
Generational versus Steady-State Evolution for
Optimizing Neural Network Learning

John A. Bullinaria
School of Computer Science, The University of Birmingham, Birmingham, B15 2TT, UK

E-mail: j.bullinaria@physics.org

Abstract- The use of simulated evolution is now a commonplace
technique for optimizing the learning abilities of neural network
systems. Neural network details such as architecture, initial
weight distributions, gradient descent learning rates, and
regularization parameters, have all been successfully evolved to
result in improved performance. In this paper I investigate
which evolutionary approaches work best in this field. In
particular, I compare the traditional generational approach with
a more biologically realistic steady-state approach.

I. INTRODUCTION

We are all familiar with the idea that formulating powerful
neural network systems requires the specification of a number
of details that will be rather problem dependent [1]. For
example, if we require a simple feed-forward network to
learn particular classes of input-output mappings, we will
need to set an appropriate architecture, initial weight
distributions, learning rates, regularization parameters, and so
on, to optimize its performance. How we measure that
performance will also generally be problem dependent.
Usually it is the generalization performance that we are most
concerned about, but we often require fast learning as well.
In this paper I shall consider the general problem of how to
set up neural network systems that learn as quickly as
possible, to generalize as well as possible, on data drawn
randomly from a particular class of data distributions. An
increasingly common and successful approach is to evolve
such systems, rather than trying to build them by hand [2].
However, despite a considerable literature in this field, there
appears to be no general investigation into which are the best
evolutionary strategies to use for this problem. It is this
particular issue that I wish to explore in this paper.

In my previous investigations of evolving neural networks
[3, 4, 5], I have adopted a nature inspired evolutionary
approach in which the populations consist of competing
learning individuals of all ages that procreate and die
according to their fitness and age. I have always assumed
that such a steady state approach [6, 7] will be more efficient
than a traditional generational approach in which whole new
generations are produced at the same time [2]. In this paper, I
present a systematic investigation of this matter. Some
comparisons of steady state and generational approaches have
been carried out previously [6, 7, 8], but these have not

involved systems like neural networks where individuals use
learning to increase their fitness during their own lifetimes.

In the remainder of this paper I shall begin by describing
in more detail the class of neural network systems I am
considering, and specify the three broad classes of
evolutionary strategies I wish to compare. I will then present
a series of simulation results, and end with some discussion
and conclusions as to the advantages of each approach.

II. THE NEURAL NETWORK MODELS

For this paper, I shall restrict myself to standard fully
connected feed-forward networks of sigmoidal units with one
hidden layer trained using gradient descent to perform simple
classification tasks. The standard weight wij update equation
at each training epoch n is

∆ ∆w n
E

w
w nij L

ij
ij() ()= − + −η ∂

∂
α 1

where E is the cost function [1]. Past experience [3, 4]
indicates that the networks learn better if they have different
learning rates ηL for each connection layer and bias set L. So,
to ensure that each network learns at its full potential, each
has five learning parameters: the learning rate ηIH for the
input to hidden layer, ηHB for the hidden layer biases, ηHO for
the hidden to output layer, and ηOB for the output biases, and
the momentum parameter α. The initial network weights
wij(0) are generated randomly with a uniform distribution in
the range [-rL, +rL]. Naturally, to match the learning rates,
different range parameters rL are allowed for the input to
hidden layer connections, the hidden layer biases, the hidden
to output layer connections, and the output biases.

As is appropriate for classification, I use the cross-entropy
cost function with a weight decay regularization term [1]

E t o t o wj j j j
j

jk
j k

= − + − −[] +∑ ∑. log() (). log() ()
,

1 1 2λ

which leads to the output layer weight derivatives

∂
∂

λE

w
h t o w

ij
i j j ij= − +.()

where tj are the binary target network outputs, oj are the

actual outputs, and hi are the hidden unit activations.
Obviously there is no point in evolving a system to learn

one particular training set quickly – it will be quicker to put
up with a slow learner and not bother with the evolution
process. We want to evolve systems that can learn quickly to
generalize from samples that are drawn randomly from data
distributions that are themselves drawn randomly from a class
of different data distributions. For this study I shall consider
inputs in a continuous two dimensional space [0.0, 1.0]2, and
have two outputs corresponding to two classifications
specified by random circles in the input space. Figure 1
shows three typical data distributions. Each individual has its
own data distribution, and during each simulated year draws,
and learns from, a new sample from that distribution. It must
learn to generalize so it can perform well on each year’s data,
before learning from its mistakes. The obvious performance
measure is the total number of network output bits that are
significantly wrong (e.g. more than 0.2 from their binary
targets) over the whole of each years’ training set. Extension
to more input and output dimensions is straightforward.

