those connecting the less central input blocks. Ultimately, it
is the learning algorithm which determines the weight
values, but it may help if the random initial values for the
input to hidden unit weights are not set too high as a starting
point. This is particularly important for the incremental
approach adopted here, to prevent any disruption caused by
the increased number of context blocks suddenly introducing
additional random activations into the network each time the
maximum word length is increased. The standard neural
network approach here takes this idea to the extreme and has
all the initial input to hidden layer weights start from zero, to
minimize any unnecessary contributions from the outer
context blocks. It also starts all the hidden unit and output
unit biases from zero. Only the hidden unit to output weights
start from a traditional uniform distribution of random
values in the range [-1,+1]. This will later be compared
empirically with the more conventional approach of starting
all the network weights and biases with a flat distribution of
random values in the range [-1,+1].

Given the above architecture and learning algorithm, there
remain a few other details that need to be specified. First,
one must set an appropriate number of hidden units for the
neural network. Obviously, there needs to be enough units
that the associated connection weights can accommodate all
the pronunciation rules, but not so many that the network
takes too long to train. One does not have to worry too much
here about restricting the numbers to avoid over-fitting – in
this case the “noise” in the training data is the irregular
pronunciations, and we do want to learn them. A good
compromise for the BEEP data was found to be 2000 hidden
units. The earlier studies [3, 5, 6] all used the standard sum-

squared error measure for the gradient descent learning, but
it has since been established that the cross-entropy error
measure works better for binary mappings [2, 7], so that is
used here. Finally, a gradient descent learning rate of 0.1
proved to result in learning that was reasonably fast, but not
so fast that networks settled prematurely on inappropriate
alignments, or kept on switching unnecessarily between
different target alignments.

V. NEURAL NETWORK LEARNING RESULTS
The neural network system described above was trained on
198618 words from the BEEP dictionary [15], consisting of
the same 198632 words used in the Damper et al. study [9]
except for 14 very non-standard “words” that had many
more phonemes than letters (e.g., “X” pronounced “e k s”,
and “UNIV” pronounced “y uw n ih v er s ih t iy”) which
was a clear indication that they deviated considerably from
standard English pronunciation. Twenty such runs, each
using different random number seeds, and numerous further
sets of runs designed to explore variations in the details and
parameters specified above, all achieved 100% correct
pronunciation on the training data.

The first issues explored were the effects on the final
learned weights of the non-traditional distribution of initial
weights and the incremental learning approach. Figure 2
shows the final average absolute weight distributions for the
standard networks, the equivalent networks that start from a
more conventional flat (uniform) distribution of initial
weights, and the equivalent networks that learn from all the
training words throughout, rather than the incremental
process that has the shorter words largely learned before
moving on to longer words. It is clear that the standard
network does, as hoped, make less unnecessary use of the
longer range context information.

Of course, it is not the weight distributions that are most
important, but the quality of the resulting network outputs. A
crucial question for this paper is: how well do the resulting
alignments compare with the Damper et al. approach [9]? In
their paper, they compared the various alignments by
measuring the corresponding generalization performance on

 C Average C Std. Dev. C Maximum Ensemble C
Standard NN 0.5606 0.0012 0.5619 0.5630

Non-incremental NN 0.5553 0.0055 0.5625 0.5560
Flat initial weights NN 0.5590 0.0013 0.5613 0.5610

MT only to length 7 NN 0.5610 0.0014 0.5620 0.5629
No MT at all NN 0.4868 0.0076 0.5012 0.4934
Naïve Alignment 0.2276 – 0.2276 –
Damper et al. [9] 0.5630 – 0.5630 –

Table 1. Alignment consistencies C (average, standard deviation, maximum and ensemble average over 20 runs) for the standard neural
network studied in this paper, four variations of it, the naïve alignment, and the alignment generated by Damper et al. [9].

the Pronunciation by Analogy (PbA) system [8]. It is not
totally obvious that such pronunciation performance is really
the best measure of alignment. All the neural networks here
achieved 100% on the training data, despite spanning a
range of different qualities of alignments, but it is reasonable
to expect that a more consistent or regular alignment will
allow a better hierarchy of rules to emerge (particularly in a
rule based system like PbA) and that will result in better
generalization. Such a measure will therefore be considered
in the next section, but first it seems prudent to consider a
more direct measure of alignment quality.

