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Abstract- The use of simulated evolution is now a commonplace  involved systems like neural networks where individuals use
technique for optimizing the learning abilities of neural network  |earning to increase their fithess during their own lifetimes.
systems. Neural network details such as architecture, initial In the remainder of this paper | shall begin by describing
weight distributions, gradient descent learning rates, and 3 more detail the class of neural network systems | am
regularization parameters, have all been successiully evolved to considering, and specify the three broad classes o
result in improved performance. In this paper | investigate - . - -

) : . I evolutionary strategies | wish to compare. | will then present
which evolutionary approaches work best in this field. In . ) - . . .

a series of simulation results, and end with some discussio

particular, | compare the traditional generational approach with ;
amore biologically realistic steady-state appr oach. and conclusions as to the advantages of each approach.

I. INTRODUCTION Il. THE NEURAL NETWORK MODELS

IFor this paper, | shall restrict myself to standard fully
nected feed-forward networks of sigmoidal units with one
idden layer trained using gradient descent to perform simpli
8Iassificati0n tasks. The standard weight update equation
at each training epoahis

We are all familiar with the idea that formulating powerfu
neural network systems requires the specification of a num
of details that will be rather problem dependent [1].
example, if we require a simple feed-forward network t
learn particular classes of input-output mappings, we wi
need to set an appropriate architecture, initial weight
distributions, learning rates, regularization parameters, and so Aw; (n) = _ULW"'GAWH(”_D
on, to optimize its performance. How we measure that U
performance will also generally be problem dependentvhere E is the cost function [1]. Past experience [3, 4]
Usually it is the generalization performance that we are madsticates that the networks learn better if they have differen
concerned about, but we often require fast learning as we#arning rates), for each connection layer and biasIsetSo,
In this paper | shall consider the general problem of how to ensure that each network learns at its full potential, eac
set up neural network systems that learn as quickly aas five learning parameters: the learning mate for the
possible, to generalize as well as possible, on data draimput to hidden layem,; for the hidden layer biases, for
randomly from a particular class of data distributions. Athe hidden to output layer, amghg for the output biases, and
increasingly common and successful approach is to evolthe momentum parameter. The initial network weights
such systems, rather than trying to build them by hand [2};(0) are generated randomly with a uniform distribution in
However, despite a considerable literature in this field, thethe range {r,, +r,]. Naturally, to match the learning rates,
appears to be no general investigation into which are the bd#ferent range parameters are allowed for the input to
evolutionary strategies to use for this problem. It is thisidden layer connections, the hidden layer biases, the hidde
particular issue that | wish to explore in this paper. to output layer connections, and the output biases.

In my previous investigations of evolving neural networks As is appropriate for classification, | use the cross-entropy
[3, 4, 5], | have adopted a nature inspired evolutionargost function with a weight decay regularization term [1]
approach in which the populations consist of competing
learning individuals of all ages that procreate and die E:_Z[ti'loQ(oi)+(1_t1')'|09(1_oi)]+/\Z(ij)2
according to their fitness and age. | have always assumed ] £
that such ateady statapproach [6, 7] will be more efficient
than a traditionagenerationalapproach in which whole new
generations are produced at the same time [2]. In this paper, | JE
present a systematic investigation of this matter. Some th-(ti _Oi)+/\wij
comparisons of steady state and generational approaches have U
been carried out previously [6, 7, 8], but these have natheret; are the binary target network outputs,are the

which leads to the output layer weight derivatives
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Figure 1: Typical two-class classification data distributions which the neural networks must learn from random samples.

actual outputs, anlg are the hidden unit activations. neural networks it is appropriate and sufficient to assume
Obviously there is no point in evolving a system to learsimple relation between our single task performance and th
one particular training set quickly — it will be quicker to pusurvival or procreation fithess. It is also sufficient for each
up with a slow learner and not bother with the evolutioohild to inherit characteristics from both parents such tha
process. We want to evolve systems that can learn quicklygach innate free parameter is chosen at random somewhe
generalize from samples that are drawn randomly from datatween the values of its parents, with sufficient noise (ol
distributions that are themselves drawn randomly from a classitation) that there is a reasonable possibility of the
of different data distributions. For this study | shall considgrgarameter falling outside the range spanned by the parent
inputs in a continuous two dimensional space [0.071ebid Each genotype will contain ten evolvable parameters: four tc
have two outputs corresponding to two classificationsontrol the individual’s distribution of random initial weights,
specified by random circles in the input space. Figure fbur to control its learning rates, one for its momentum, anc
shows three typical data distributions. Each individual has itse to specify its regularization parameter. All the other
own data distribution, and during each simulated year drawsgtwork parameters, such as the number of hidden units, a
and learns from, a new sample from that distribution. It mufiked across the whole population and all generations.
learn to generalize so it can perform well on each year’s data, It is less obvious how we should generate each generatio
before learning from its mistakesThe obvious performance from the previous. The object of this paper is to investigate
measure is the total number of network output bits that awhich strategy works best for our chosen neural network
significantly wrong (e.g. more than 0.2 from their binarsystems. In particular, | shall consider the nature inspirec
targets) over the whole of each years’ training set. Extensisteady statapproach that | have used previously [3, 4, 5]

to more input and output dimensions is straightforward.
SS Each individual learns to improve their performance for

lll. EVOLVING THE MODELS as long as they are alive. High performance means hig
fitness. In each simulated year, a small random subse