III. EVOLVING THE MODELS

The aim here is to optimise our neural network systems using
evolution by natural selection. To simulate evolution we take
a whole population of individual instantiations of each model,
and allow them to learn, procreate and die in a similar manner
to natural (biological) systems. The genotype of each
individual will specify all the appropriate innate parameters,
and depend on the genotypes of its two parents plus random
mutations. Then, throughout its life, each individual will
learn from its environment how best to adjust its weights to
perform most effectively. Each individual will eventually
die, perhaps after producing a number of children.

The ability of a biological individual to survive or
reproduce will be a complex function of its performance on a
range of tasks (feeding, fighting, fleeing, and so on). For our

neural networks it is appropriate and sufficient to assume a
simple relation between our single task performance and the
survival or procreation fitness. It is also sufficient for each
child to inherit characteristics from both parents such that
each innate free parameter is chosen at random somewhere
between the values of its parents, with sufficient noise (or
mutation) that there is a reasonable possibility of the
parameter falling outside the range spanned by the parents.
Each genotype will contain ten evolvable parameters: four to
control the individual’s distribution of random initial weights,
four to control its learning rates, one for its momentum, and
one to specify its regularization parameter. All the other
network parameters, such as the number of hidden units, are
fixed across the whole population and all generations.

It is less obvious how we should generate each generation
from the previous. The object of this paper is to investigate
which strategy works best for our chosen neural network
systems. In particular, I shall consider the nature inspired
steady state approach that I have used previously [3, 4, 5]:

SS Each individual learns to improve their performance for
as long as they are alive. High performance means high
fitness. In each simulated year, a small random subset
individuals over a certain simulated age die of old age,
and a small random subset of the least fit individuals are
killed. These are replaced by children with at least one
parent chosen from among the fittest individuals.

and the two traditional generational approaches [2]:

G1 Each individual learns to improve their performance for
a set number of simulated years. High performance
means high fitness. At each generation, all individuals
die and are replaced by children with parents chosen
from among the fittest individuals.

G2 Each individual learns to improve their performance
until it reaches a set target level. Fast learning means

1.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

 1.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

 1.00.80.60.40.20.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Typical two-class classification data distributions which the neural networks must learn from random samples.

high fitness. At each generation, all individuals die and
are replaced by children with parents chosen from among
the fittest individuals.

Whichever approach used, obtaining reliable results requires
fixing the evolutionary parameters according to the details of
the problem and the speed and coarseness of the simulations.

To maintain fair comparison, some parameters were kept
the same in all simulations: A fixed population size of 200
was a trade-off between maintaining genetic diversity and
running the simulations reasonably quickly. The mutation
parameters were chosen to speed the evolution as much as
possible by maintaining genetic diversity without introducing
an excessive amount of noise into the process. The other
parameters depended on the choice of generational strategy.

In the SS approach, if all the individuals were able to learn
their task perfectly by the end of their first year, and we only
tested their performance once per year, then the advantage of
those that learn in one month over those that take eleven is
lost, and our simulated evolution would not encourage faster
learning. This is easily controlled by restricting the amount
of training data available in each simulated year for each
individual. Then the death rates need to be set to result in
reasonable age distributions, with the best performing adults
having plenty of time to reproduce, but not dominating the
population and killing off most of the children before they
have had a chance to learn how to perform well. This is
easily achieved by fixed tournament competition death rates
(e.g. 10% per simulated year), and old age death rates
dependant on how fast the best individuals learn (e.g. 20% of
individuals each year aged more than three times the average
earliest age of best performance).

For the G1 approach it is NG, the number of simulated
years per generation, that needs to be fixed. The problem is
that, if we set this number too low, none of the individuals
will ever get close to finishing learning, and if we set it too
high, there will be nothing to drive the individuals from
reaching their maximum performance any earlier. While this
approach might be good for evolving other factors [2], it is
clearly no good for our problem of evolving fast learners.
What we can do, however, is fix NG to be large, but measure
the average performance over the last NM years. We can start
with NM = 1, and increase NM by one whenever a reasonable
fraction (say half) of each generation consistently settle down
to a clear maximum performance over that period. The
NM = 1 phase will optimize the performance, and the NM > 1
phase will speed the reaching of that performance.