Actually, Wolff, Eichner & Hoffmann [18] have already
presented a suitable grapheme to phoneme consistency
measure. The idea is that, given aligned strings of graphemes
g ∈ G and phonemes f ∈ F, and associated probabilities
p(g), p(f) and p(g,f), one can define the entropy

€

H = − p(g, f) log p(g, f)
g∈G , f∈F
∑

and mutual information

€

I = p(g, f)log p(g, f)
p(g)p(f)
⎛

⎝
⎜

⎞

⎠
⎟

f ∈F
∑

g∈G
∑

so that C = I/H is a measure of mapping consistency.
If the G-F mapping were totally random, that consistency

C would be zero, while a perfect 1-1 mapping with each
grapheme corresponding to a single distinct phoneme would
have a consistency of one. Natural languages fall somewhere
in between. Wolff et al. [18] suggest that German and Dutch
have consistencies around 0.75, and English around 0.65.
However, large dictionaries containing mixtures of regional
variations and a significant number of errors will have lower
consistencies, even if the alignment is carried out as well as
possible. Moreover, the sizes of the grapheme and phoneme
sets can vary across different dictionaries or representations
for the same language [9]. This renders absolute consistency
evaluation difficult, but C can certainly be used to compare
different alignments on the same dictionary.

The neural networks map individual letters to either zero,
one or two phonemes. It therefore makes sense to take the
“graphemes” G here to be the letters, and the “phonemes” F
to be the set of possible outputs. Table 1 summarizes the

alignment consistencies C then achieved by the key neural
networks studied, showing the averages, standard deviations,
and maxima over 20 runs. The standard neural network here
achieves a consistency of 0.5606, which is significantly
better than both the non-incremental learning approach
(0.5553, unpaired two-tailed t-test, p = 0.0004) and the flat
initial weight distribution approach (0.5590, p = 0.0005). A
computationally faster variation that switches from the full
multi-target learning approach to the simplified “patch-up
mechanism” at word length 8, instead of 16, does not give
significantly different results to the standard case (0.5610,
p = 0.25). However, using the “patch-up mechanism”
throughout, totally replacing the multi-target approach, does
lead to a large reduction in consistency (0.4868, p < 10-10).
This confirms that the simplified “patch-up” approach is
good enough, as long as it is not introduced too soon.
Explorations of variations in the various learning parameter
values have so far failed to identify any significant
improvements over the standard network. In particular,
varying the output error training tolerance from 0.2 to either
0.1 or 0.3 led to no significant difference in the alignment
consistency, and nor did varying the performance level
which initiates a new stage of incremental learning from
95% to 99%, 90%, 80% or even 60%.

For comparison, Table 1 also shows the results of a naïve
alignment and the Damper et al. alignment [9]. The naïve
alignment, that simply assigns one phoneme to each letter
from left to right till they run out, not surprisingly results in
very low consistency (0.2276). Computing the consistency
for the Damper et al. [9] approach is complicated by the fact
that they specify their alignments by inserting both “null
letters” and “null phonemes”. The null phonemes act in the
same way as in the neural network approach, but rather than
allowing more than one output phoneme per letter, any extra
phonemes are aligned with null letters. For example, the
word AXE leads to the 3-letter mapping “A X E ⇒ ae k+s _”
in the neural network approach, and the 4-letter mapping
“A X _ E ⇒ ae k s _” in the Damper et al. approach. Here
one can take the “graphemes” G to be the letters plus null,
and the “phonemes” F to be the actual phonemes plus null.
That gives a consistency C of 0.5560. To get a fairer
comparison with the approach of this paper, the null letters
can be removed, and the phonemes associated with them

