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Abstract

This paper presents two novel genetic algorithms (GAs) for hard industrially relevant packing problems.
The design of both algorithms is inspired by aspects of molecular genetics, in particular, the modular
exon-intron structure of eukaryotic genes. Two representative packing problems are used to test the
utility of the proposed approach: the bin packing problem (BPP) and the multiple knapsack problem
(MKP). The algorithm for the BPP, the exon shuffling GA (ESGA), is a steady-state GA with a so-
phisticated crossover operator that makes maximum use of the principle of natural selection to evolve
feasible solutions with no explicit verification of constraint violations. The second algorithm, the Exonic
GA (ExGA), implements an RNA inspired adaptive repair function necessary for the highly constrained
MKP. Three different variants of this algorithm are presented and compared, which evolve a partial or-
dering of items using a segmented encoding that is utilised in the repair of infeasible solutions. All
algorithms are tested on a range of benchmark problems, and the results indicate a very high degree of
accuracy and reliability compared to other approaches in the literature.
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1 Introduction

This paper is concerned with developing improved algorithms for packing tasks, which are an important
class of problems that occur frequently in many industrial contexts. In general, these tasks involve
the placement of items that have some attribute (e.g., weight, shape) into some container (e.g., bin or
sheet). The objective is to minimise some notion of cost, while obeying the problem’s constraints (e.g.,
capacity or area). In this paper we present, and analyse the performance of, two novel nature-inspired
algorithms for two well defined packing problems: the Bin Packing Problem (BPP) and the Multiple
Knapsack Problem (MKP). These two problems were chosen because (a) they are representative of the
key issues involved in packing problems more generally, (b) they involve different but widely used natural
encodings, (c) instances exist that current algorithms find “hard” or impossible, and (d) they are the most
widely studied packing problems in the field of Evolutionary Computation (EC). Although the BPP and
MKP are conceptually similar, and some derivations of the BPP may be reduced to the MKP (as, for
example, discussed by Bein, Correa, and Han (2008)), there are also important differences. This paper
shows how similar nature-inspired techniques may be employed to solve these two problems, and how
the differences between them demand subtle changes in the design of the algorithms.

The algorithms presented here are based upon Genetic Algorithms (GAs), which have become a
popular choice of algorithm for numerous difficult optimisation problems where conventional methods
tend to fail (Holland 1975; Mitchell 1996). GAs maintain a population of potential solutions to the
problem of interest and evolve solutions of increasing quality by means of selection, crossover and
mutation. GAs have traditionally been modelled on the field of population genetics (Daida et al. 1999),
with individuals in the algorithm’s population representing “chromosomes with many loci and few alleles
per locus” (Holland 1975, p.71). Although GAs were never meant to be accurate models of biological
systems, we believe it may be beneficial to consider possible shortcomings from a biological point of
view, in order to yield improvements over the algorithm’s traditional design. The design of the algorithms
presented in this paper are examples of such a nature inspired undertaking. In particular, inspiration is
drawn from the modular exon-intron structure of eukaryotic genes and the exploitation of this modularity
by means of cellular processes. This modularity (or segmentation) here takes the form of useful coherent
groupings of items, such as bins in the BPP, that may facilitate the discovery of better solutions.

The first algorithm presented here, ESGA, exploits the intrinsic structure of the BPP, drawing mean-
ingful parallels from the theory of exon shuffling. This involves developing a sophisticated crossover
operator that not only generates offspring of high quality, but also over time eliminates sub-solutions that
violate any constraints. The second algorithm, ExGA, employs an RNA inspired adaptive repair function
to restrict the search to the feasible regions of the search space at all times. The repair is based upon a
segmented encoding that allows for a partial ordering of problem variables to emerge. This order is sub-
sequently utilised in a two-phase repair function. Finally, the cost of repair is taken into consideration
and two variants of the ExGA are proposed that are computationally more efficient without a significant
loss in performance.

The remainder of this paper is structured as follows: First, section 2 presents a general discussion
of nature inspired design and a brief introduction to the relevant aspects of genetics. Then the ESGA is
discussed in section 3, followed by the presentation of ExGA in section 4, with performance analysis of
both. Finally, the paper ends in section 5 with some conclusions, a comparison of the algorithms and a
discussion of future work in this area.