In the G2 approach it is the set target level of performance
that we must specify. Clearly, if we do not set that to be the
maximum level of performance possible, the individuals will
never reach it. The problem is that generally we won’t know
in advance what that level is, and even if we did know it (e.g.
because we knew that perfect performance was possible), it is
unlikely that that performance would be possible at all for

individuals in the first generation. It would appear that this
approach on its own is not feasible at all for evolving fast
learners. However, if we start off with a large NG and NM = 1
in the G1 approach as before, we can switch to the G 2
approach once a reasonable fraction (say half) of each
generation consistently settle down to a clear maximum
performance at the end of that period, with the set target level
of performance equal to the maximum. The G1 phase with
NM = 1 again optimizes performance, but now a G2 phase is
used to optimize the speed of reaching that performance.

The rest of this paper aims to determine if either the two
stage G1+G1 generational approach, or the hybrid G1+G2
generational approach, can out-perform the steady-state SS
approach that I have used previously.

IV. SIMULATION RESULTS

My previous evolutionary studies [3, 4, 5] have indicated that
the evolutionary efficiency depends strongly on the initial
conditions, i.e. on the distribution of innate parameters across
the initial population. In particular, the populations tend to
settle into near optimal states more quickly and reliably if
they start with wide distributions of initial learning rates,
rather than expecting the mutations to carry the system from
a state in which there is little learning at all. So, for each
evolutionary run, the random initial population learning rates
ηL were chosen from the range [0.0, 4.0], the momentum
parameters α from [0.0, 1.0], the regularization parameters λ
from [0.0, 0.1], and the random initial weight ranges rL from
[0.0, 4.0]. In all simulations, every individual had 20 hidden
units and experienced 1200 training data points per year.

Figure 2 shows the steady state evolution of the initial
weight ranges and learning rates averaged over 20 runs. The
learning rates appear to settle down quickly, but actually the
variances across simulations are enormous (such that plotting
the standard deviations would render the graphs unreadable).
A full investigation reveals bimodal distributions, with each
run settling down into one of two final states. Fourteen runs
resulted in a poor average performance population, and six in
a good average performance population. The learning rate
means and standard deviations for those two sets are shown
in Figure 3. It turns out that the evolution of the initial
weight ranges, momentum and regularization parameter have
little effect in this study, so I shall not discuss them further.
Naturally, it is the evolved populations’ performance that we
are primarily interested in. To obtain an accurate and
statistically reliable measure of that, it was necessary to train
each individual from each population on each of 50 different
random data distributions. Even for the ‘poor’ performance
populations, the peak in the error count distribution for
trained networks was at zero errors, but the distributions have
long tails which make the mean and standard deviations seem
misleadingly large. Figure 4 shows the median, upper and
lower quartiles of errors per year at each age (i.e. amount of

training) for the two evolved steady state populations.

240000160000800000
10 0

10 1

10 2

Year

rOB

rHB

r I H

rHO

240000160000800000

10 - 3

10 - 2

10 - 1

10 0

10 1

10 2

10 3

Year

etaHO

etaIH

etaHB

etaOB

Figure 2: Evolution of the initial weight ranges and learning rates for the Steady State approach (averaged over 20 runs).

240000160000800000
10 - 4

10 - 3

10 - 2

10 - 1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

240000160000800000

10 - 4

10 - 3

10 - 2

10 - 1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

Figure 3: Evolution of the learning rates for the poor (left) and good (right) performance Steady State populations.

6 04 02 00
0

2

4

6

Age

E
rr

or
s

6 04 02 00

0

2

4

6

Age

E
rr

or
s

Figure 4: Median and quartile error rates for the poor (left) and good (right) Steady State populations at year 240,000.

training) for the two evolved steady state populations.
We can see that there are big differences in learning rates

and performances between the two cases, and also from the
standard hand-built networks in which we usually set the
same learning rate and initial weight range across all parts of
the network. The big question now is: how do these results
compare with those of our two generational approaches? I
set the generational time-scale at NG = 60, and matched the
number of neural network computations per simulated year
with the steady state case above. The learning rate evolution
for the generational approaches are shown in Figure 5. Here
the populations take considerably longer to settle down into
their final states, but we no longer end up with multi-modal
distributions. Figure 6 shows the error rates per year for the
evolved populations in each case. We see that the median
and lower quartile error rates are similar to each other, and
also with the better performing steady state populations, but
the upper quartiles reach zero at much earlier ages.

Another way to compare the performances is to plot the
distributions of errors per simulated year after training.
Figure 7 shows two views of the average error count
distributions between the ages of 50 and 60. On the left we
see the peak of the distributions at zero and, as we would
expect from the quartiles plotted above, the poor steady state
populations have a significantly wider peak than the other
three cases. On the right we see the tails of the distributions.
The good average performance steady state populations have
around thirty times as many large error counts (above 20) as
the poor average performance steady state populations, and
the generational populations fall in between them.