2520151050
0

20

40

60

80

100

MW

%

0.2

0.99

0.6

0

 2520151050
0

20

40

60

80

100

MW

%

0.2

0.99
0.6

0

Fig 3. Generalization performance (percentage correct) against number of millions of words of training (MW) for leniency parameter K = 0, 0.2, 0.6, 0.99.
Two distinct learning patterns arise: the standard incremental approach (left) and the non-incremental equivalent (right).

assigned to adjacent real letters, to match the neural network
representation. For a null letter at the beginning or end of a
word, it is clear which letter the corresponding phoneme
should be associated with. When they appear mid-word, it is
not so obvious, but it matches the neural representation most
closely if the phoneme is associated with the real letter that
comes first. One can then compute the letter to phonemes
consistency in the same way as for the neural networks, and
that results in the increased value of 0.5630.

So the average consistency achieved by any of the neural
networks is still slightly below that of the Damper et al. [9]
approach. Indeed, even the best individual network does not
do better. One possible reason is that not allowing a letter to
map to more than two phonemes is a restriction which the
Damper at al. approach doesn’t have, and this can cause
anomalous alignment problems that result in reduced
consistency. This would not be a big problem for standard
English, but the BEEP dictionary contains numerous entries
that appear to be incorrect pronunciations, e.g.

 DISGUSTEDNESS ⇒ d ih s ih n t r ax s t ih d n ax s

 IMPROBABLENESS ⇒ ih m p r ae k t ih k ax b l n ax s

 RECONGELATION ⇒ r eh k ax n g r ae ch uh l ey sh ax n

and such errors are likely to be difficult to avoid completely
in any very large pronunciation dictionary [13]. For such
words, it can be impossible with only two phonemes per
letter to accommodate the extraneous phonemes at the
appropriate position, and that can throw out the alignment
for the letters that are actually pronounced correctly.
Fortunately, the restriction to two output blocks is not a
fundamental limitation of the multi-target learning approach.
For example, the same kind of multi-target learning network
has been shown to work well mapping one phoneme to up to
four letters in a spelling model [4, 6]. However, the number
of potential alignments, and hence target outputs, rises
rapidly with the number of output blocks, so computational
resource limitations prevent this paper from presenting an
exploration of the potential improvements that might result
from allowing more than two output phonemes per letter.

Another relevant issue is the inherent variance in the
neural network outputs that arise from the random factors
involved, in particular due to the different random initial
weights and different random order of presentation of the
training words. However, it has been known for some time
now that ensembles of neural networks can be combined
together as a voting committee machine to result in
improved performance over the average, and sometimes
even over the best individual [1, 11]. This approach will
work whenever the errors made by individual networks are
relatively rare and uncorrelated, so they can be out-voted by
the rest of the ensemble. Table 1 shows the consistencies C
of the ensemble alignments for the main neural network
variations. The ensemble of standard neural networks is best,
with an alignment consistency that surpasses all the
individual neural network results, and also matches that of
the Damper et al. [9] approach (to four decimal places!).

VI. NEURAL NETWORK GENERALIZATION RESULTS
For pronunciation systems, it is the generalization ability
that is the ultimate test of performance, i.e. how well the
trained networks perform on unseen inputs. Damper et al. [9]
used a leave-one-out cross-validation scheme to measure
that, but training a new neural network for each word in the
training set is not practical. Instead, generalization here was
measured using a 10-fold cross-validation approach. The full
set of training data was split randomly into 10 sub-sets, and
a new network trained on each of the ten combinations of
nine sub-sets, and tested on the unseen sub-set.