The aim here is to optimise our neural network systems using individuals over a certain simulated age die of old age,
evolution by natural selection. To simulate evolution we take and a small random subset of the least fit individuals are
a whole population of individual instantiations of each model, killed. These are replaced by children with at least one
and allow them to learn, procreate and die in a similar manner Parent chosen from among the fittest individuals.

to natural (biological) systems. The genotype of each

individual will specify all the appropriate innate parameters'afnOI the two traditionajenerationalpproaches [2]:

and depend on the genotypes of its two parents plus randef Each individual learns to improve their performance for
mutations. Then, throughout its life, each individual will 5 set number of simulated years. High performance
learn from its environment how best to adjust its weights t0  means high fitness. At each generation, all individuals
perform most effectively. Each individual will eventually die and are replaced by children with parents choser
die, perhaps after producing a number of children. from among the fittest individuals.
The ability of a biological individual to survive or

reproduce will be a complex function of its performance on@2 Each individual learns to improve their performance
range of tasks (feeding, fighting, fleeing, and so on). For our until it reaches a set target level. Fast learning mean



high fitness. At each generation, all individuals die anbhdividuals in the first generation. It would appear that this
are replaced by children with parents chosen from amomagproach on its own is not feasible at all for evolving fast
the fittest individuals. learners. However, if we start off with a laiyg andN,, =1

) o ) . in the G1 approach as before, we can switch to &&
Whichever approach usedbtaining reliable results requires 4 proach once a reasonable fraction (say half) of eac

fixing the evolutionary parameters according to the detailsg neration consistently settle down to a clear maximum

the problem and the speed and coarseness of the simulationgeformance at the end of that period, with the set target leve
To maintain fair comparison, some parameters were Kepf erormance equal to the maximum. T&& phase with

the same in all simulations: A fixed population size of 20Q, - ¢ again optimizes performance, but now&2 phase is
was a trade-off between maintaining genetic diversity angqq to optimize the speed of reaching that performance.

running the simulations reasonably quickly. The mutation Tha rest of this paper aims to determine if either the twc
parameters were chosen to speed the evolution as mucr‘k%eehel generational approach, or the hyb6d +G2

possible by maintaining genetic diversity without i”trOdUCin%enerational approach, can out-perform the steady-State
an excessive amount of noise into the process. The Ot%%rproach that | have used previously.

parameters depended on the choice of generational strategy.

In the SSapproach, if all the individuals were able to learn IV. SIMULATION RESULTS
their task perfectly by the end of their first year, and we only
tested their performance once per year, then the advantagd/gfprevious evolutionary studies [3, 4, 5] have indicated that
those that learn in one month over those that take eleverthie evolutionary efficiency depends strongly on the initial
lost, and our simulated evolution would not encourage fasteonditions, i.e. on the distribution of innate parameters acros
learning. This is easily controlled by restricting the amourthe initial population. In particular, the populations tend to
of training data available in each simulated year for eadettle into near optimal states more quickly and reliably if
individual. Then the death rates need to be set to resulttirey start with wide distributions of initial learning rates,
reasonable age distributions, with the best performing adutther than expecting the mutations to carrysystem from
having plenty of time to reproduce, but not dominating tha state in which there is little learning at all. So, for each
population and killing off most of the children before theyevolutionary run, the random initial population learning rates
have had a chance to learn how to perform well. This iz were chosen from the range [0.0, 4.0], the momenturr
easily achieved by fixed tournament competition death ratparametersr from [0.0, 1.0], theregularization parameteis
(e.g. 10% per simulated year), and old age death ratiesm [0.0, 0.1], and the random initial weight range$rom
dependant on how fast the best individuals learn (e.g. 20%[6f0, 4.0]. In all simulations, every individual had 20 hidden
individuals each year aged more than three times the averagés and experienced 1200 training data points per year.
earliest age of best performance). Figure 2 shows theteady statesvolution of the initial

For theG1 approach it ifNg, the number of simulated weight ranges and learning rates averaged over 20 runs. Tl
years per generation, that needs to be fixed. The problemdarning rates appear to settle down quickly, but actually the
that, if we set this number too low, none of the individualgariances across simulations are enormous (such that plottir
will ever get close to finishing learning, and if we set it todhe standard deviations would render the graphs unreadable
high, there will be nothing to drive the individuals fromA full investigation reveals bimodal distributions, with each
reaching their maximum performance any earlier. While thisin settling down into one of two final states. Fourteen runs
approach might be good for evolving other factors [2], it isesulted in a poor average performance population, and six i
clearly no good for our problem of evolving fast learnersa good average performance population. The learning rat
What we can do, however, is fi¥; to be large, but measure means and standard deviations for those two sets are shov
the average performance over the Mgtyears. We can start in Figure 3. It turns out that the evolution of the initial
with Ny, = 1, and increashl,, by one whenever a reasonableneight ranges, momentum and regularization parameter hav
fraction (say half) of each generation consistently settle dovittle effect in this study, so | shall not discuss them further.
to a clear maximum performance over that period. Theaturally, it is the evolved populations’ performance that we
Ny = 1 phase will optimize the performance, and khe>1 are primarily interested in. To obtain an accurate anc
phase will speed the reaching of that performance. statistically reliable measure of that, it was necessary to trail

