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Abstract—The idea of using evolutionary techniques to
optimize the performance of neural networks is now widely
used, but some approaches have been found to result in the
evolution of risky learning strategies that lead to occasional
instances of very poor performance. In this paper I shall
present a series of simulations that explore the nature of those
problems, and examine the extent to which one can use
ensemble techniques to alleviate them.

I. INTRODUCTION

An important application area for neural networks is in
autonomous agents — systems that are expected to learn
from, or adapt to, their environment without any external
assistance. Typically this means that they must learn to
generalize as well as possible, as quickly as possible, from as
little training data as possible. It is now well established that
using simulated evolution is an extremely powerful approach
for optimizing such performance [1, 2], but recently it has
been observed that some of the most obvious evolutionary
approaches can lead to the evolution of rather risky learning
strategies that sometimes result in very poor performance
[3,4]. Of course, if we are employing a whole population of
essentially disposable autonomous devices, then occasional
instances of disastrous performance will not be too
problematic. However, if we have a single autonomous
system, sent at great expense to another planet (say), then the
possibility of an occasional lapse that could lead to its
destruction would clearly be unacceptable. The aim of this
paper is to look in more detail at the problematic learning
mechanisms that can arise for evolved neural networks, and
then explore the possibilities for avoiding these problems
using ensemble techniques.

In the next section I shall outline the main evolutionary
approaches that are appropriate for optimizing autonomous
neural network systems. I then describe a series of
simulations that explore the relevant issues for a simplified
class of classification tasks that cover the crucial properties
of many real world situations. The results of those
simulations are then presented and analyzed, and the
potential problems inherent in the emergent systems become
clear. This leads on to a discussion of ensemble techniques,
and an exploration of how they can be used to alleviate the
problems that the evolved networks suffer. I then look
briefly at the idea of avoiding the problems by using evolved
time dependent learning rates, and show how the same
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ensemble techniques are able to produce improved
performance in that case too. I end with some discussion
and conclusions.

II. NEURAL NETWORK EVOLUTION

The aim of neural network evolution here is to generate
autonomous systems that can be sent into a new environment
and learn to perform (i.e., generalize) as well as they can, as
quickly as they can, on whatever task is given to them. They
will receive a steady stream of inputs from their environment
and be expected to produce appropriate outputs (i.e. actions).
We will assume that they obtain feedback after they have
produced their output as to whether it was correct or not, and
hence be able to learn from their mistakes. Obviously, if we
knew the exact task in advance, we could do the training in
advance, and would not need an autonomous system. For
autonomous systems, we will normally only have some idea
of the class of environments/tasks that can be expected to
arise, and so the aim is to evolve systems that will have good
performance in any situation from that class.

The simulated evolution proceeds by taking a whole
population of neural networks, and generating a stream of
inputs corresponding to one environment from the class of
expected environments, and measuring how well each
network learns to perform. We then take the fittest (i.e., best
performing) individuals to create the next generation of
neural networks, using appropriate forms of cross-over and
mutation. Such evolution by ‘natural selection’ will result in
good innate properties (e.g., parameter values) proliferating
in the populations, and poor ones being lost. If we change
the environment for each new generation, we eventually
evolve a population of neural networks that will work well in
any environment they find themselves in.

There are several distinct approaches to simulated
evolution that one can follow [3]. The simplest are the
generational approaches in which the individuals compete
with each other one generation at a time. If we allow each
individual to learn from a fixed number N blocks of training
examples and test their generalization performance during
the last block, we can use that performance as their fitness
and form the next generation from the fittest. We shall call
this the basic G/ generational approach. We can see that
this is likely to cause good generalizers to evolve, but there
appears to be nothing to encourage the good performance to
arise quickly, in less than N blocks of training data. It is also
far from obvious how one can choose an appropriate value
of N before we have even started the evolutionary process.