The generalization performance was typically found to be
in the region of 80%, which seems quite low. Damper et al.
[9] achieved around 86% using their leave-one-out cross
validation approach on a reduced data-set. They had to omit
about 10% of the full word set because their alignments
involved “null letters” which the PbA system could not
accommodate. Those missing words are likely to be the ones
that any alignment system will find most difficult to
accommodate. In fact, removing those words leads to the
Damper et al. [9] alignment consistency C increasing from
0.5630 to 0.5711, which means that reduced word set is

 K = 0 K = 0.2 K = 0.4 K = 0.6 K = 0.8 K = 0.9 K = 0.99
Standard NN 80.67 85.40 87.98 92.35 94.85 96.65 98.95

Non-incremental 79.49 * 84.61 * 87.27 * 91.06 * 93.66 * 95.39 * 97.64 *
Flat initial weights 80.54 84.84 * 87.47 * 91.78 * 94.31 * 96.08 * 98.35 *

No MT learning 79.47 * 83.67 * 85.81 * 88.64 * 90.91 * 92.61 * 94.65 *
Aligned std. data 80.86 85.84 * 88.45 * 92.77 * 95.23 97.00 99.37 *

Aligned std., Non-inc 79.77 * 84.96 87.74 92.26 94.92 96.80 99.29
Aligned std., Flat wts 80.67 85.67 88.29 92.58 95.11 96.93 99.30

Naïve aligned data 52.97 * 58.90 * 60.71 * 63.63 * 65.73 * 69.53 * 72.98 *
Damper et al. subset 79.62 * 85.06 87.81 92.51 95.27 * 97.23 * 99.29 *

Table 2. Generalization performances (percentages correct) for the neural network variations and a range of leniency parameters K. Values
that differ significantly (unpaired two-tailed t-test p < 0.01) from the corresponding standard network results are indicated by a “*”.

likely to over-estimate the generalization performance on the
full word set. Damper et al. [9] note that if all those omitted
words were counted as wrong, they would still achieve a
generalization performance of 76.1%, which they considered
“a very respectable result on such a sizeable dictionary”. Of
course, no such word removals are needed for the approach
of this paper, so it appears that the new neural network
generalization results are actually quite good compared to
those of the existing symbolic approaches.

Another complication is that the whole concept of correct
generalization is not straightforward here. First, the full
BEEP data set actually contains multiple pronunciations for
many words, and only the first for each word was selected to
give a consistent set for training [9]. One could always use
the full set for testing purposes, but there is no guarantee that
the BEEP dictionary contains the full set of possibilities. In
fact, given the range of acceptable regional variations in
pronunciation, it seems likely that it is actually far from
complete. Moreover, the BEEP dictionary contains a number
of items of dubious accuracy [13], and there is little chance
of any system generalizing to get those correct.

For the earlier smaller-scale reading models, which were
usually trained on a standard set of mono-syllabic words, it
was feasible to test them on a standard representative set of
hand-crafted non-words, many of which had a range of
acceptable pronunciations [6, 14, 16]. Such a hand-crafted
approach is obviously never going to be feasible for testing
the large-scale systems of interest here, and producing a
reliable automatically generated set is effectively what we
are trying to do with the neural network model.

One way to proceed is to use the best set of alignment
data to identify acceptable generalizations that differ from
the test set pronunciation. Clearly, simply taking the highest
frequency phoneme for each letter will not be sufficient.
First, there is often no clear winner, particularly for the
vowels. For example, in the most consistent alignment
found, the top three pronunciations for the letter “A” are the
phonemes “ae” (30%), “ax” (25%) and “ey” (17%), leaving
28% for the others. Moreover, standard pronunciation rules
are then lost, like the length of a vowel sound depending on

the presence or absence of a final letter “E”, e.g., “PAN”
pronounced “p ae n” and “PANE” pronounced “p ey n”.