2 Nature Inspired Design

Canonical GAs are highly effective yet suffer from numerous technical problems, such as premature
convergence, that may prevent them from locating global optima in difficult search spaces. Numerous
extensions have been suggested in the past to address these issues, and a considerable amount of effort has
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focussed on the implementation of natural processes. Such inspiration from natural systems has been,
and remains, the single most influential factor in the field of EC. Spector (2003, p. 11), for example,
points out that “it posits that genetic programming practice (including both applications and technique
enhancements) is moving toward biology and that it should continue to do so”. Natural systems have
evolved for considerable lengths of time, and it makes good sense to copy what has emerged from that
process. On the other hand, one should not take nature inspired design as the ultimate answer to all
problems. Borrowing from nature is not without difficulties, and Freeland (2003) describes the delicate
balance between a healthy level of abstraction and a blind ‘biological envy’ (reciting from a talk given by
Goldberg). The literature reveals numerous examples where the rejection of biological details has been
advantageous (e.g., Freeland (2003)).

This leads to the conclusion that finding the right abstraction is immensely difficult. Atlan (2003,
p. 2) recognises the possible frustration one might encounter in mimicking natural processes as “nature
has not built these machines [cells] according to some blueprint designed on purpose by an engineer.
This is where physicists, engineers and computer scientists, tempted by the adventure of taking up this
challenge, must learn from what biologists have accumulated as partial, often paradoxical, observations.
The biological structure is not necessarily the one that a clever engineer would have chosen in order to
perform the same function.” Clearly, artificial evolution is in no way restricted by physical or biochemical
laws. As Freeland (2003, p 310) notes: “A luxury of EC is to bend fundamental rules of evolution beyond
anything biologically plausible, and thus to answer questions where biologists have assumptions”. This
is similar to the vision of Langton (1992, p. 40) that artificial life will “lead us not only to, but quite often
beyond, known biological phenomena: beyond life-as-we-know-it into the realm of life-as-it-could-be”.
It seems logical then to also consider non-biological (e.g., statistical) components, given the inherent
differences between any artificial problem space and the ecological niche of an organism.

The concept of nature inspired design thus requires some caution. It is important to distinguish
between computer simulations and heuristics. Computer simulations aim to mimic natural processes as
closely as possible to gain a better understanding of their underlying principles. Their core objective is
biological plausibility, and all details of the natural system to be modelled need to be captured to some
degree. The sole concern of heuristics, on the other hand, is the performance in accomplishing a certain
task, and one has to be much more selective when it comes to the implementation of natural processes.
In the case of nature inspired approaches, it is of no significance whether the final abstraction bears
recognisable similarities with the system it emulates. Matters such as biological plausibility are not of
primary interest. In the end, the real efficacy of nature inspired design stems from its ability to provoke
a thought process that may lead to an efficient design rather than the relentless imitation of detail. This
concept is very much evident in the approaches presented here, which have been inspired by selected
aspects of molecular genetics (which are discussed below), yet result in final designs that diverge greatly
from their natural counterparts.

2.1 A ‘New’ Direction

The canonical (binary) GA (cGA) is loosely based upon the principles of population genetics, a field of
evolutionary biology concerned primarily with the distribution of alleles within a population of organisms
under selection pressure (Holland 1975; Mitchell 1996). Each individual encoding corresponds to a
chromosome composed exclusively of artificial genes that may be in one of two states. These simple
artificial genes correspond most closely to those of prokaryotes. Prokaryotes (bacteria and archaea)
are organisms whose cells lack a proper nucleus and whose DNA is usually relatively condensed and
simple. Eukaryotes (protists, fungi, plants and animals), on the other hand, have a more sophisticated
cellular structure that allows for numerous regulatory and structural elements to occur in their DNA.
Eukaryotic genes contain, for example, non-coding segments, which, amongst other attributes, allow a
single gene to produce a variety of different proteins depending on different factors such as cell type.
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The emergence of eukaryotes some 2.5 billion years ago is seen by many as one of the most significant
events in evolutionary history (Maynard Smith and Szathmãry 1999).