A sensible refinement over the G/ approach is to start off



Figure 1. Three typical training data sets — circular classification boundaries in a 2D continuous input space.

with N at some sufficiently large value, and as soon as the
evolution has resulted in (say) half the population reaching a
clear maximum performance in that time, average the
generalization performance after N-1 training data blocks
too. If we keep measuring the fitness over increasingly large
numbers of data blocks at the end of training, in line with the
improving performance, we encourage the networks to learn
more and more quickly. The first G/ stage of evolution
improves the generalization, and the second improves the
speed. We shall call this the G/+GI approach.

An alternative approach for improving the learning speed
is to take the fitness to be the number of blocks of training
data required to reach the maximum level of performance.
This is the G2 approach. The obvious problem with this is
that we will generally not be able to know in advance what
the maximum level of performance is likely to be. However,
we can start the evolution with the GI approach to establish
that level, and then switch to the G2 approach. We shall call
this the GI+G?2 approach.

It is clear that most biological populations evolve in a
rather different manner. They typically include competing
individuals of all ages, with relatively few individuals
replaced by children at each stage. The need to compete
with more experienced individuals inevitably encourages
faster learning of good performance. We shall call such
steady state evolution the SS approach.

III. SIMULATION DETAILS

To understand the similarities and differences between the
neural networks produced by the four evolutionary
approaches just described (GI, GI+GI, GI+G2, SS), we
need to run some simulations, which requires us to narrow
down to a specific class of tasks and type of network. Most
real-world classification tasks involve learning non-linear
classification boundaries in a space of real valued inputs. So
let us look at the class of simple classification tasks, based
on a two dimensional continuous input space with circular
classification boundaries. Some representative examples are
shown in Figure 1. This set-up is simple enough to allow
extensive simulations, yet covers the crucial features and
difficulties of many real world problems. Each network is
assigned a random classification boundary which it must

learn from a stream of randomly drawn data points. The
performance measure will be the generalization ability, i.e.
the average number of correct outputs (e.g. within 0.2 of the
binary targets) before training on them.

Again for simplicity, we shall take our neural networks
to be traditional Multi-Layer Perceptrons with one hidden
layer, sigmoidal processing units, trained by gradient descent
using the cross-entropy error function that is appropriate for
classification tasks [2]. As previous studies have shown, one
gets better performance by evolving separate learning rates
1, and initial weight distributions [-r;, +r,] for each of the
four distinct network components L (the input to hidden
weights TH, the hidden unit biases HB, the hidden to output
weights HO, and the output unit biases OB), rather than
having single parameters for the whole network [2, 3].
These, together with a standard momentum parameter o and
a weight decay regularization parameter A, give us a total of
ten evolvable innate parameters for each network. One
could also evolve the number of hidden units, but doing this
usually results in the maximum allowed number being used,
slowing down the simulations considerably [4], so we kept
this fixed at 20 for all networks, which is plenty for the
given tasks, yet not so large as to place unnecessary
demands on our computational resources.

Each of the evolutionary approaches involve a number of
additional parameters that we must set. To ease comparison
between the steady state and generational approaches, we
define a ‘simulated year of experience’ to be a block of 1200
training data samples. In the steady state simulations, pair-
wise comparisons of fitness after each simulated year select
10% of the least fit individuals to be removed from the
population. In addition, a random 20% of individuals aged
over 30 simulated years are removed each year, to prevent
the populations being dominated by a few very old and very
fit individuals. In the generational simulations, the least fit
50% of the population are removed and the most fit 50% are
regenerated from their innate parameters at each generation,
which for the G/ stages corresponds to 60 simulated years.
A population size of 200 is maintained throughout, with the
removed individuals being replaced by children generated
from random pairs of the most fit individuals. Each child
inherits innate parameters that are chosen randomly from the
corresponding range spanned by its two parents, plus a
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Figure 2. Evolution of the neural network learning rates, with means and standard deviations over 10 runs, for the four
evolutionary approaches: G/ (top left), GI+G1 (top right), GI1+G2 (bottom left), SS (bottom right).

random mutation (from a Gaussian distribution) that gives it
a reasonable chance of falling outside that range.