What one can do is look at a sequence of generalization
measures, starting with only allowing the pronunciation
listed in the test set, and then being increasingly lenient
about what variations are allowed. One can truncate the
frequency ordered list of phoneme alignments for each letter
at the point at which the total coverage (as a proportion of all
mappings) is K. Clearly, K = 0 means only counting as
correct the test set pronunciations. Then K = 0.2 corresponds
to also allowing the most common phoneme for each letter,
i.e. a total of up to 26 extra matches. Increasing to K = 0.8
allows multiple possibilities for all the vowels and some
consonants (“C” and “S”), totaling 51 matches. By K = 0.99,
only the letter “V” matches a single phoneme, and there are
121 allowable extra matches in total, none of which are
obvious errors. Finally, for K = 1.00 there are 838 matches,
many of which would be considered unacceptable by most
English speakers. The number of generalizations counted as
correct will clearly increase with K, and there is still no
guarantee that the choice of variation follows any kind of
appropriate pronunciation rule, but it does enable individual
users to choose which cut-off they consider most appropriate
for their purposes.

Figure 3 shows how a range of generalization measures
progressed during training for the standard incremental
approach and the non-incremental equivalent. Having access
to the whole training data set at once does lead to a faster
improvement in performance for all values of the leniency
parameter K, but by the end of training, the incremental
approach is performing better, and the total number of
training word presentations needed to reach the stopping
criterion is fewer.

Table 2 presents the final generalization performances for
the key neural network variations using a range of values for
the leniency parameter K. The standard network achieves the
best results on non-aligned training data for all values of K.
For the non-incremental learning variation, there is a small
(~1.0%) but significant reduction in performance compared
to the standard approach. The variation using a flat initial

weight distribution results in an even smaller performance
reduction (~0.5%) compared to the standard approach, but
the difference is still significant for all values of K except 0.
If the full multi-target learning approach is replaced by the
faster “patch-up mechanism”, there are significant bigger
and more variable reductions (>1.2%). Not surprisingly, the
equivalent networks trained with the naïve aligned data have
the worst results, with very large (>25%) and highly
significant reductions compared with the standard network.
The various generalization performance reductions are in
line with the reductions in alignment consistency seen in
Table 1, providing further confidence that the consistency
measure C really is a useful and reliable indicator of the
alignment quality and of the level of generalization
performance that can be expected to result from it.

A remaining important question is whether the standard
multi-target learning neural network performs as well as an
equivalent neural network learning from the best pre-aligned
training data throughout. This was tested by carrying out the
training using the best alignment previously achieved,
namely that from the ensemble of 20 standard networks.
Table 2 shows that there is only a slight generalization
improvement (~0.4%) to be achieved in that way, and the
difference is only significant for four of the seven K values
tested, and not including the pure test-set (K = 0) case. Using
the incremental learning approach is still crucial for the pre-
aligned version. Without it, the standard network is then
significantly better for the K = 0 case, and for other values of
K is not significantly different. If pre-aligned training data is
used with a flat distribution of initial weights, there are no
significant differences to the standard network results. So
any improvements from pre-alignment are lost due to non-
incremental learning or flat initial weights.

Unfortunately, it is not possible to test the full Damper et
al. [9] alignment by training on a neural network, because of
the significant number of words it has which include null
letters. As noted above, to accommodate those words in the
neural network representation requires the null letters to be
removed and the associated phonemes treated as additional
phoneme outputs for the adjacent real letters. However that
results in a number of letters that are mapped to more than
two phonemes and cannot be accommodated by the two
output blocks of the neural network. If those (3625) words
are simply removed from the data set, the Damper et al. [9]
alignment consistency C increases from 0.5630 to 0.5685.
Nevertheless, as seen in Table 2, the generalization results
are mixed: significantly worse (~1.0%) for the K = 0 case,
and significantly better (~0.4%) for K ≥ 0.8. If one were less
generous and counted all the removed words as wrong, that
would reduce the Damper et al. percentages in Table 1 by a
factor of 0.9818, which renders them significantly worse
than the standard neural network for all values of K.