There are numerous examples in the literature, most notably from recent years, that depart from
the simplistic ‘2-allele’ model in order to develop more sophisticated artificial genes that more closely
resemble the genes of eukaryotes. This undertaking is primarily driven by recent advances in genetics,
such as the genome sequencing projects, that expose a wealth of different cellular processes and their
attributes. This is encouragement to design evolutionary algorithms (EAs) from a molecular perspective,
and to draw attention to those areas of molecular genetics that have so far been largely ignored by the
EC community.

Of relevance here is the ‘central dogma of genetics’ which may be summarised as follows. The
carrier of hereditary information in almost all organisms is DNA which contains well defined regions,
known as genes, that encode information for the production of functional units, such as proteins. These
sections of DNA are expressed as follows: DNA is first transcribed to RNAwhich is subsequently altered
by the cellular machinery: unlike prokaryotic genes, eukaryotic genes are composed of not only coding
(exons) but also non-coding (introns) segments. RNA processing removes the introns to yield a continu-
ous strand of protein coding RNAwhich is finally translated using a mapping known as the genetic code.
The genetic code, which minimises the phenotypic variations caused by single-point mutations, maps
any three nucleotides to a specific amino acid, the building blocks of proteins. The modular exon-intron
structure of eukaryotic genes is ‘exploited’ by numerous processes, two of which are exon shuffling and
RNA editing, that have inspired the design of the two algorithms presented here.

2.2 Exon Shuffling

The phenomenon of interrupted genes has been widely analysed and discussed ever since the discovery
of the first introns. Roy (2003) provides an excellent review of the Exon Theory of Genes, the most
important points of which are summarised here. Blake (1978) proposed that interrupted genes are essen-
tially patched together from exons that code for simple protein structures, and Gilbert (1978) observed
that introns could serve as buffers that allow the recombination of exons to create new protein products.
Blake also proposed that this mechanism would be most efficient if the exons corresponded to indepen-
dent units that determine discrete characteristics of a protein. Similarly, the “exon shuffling hypothesis”
proposed by Gilbert views the evolution of genes as the recombination of independent units (exons)
that code for independent protein structures. Numerous genes have been found where exons do indeed
correspond to independent protein domains, and exon shuffling is likely to have played a vital role in
the emergence of complex genes and other existing phenomena such as multi-cellularity (Patthy 2003;
Kolkman and Stemmer 2001). This concept is evident in our ESGA algorithm that attempts to exploit
the intrinsic structure of the BPP by means of an encoding that consists of well-defined sub-solutions
that may be recombined in different ways to yield complete optimal solutions.

2.3 RNA Editing

RNA editing is the targeted modification of nucleotides in exons, often guided by an adjacent intron
which functions as a template. In one scenario, RNA editing takes place on double stranded RNA
segments which are formed by folding a downstream intron back onto the preceding exon (Higuchi
et al. 1993). The intron contains the exon-specific editing information and Bass (1997) notes that the
3’ and 5’ untranslated regions may offer similar advantages. Interestingly, some types of DNA require
RNA editing to remove specific sequences of nucleotides that would otherwise prevent the production
of active proteins (Herbet and Rich 1999). In other words, RNA editing serves as a repair mechanism
that restores protein synthesis which would otherwise be prevented. The repair of unfeasible ‘encodings’
(RNA in this case) by means of selective modification seems highly relevant to the design of GAs for
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constrained optimisation problems. Here, our ExGA algorithm employs such a repair mechanism that is
guided by an underlying encoding that resembles the structure of an interrupted gene.

3 The Exon Shuffling Genetic Algorithm (ESGA)

The design of the ESGA originates from the similarities between the one-dimensional BPP and the mod-
ular structure of eukaryotic genes in general, and the theory of exon shuffling in particular (Rohlfshagen
and Bullinaria 2007).

3.1 The Bin Packing Problem (BPP)

The BPP has many industrial applications and is found frequently in real world scenarios such as vehicle
loading. The BPP is very simple to state, yet is NP-hard (Coffman, Garey, and Johnson 1978). The
objective is to fit a fixed number of items, of different weights, into the fewest possible number of bins,
each of which has limited capacity c. More formally, given a set U of n items with labels l = 1, ..., n and
weights {wl}, we need to find a disjunctive partition B = {B1, ..., B|B|} of U, representing the contents
of |B| bins, corresponding to

min(|B|) |
∑

l∈Bi

wl ≤ c ∀Bi ∈ B (1)