IV. SIMULATION RESULTS

If we generate our initial populations randomly with their
innate parameters chosen in the range from zero to about
twice those used in traditional hand-crafted networks, we
stand a good chance of starting with a range of reasonably
competent individuals. Our simulated evolution as specified
above should then be able to adapt those parameters to
optimize the performance. Occasionally, if we fail to
maintain the population diversity adequately, the evolution
can become stuck in local maxima of fitness, particularly in
the SS approach. However, for present purposes at least, it is
easy to spot the resultant inferior ‘species’ and simply
disregard them [3]. All of the following results will be
presented as averages over 10 successful runs of each type
using different random numbers.

The evolution of the learning rates for each of the four
approaches are shown in Figure 2. We see that a similar
pattern emerges in each case, but over rather different
evolutionary time scales. The G approach takes something

like 300 thousand simulated years to settle down, the
GI1+G1 approach takes around 180, the GI+G2 approach
takes around 120, and the SS approach requires only around
30. These differences are a clear reflection of the increasing
amounts of evolutionary pressure to improve the learning
speeds across the four approaches. It is interesting to note
that all four approaches exhibit similar large differences
between the evolved learning rates for the four network
components, and that they take on values that differ by
orders of magnitude from those traditionally used. Evolving
a single learning rate for all four network components results
in a value of around 0.2, which is much more in line with the
values traditionally used in this type of network.

We find analogous patterns of evolution for the other
innate network parameters. The important property here
though, is the resultant performance of the evolved
networks. Since the idea is to evolve networks that can
perform well whatever training set they are given from the
specified class, each evolved individual was tested on 100
different randomly chosen data sets. Figure 3 shows the
mean errors and their variances, as a function of age, for
each of the four main approaches. For comparison, it also
shows a typical population only allowed single parameters
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Figure 3. The error rates during learning for the evolved networks: means (left) and variances (right).

Std.Dev.

Age 40 60

The four main

populations are shown (SS, GI, GI1+GI, GI+G2), plus the single component GI population (Single).

1077 5

10_2-:

1073 E

1074 .
0 2

Errors

Errors 60 90

Figure 4. Two views of the average error distributions between ages 50 and 60: peaks (left) and tails (right). The four
evolved populations are shown (SS, GI, GI+GI, GI+G2), plus the single component G/ population (Single).

across all four network components. The standard errors on
the means are a factor of 140 smaller than the standard
deviations shown, so the differences between the means
across approaches are quite significant, despite the evolved
learning rates looking rather similar. In both the errors and
the variances, we see again the hierarchy of the approaches
in terms of forcing faster learning, and a trade-off between
speed and accuracy. It is also clear from the relative sizes of
the variances and means that the error distributions must be
somewhat skewed, and this warrants further investigation.
Figure 4 shows the error distributions averaged over
evolved individuals between the ages 50 and 60, by which
time little further learning takes place. We see that there is
relatively little difference in the peaks across the four main
evolutionary approaches, with each of them showing a
massive concentration around zero errors, as one would
hope. The tails of the distributions, however, are much more
variable, with the same hierarchy that we saw in Figures 2
and 3. The evolutionary approaches that specifically
encourage faster learning result in individuals producing
many times the number of very large errors than the G/ and
single component cases. In effect, the faster learners are

adopting riskier learning strategies that work well overall,
but occasionally results in extremely poor performance.

The fact that the riskier strategies emerge is evidence of
their benefit from an evolutionary point of view, but to judge
whether they are worthwhile for our more practical
concerns, it is instructive to look more carefully at their
effect on faster learning. The median error rates will not be
influenced by the long tails of the error distributions in the
same way as the means. These are shown on the left of
Figure 5. The usual hierarchy is still apparent, but the
differences don’t appear to be that great. The differences are
clearer, though, if we plot the distribution of ages at which
individuals reach their first complete year of perfect
performance, as shown on the right of Figure 5. The wide
distributions reflect the range of task difficulties, as well as
individual differences. As we go through the hierarchy of
approaches, the peak shifts from around eight years for G/
to around four for SS, which really could be a worthwhile
level of improvement for many applications.