VII. CONCLUSIONS
This paper has shown how earlier neural network models of
reading [3, 5, 6] can be scaled up to cope with the much
larger dictionaries and word lengths required for modern
speech technology. The resulting text to phoneme alignment
consistencies and pronunciation generalization performances

have been demonstrated to be at least comparable to the
existing state-of-the-art symbolic rule-based systems [9, 10].
Moreover, the networks automatically learn the alignment
and mapping simultaneously, and variations in the neural
network approach (such as non-standard initial weight
distributions, incremental training regimes, computational
speed-ups, and different parameter values) have been
explored, with the best approaches identified. It has also
been demonstrated how a simple neural network ensemble
approach [1, 11] can lead to even better performance than
the individual networks.

The ideas and neural networks presented here can now be
applied fairly straightforwardly elsewhere, in particular, to
the reverse mapping (i.e. from phonemes to graphemes as
required for spelling), to alternative English dictionaries, and
to other languages.

REFERENCES
[1] Battiti, R. & Colla, A.M. (1994). Democracy in neural networks:

Voting schemes for classification. Neural Networks, 7, 691-709.
[2] Bishop, C.M. (1995). Neural Networks for Pattern Recognition.

Oxford, UK: Oxford University Press.
[3] Bullinaria, J.A. (1993). Neural network models of reading multi-

syllabic words. In: Proceedings of the International Joint Conference
on Neural Networks (IJCNN 1993), 283-286. Piscataway, NJ: IEEE.

[4] Bullinaria, J.A. (1994). Connectionist modelling of spelling. In:
Proceedings of the Sixteenth Annual Conference of the Cognitive
Science Society, 78-83. Hillsdale, NJ: Erlbaum.

[5] Bullinaria, J.A. (1995). Neural network learning from ambiguous
training data. Connection Science, 7, 99-122.

[6] Bullinaria, J.A. (1997). Modelling reading, spelling and past tense
learning with artificial neural networks. Brain and Language, 59, 236-
266.

[7] Bullinaria, J.A. (2003). Evolving efficient learning algorithms for
binary mappings. Neural Networks, 16, 793-800.

[8] Damper, R.I., Marchand, Y., Adamson, M.J. & Gustafson, K. (1999).
Evaluating the pronunciation component of text-to-speech systems for
English: A performance comparison of different approaches.
Computer Speech and Language, 13, 155-176.

[9] Damper, R.I., Marchand, Y., Marsters, J.D.S. & Bazin, A.I. (2005).
Aligning text and phonemes for speech technology applications using
an EM-like algorithm. International Journal of Speech Technology, 8,
149-162.

[10] Davel, M. & Barnard, E. (2008). Pronunciation predication with
Default&Refine. Computer Speech and Language, 22, 374–393.

[11] Hansen, L.K. & Salamon, P. (1990). Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12, 993-
1000.

[12] Hare, M. & Elman, J.L. (1995). Learning and morphological change.
Cognition, 56, 61-98.

[13] Martirosian, O.M. & Davel, M. (2007). Error analysis of a public
domain pronunciation dictionary. In Proceedings of the 18th Annual
Symposium of the Pattern Recognition Association of South Africa
(PRASA), 13-16.

[14] Plaut, D.C., McClelland, J.L., Seidenberg, M.S. & Patterson, K.E.
(1996). Understanding normal and impaired word reading:
Computational principles in quasi-regular domains. Psychological
Review, 103, 56-115.

[15] Robinson, A. (1997). British English Example Pronunciation
Dictionary (BEEP), Version 1.0, Cambridge University.

[16] Seidenberg, M.S. & McClelland, J.L. (1989). A distributed,
developmental model of word recognition and naming. Psychological
Review, 96, 523-568.

[17] Sejnowski, T.J. & Rosenberg, C.R. (1987). Parallel networks that
learn to pronounce English text. Complex Systems, 1, 145-168.

[18] Wolff, M., Eichner, M. & Hoffmann, R. (2002). Measuring the quality
of pronunciation dictionaries. In Proceedings of the ISCA Tutorial and
Research Workshop on Pronunciation Modeling and Lexicon
Adaptation (PMLA), 117-122.