In the G2 approach it is the set target level of performanceach individual from each population on each of 50 different
that we must specify. Clearly, if we do not set that to be thandom data distributions. Even for the ‘poor’ performance
maximum level of performance possible, the individuals wilpopulations, the peak in the error count distribution for
never reach it. The problem is that generally we won't knotrained networks was at zero errors, but the distributions hav
in advance what that level is, and even if we did know it (e.thng tails which make the mean and standard deviations see
because we knew that perfect performance was possible), itrisleadingly large. Figure 4 shows the median, upper an
unlikely that that performance would be possible at all fdower quartiles of errors per year at each age (i.e. amount ¢
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Figure 2: Evolution of the initial weight ranges and learning rates fdtéeady Statapproach (averaged over 20 runs).
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Figure 4: Median and quatrtile error rates for the poor (left) and good @tg#ily Statpopulations at year 240,000.
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Figure 5: Evolution of the learning rates for tag+G1 (left) andG1+G2 (right) Generationalpopulations.
6 6
4 4
&2 &
o o
w w
2 2
0 T T T T T 0 T T T T T
0 20 Age 40 60 0 20 Age 40 60
Figure 6: Median and quartile error rates for@ferG1 (left) andG1+G2 (right) Generationalpopulations at year 240,000.
training) for the two evolved steady state populations. Another way to compare the performances is to plot the

We can see that there are big differences in learning ratistributions of errors per simulated year after training.
and performances between the two cases, and also from figure 7 shows two views of the average error count
standard hand-built networks in which we usually set thdistributions between the ages of 50 and 60. On the left wi
same learning rate and initial weight range across all partss#fe the peak of the distributions at zero and, as we woul
the network. The big question now is: how do these resubtgpect from the quartiles plotted above, the poor steady stal
compare with those of our twgenerationalapproaches? | populations have a significantly wider peak than the othet
set the generational time-scaleMyt = 60, and matched the three cases. On the right we see the tails of the distribution:
number of neural network computations per simulated ye@he good average performance steady state populations ha
with the steady state case above. The learning rate evolutamund thirty times as many large error counts (above 20) a
for the generational approaches are shown in Figure 5. Héhe poor average performance steady state populations, ai
the populations take considerably longer to settle down intbe generational populations fall in between them.
their final states, but we no longer end up with multi-modal
distributions. Figure 6 shows the error rates per year for the V. DISCUSSION ANDCONCLUSIONS
evolved populations in each case. We see that the median
and lower quartile error rates are similar to each other, afitte aim of this paper was to explore the effect of using
also with the better performing steady state populations, hdifferent evolutionary strategies to produce neural networks
the upper quartiles reach zero at much earlier ages. which learn quickly to generalize well. It is clear from the
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Figure 7: Two views of the mean error count distributions for ages 50-60 for the four evolved populations of Figures 3, 4, 5, 6.

simulation results presented that the different approaches strales well with problem and network size, but we cannot
optimize different things, and consequently yield differerévoid the increased training times that are required for large
evolved behaviours. networks and more complex training data. We should

We have previously seen that evolution can create higinobably not worry too much about the relatively slow rates
performance neural networks for many applications [2, 3, 4Jf the generational evolution approaches. There are man
but this paper now shows how important it is for us to choos@riations one could try to apply to speed them up: different
the right evolutionary strategy for each particular problenselection schemes, different elitism proportions, alternative
We need to decide several things: do we care abdetrning regimes, and such like. However, space restriction

simulating natural biological evolutior5§, do we want to prevent a full analysis of these factors here.

obtain good overall performanc&% goojl do we wish to

reduce the instances of very poor performance at the expense

of poorer average performanc®y pooy, is it more important

to learn good performance quickla{+G2), or to learn to [1]
maintain good performance over long perio@l¢G1)?
Some approaches effectively lead to different speci¢y
evolving on different runsSS good/pogr others end up with
very similar populations emerging on every rd1#G2 [3]
G1+G2). If we do not tailor our evolutionary strategy to our
particular requirements, we will clearly not achieve the best
possible results.

A potential difficulty for our two generational approaches4]
is the identification of the ‘maximal performance level’, and
knowing when to switch from the first to second phase @]
evolution. For this paper | deliberately chose a task that

allowed perfect (zero error) performance to make this easy.

It will require further investigation to be sure of how to deak]
best with different types of noisy data, and situations where
the best performance levels are more variable.

An important practical consideration, for all evolutionary
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