A closer investigation of the pattern of errors reveals that
the problems are not due to a small number of consistently
very poorly performing individuals, nor due to brief periods
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Figure 5. The median error rates during learning for the evolved networks from each approach (left), and the corresponding
distributions of ages at which individuals reach their first complete year of perfect performance (right).
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Figure 6. The error rates during learning for the evolved networks when each network uses voting over three runs starting
from different random initial weights (left), and the corresponding average error distributions between ages 50 and 60 (right).

of very poor performance during lifetimes of otherwise
reasonable performance. They actually arise from different
individuals not being able to cope at all on a small number of
tasks, and it seems difficult to predict which individuals will
have problems on which tasks. The remainder of this paper
will look at ways of avoiding this unfortunate situation.

V. ENSEMBLE PERFORMANCE

Given that the instances of very poor performance are
fairly rare, it is quite possible that a simple committee or
ensemble approach could be sufficient to remove them. The
basic idea is that if an ensemble of three or more individual
neural networks arrive at a combined output by a simple
voting procedure, the occasional instances of very poor
performance will be out-voted and no longer be a problem
(e.g., as discussed in [5, 6]). Such an approach has certainly
proved to be successful with other types of evolved neural
networks in the past (e.g., [7]). However, if the individual
networks all make the same rare mistakes, we will clearly
need to adopt a more sophisticated approach.

Three is clearly the minimum number that can form a

workable voting committee, so we shall investigate that first.
There are two obvious ways to proceed: we can take three
independent individual networks from each evolved
population, or we can take a single individual and train it
three times starting from different sets of random initial
weights drawn from its innate distribution. Both of these
approaches will (assuming we do not have the ability of
parallel processing) increase the total learning time by a
factor of three, but we may still end up with better overall
performance. Figure 6 shows the mean error rates during
learning, and the error distributions between ages 50 and 60,
when we have voting over three runs of each individual.
Compared with the corresponding results for single runs of
each individual, we see reductions in errors by factors of
three or four, which is encouraging, but there remain a
significant number of very large errors. Figure 7 shows the
corresponding results for voting ensembles made up of three
independent individuals. This is clearly a much more
successful approach for avoiding the large error cases, as one
might expect given the reduced likelihood for error
correlations across the ensemble [8], so we shall concentrate
on this approach from here on.
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Figure 7. The mean error rates during learning for the evolved networks using voting in groups of three independent
individuals (left), and the corresponding average error distributions between ages 50 and 60 (right).
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Figure 8. The mean error rates at age 60 for increasing ensemble sizes (left), and the corresponding error rates when the
computational effort is taken into account, i.e. counting errors at age 60/EnsembleSize (right).

The natural extension to voting in threes is to consider
larger voting ensembles. On the left of Figure 8 we see how
the mean error rates at age 60 are reduced with increasing
ensemble sizes. However, if we take into account the extra
computational effort of multiple training runs, i.e. look at the
error rates at ages 60/EnsembleSize, we get the rather
different pattern of results seen on the right of Figure 8.
There is now relatively little improvement overall for
ensemble sizes greater than three, and the G/ and G/+GI
approaches actually get worse.

A useful measure of the rate of occurrence of the
problematic very large error cases is the total proportion of
errors above 30 arising between the ages of 50 and 60. This
is plotted for the various ensemble sizes on the left of
Figure 9, and shows clearly the expected benefit of the
ensemble approach. In this case, taking the computational
effort into account, i.e. dividing each of the specified ages by
the EnsembleSize, makes very little difference. This is
because the large errors persist throughout a small number of
training runs, but are absent from a very early age in the
majority of runs. It would seem then, that ensembles of five
or seven do have significant benefits in this respect, even if

the additional computational costs are taken into account.