V. DISCUSSION AND CONCLUSIONS

The aim of this paper was to explore the effect of using
different evolutionary strategies to produce neural networks
which learn quickly to generalize well. It is clear from the

240000160000800000
10 - 4

10 - 3

10 - 2

10 - 1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

240000160000800000

10 - 4

10 - 3

10 - 2

10 - 1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

Figure 5: Evolution of the learning rates for the G1+G1 (left) and G1+G2 (right) Generational populations.

6 04 02 00
0

2

4

6

Age

E
rr

or
s

6 04 02 00

0

2

4

6

Age

E
rr

or
s

Figure 6: Median and quartile error rates for the G1+G1 (left) and G1+G2 (right) Generational populations at year 240,000.

simulation results presented that the different approaches do
optimize different things, and consequently yield different
evolved behaviours.

We have previously seen that evolution can create high
performance neural networks for many applications [2, 3, 4],
but this paper now shows how important it is for us to choose
the right evolutionary strategy for each particular problem.
We need to decide several things: do we care about
simulating natural biological evolution (SS), do we want to
obtain good overall performance (SS good), do we wish to
reduce the instances of very poor performance at the expense
of poorer average performance (SS poor), is it more important
to learn good performance quickly (G1+G2), or to learn to
maintain good performance over long periods (G1+G1)?
Some approaches effectively lead to different species
evolving on different runs (SS good/poor), others end up with
very similar populations emerging on every run (G1+G2,
G1+G2). If we do not tailor our evolutionary strategy to our
particular requirements, we will clearly not achieve the best
possible results.

A potential difficulty for our two generational approaches
is the identification of the ‘maximal performance level’, and
knowing when to switch from the first to second phase of
evolution. For this paper I deliberately chose a task that
allowed perfect (zero error) performance to make this easy.
It will require further investigation to be sure of how to deal
best with different types of noisy data, and situations where
the best performance levels are more variable.

An important practical consideration, for all evolutionary
approaches, is the computational costs involved. The tasks
used in this study were chosen to be simple enough to make a
full systematic investigation feasible, but those classifications
are typical of more realistic problems, and it is reasonable to
expect analogous results for larger scale situations.
Preliminary studies indicate that the evolutionary efficiency

scales well with problem and network size, but we cannot
avoid the increased training times that are required for larger
networks and more complex training data. We should
probably not worry too much about the relatively slow rates
of the generational evolution approaches. There are many
variations one could try to apply to speed them up: different
selection schemes, different elitism proportions, alternative
learning regimes, and such like. However, space restrictions
prevent a full analysis of these factors here.

REFERENCES

[1] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK:

Oxford University Press, 1995.

[2] X. Yao, Evolving Artificial Neural Networks. Proceedings of the

IEEE, 87, 1999, pp. 1423-1447.

[3] J.A. Bullinaria, Simulating the Evolution of Modular Neural Systems.

In Proceedings of the Twenty-Third Annual Conference of the

Cognitive Science Society, Mahwah, NJ: Lawrence Erlbaum

Associates, 2001, pp. 146-151.

[4] J.A. Bullinaria, Evolving Efficient Learning Algorithms for Binary

Mappings. Neural Networks, 16, 2003, pp. 793-800.

[5] J.A. Bullinaria, From Biological Models to the Evolution of Robot

Control Systems. Philosophical Transactions of the Royal Society of

London A, 361, 2003, pp. 2145-2164.

[6] D. Whitley, The GENITOR Algorithm and Selection Pressure: Why

Rank-Based Allocation of Reproductive Trials is Best. In J.D. Schaffer

(Ed.), Proceedings of the Third International Conference on Genetic

Algorithms, San Mateo, CA: Morgan Kaufmann, 1989, pp. 116-123.

[7] G. Syswerda, A Study of Reproduction in Generational and Steady-

State Genetic Algorithms. In G. Rawlins (Ed.), Foundations of Genetic

Algorithms, San Mateo, CA: Morgan Kaufmann, 1991, pp. 94-101.

[8] K.A. De Jong & J. Sarma, Generation Gaps Revisited. In L.D. Whitley

(Ed.), Foundations of Genetic Algorithms 2, San Mateo, CA: Morgan

Kaufmann, 1993, pp. 19-28.

9630
0.0

0.3

0.6

0.9

Errors

N
um

be
r

G1+G2

G1+G1

SS good

SS poor

9 06 03 00

0.0000

0.0003

0.0006

0.0009

Errors

N
um

be
r

G1+G2
G1+G1

SS good

SS poor

Figure 7: Two views of the mean error count distributions for ages 50-60 for the four evolved populations of Figures 3, 4, 5, 6.