VI. AGE DEPENDENT PLASTICITY

Human learning is known to involve, in many cases, age
dependent plasticity with associated critical periods for
learning [9], and my own earlier studies have already shown
how such features can be evolved in artificial neural network
systems to give improved performance [10, 4]. I shall now
briefly explore how such ideas interact with the ensemble
approach discussed above.

There exist a number of powerful approaches to adaptive
plasticity (e.g., [11]), but for current purposes a simple age ¢
dependent scale factor multiplying the learning rates will
suffice. A general piecewise linear scale factor typically
evolves to take a form that is not far from an exponential fall
to a baseline value [10]. To simplify matters here, we there-
fore consider a simple two-parameter scale factor s(?):

@ = sO N0 . s@) = p+A-pe /T

in which the time constant T and baseline f are allowed to
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Figure 9. The total proportion of large errors (above 30) between ages 50 and 60 (left), and the corresponding proportions
when we the computational effort is taken into account, i.e. using ages/EnsembleSize (right).
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Figure 10. The mean error rates during learning for evolved networks that are allowed age dependent learning rates (left),
and the corresponding average error distributions between ages 50 and 60 (right).

evolve as additional innate parameters in the same four
evolutionary approaches considered above.

The simulations reveal that the interaction of these two
new parameters with the existing parameters is rather
complex [4]. In each approach, the evolved learning rates
fall exponentially with age by a factor of about 10, but the
time constants T vary from around 20 years for G1, to around
7 for GI+G1, and around 2 for GI+G2 and SS. These result
in the mean error rates during learning and the old age error
distributions shown in Figure 10. All four approaches show
clear reductions in the number of large error cases, in some
ways better than the reductions obtained by the ensemble
approach (seen in Figure 7). However, in terms of the mean
errors at each age, the differences are mixed. There are clear
improvements in final mean error, for all four approaches,
over the single networks of Figure 6, but the G/ and GI+G/
approaches achieve this at the expense of a much slower
reduction in errors at earlier ages. Comparison with the
ensemble results of Figure 7 also shows mixed differences,
with the variable plasticity GI and GI+G/I slower to learn
initially, but reaching lower errors by age 50, and the
opposite pattern for GI/+G2 and SS.

The important question to ask now is: can the ensemble
approach further improve the variable plasticity results, or
have we reached the limit of what is achievable? Figure 11
shows the mean error rates at age 60 for the various
ensemble sizes, for comparison with the fixed plasticity
results in Figure 8. The slower initial reduction in errors for
the variable plasticity G/ and GI+G1 cases will clearly be
problematic if we take the computational cost into account,
but otherwise, the ensembles do give further improvement.
This is particularly clear in the graphs of Figure 12 showing
the proportion of very large error cases, where we see that
variable plasticity and ensembles together can completely
eliminate the problem of occasional very large errors.

VII. Di1SCUSSION AND CONCLUSIONS

We have studied the evolution of neural network classifier
systems that would form the basis of many autonomous
systems that are required to learn good generalization
performance as quickly as possible from a continuous stream
of training data. Simulations of four natural evolutionary
approaches have shown clearly that the more one encourages
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Figure 11. The mean error rates at age 60 for ensembles of the variable plasticity networks (left), and the corresponding error
rates when the computational effort is taken into account, i.e. counting errors at age 60/EnsembleSize (right).
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Figure 12. The total proportion of large errors (above 30) between ages 50 and 60 for ensembles of the variable plasticity
networks (left), and the corresponding proportions found when using ages/EnsembleSize (right).

faster learning, the more likely will be the emergence of
risky learning strategies that occasionally result in very poor
performance, which would be potentially disastrous for
many real world applications.

We then saw how these problems could be significantly
reduced by using appropriate ensemble techniques, and also,
to a similar degree, by evolving learning rates that decrease
during the learning process. By employing both of these
techniques together, we found that it is possible to eliminate
the problematic high error cases completely. Of no less
practical importance are the more detailed results presented
here, showing clearly the trade-offs between the various
approaches and performance measures. It is these that will
allow better informed design choices that will surely depend
on which aspects of evolved performance are most crucial
for each particular application.
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