In other words, the number of bins required to contain all items in U has to be minimised while none of
the bins may be overfilled. We studied three sets of benchmark problems that may be found online at
www.wiwi.uni-jena.de/Entscheidung/binpp/, with attributes as follows:

• Set 1 contains 20 randomly generated instances for each of 36 instance classes

– n : 50, 100, 200, 500
– c : 100, 120, 150
– wl : from [1,100], [20,100], [30,100] for l = 1, 2, . . . , n

• Set 2 contains 10 randomly generated instances for each of 48 instance classes

– n : 50, 100, 200, 500
– c : 1000
– wavg : c/3, c/5, c/7, c/9
– d : 20%, 50%, 90%

• Set 3 contains 10 particularly hard instances

– n : 200
– c : 100000
– wl : from [20000,35000] for l = 1, 2, . . . , n

where n is the number of items, c is the capacity of the bins, wl are the weights of each item, wavg is the
desired average weight of the items, and d sets the maximal deviation of individual values wl from wavg .
These values specify the generation of the random benchmark instances. For example, if an instance of
Set 2 has c = 1000, wavg = c/5 and d = 20%, the n weights wl are chosen randomly from the uniform
distribution [(1000/5) ∗ (1 − 0.2), (1000/5) ∗ (1 + 0.2)] = [160, 240].
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3.2 Related Work

There are numerous evolutionary approaches for the BPP in the literature. Interestingly, the majority of
these approaches are hybrid, combining GAs with problem specific heuristics. It is now well established
that evolutionary approaches work very well in combination with problem specific heuristics and the
review of relevant literature confirms this. This section will therefore briefly overview a range of relevant
heuristics, followed by a discussion of GAs for the BPP. It should be noted that due to the vast number
of publications addressing the BPP, this review is necessarily restricted to the relevant key ideas.

The classic heuristics are the first fit decreasing (FFD) and the best fit decreasing (BFD) algorithms.
Both of these approaches consider all items in decreasing order of their weights, and then place them
systematically into the bins. The worst case result for FFD and BFD is (11/9)opt + 4, where opt
represents the optimal number of bins (Coffman, Garey, and Johnson 1978). As pointed out by Gupta
and Ho (1999), the performance of both heuristics deteriorates when the optimal solution requires the
majority of bins to be filled to (near) the maximum degree possible. (These are the kind of “hard”
problems this paper aims to address.) They therefore suggested a new heuristic, called minimum bin
slack (MBS), to overcome this deficiency. MBS is naturally bin-focused, with any given bin filled to
the maximum degree before the next bin is considered. Backtracking may be used to escape from local
optima. Fleszar and Hindi (2002) have suggested several variations of MBS, one of which is MBS’. This
technique only differs from MBS in the use of an initialisation procedure that speeds up the algorithm. In
their study, they found that amongst several suggested approaches, a combination of heuristics gave the
overall best performance when tested on a large set of benchmark problems. The application of MBS’
followed by a variable neighbourhood search proved an effective combination. Alvim et al. (2004) also
suggested the use of a hybrid heuristic that incorporates many different techniques. Their approach,
HI BP, is probably the most complex one, but it also produces the best results of all reviewed techniques
(see Table 2). However, HI BP is rather difficult to implement and relies crucially upon numerous
parameters that need to be decided upon prior to execution.

GAs require the problem to be encoded in such a way that allows the variation operators to create
useful and efficient neighbourhood structures. The most intuitive encoding for the BPP is a simple per-
mutation of integers. The solution may subsequently be constructed from the encoding by scanning the
permutation from one end to the other, fitting items into each bin while possible, before starting a new
bin. This ensures that all the solutions are legal, and also allows the use of well established crossover and
mutation operators that work for any permutation based encoding (such as for the travelling salesman
problem). However, as was pointed out by Falkenauer (1996), this approach has a very high level of
redundancy. In fact, it is clear that any permutation of items in any one bin will encode an identical
solution. For example, if a combination of 5 items fit into one bin, there are 5! = 120 different ways
to encode the same solution, and multiplying such numbers across all the bins quickly leads to enor-
mous redundancies. Falkenauer (1996) consequently suggested the idea of employing a group encoding,
whereby only the group membership of an item matters and not its position within the group. However,
a complicated crossover operation is then needed to ensure that the offspring are complete and do not
contain any duplicate items. Duplicates need to be deleted, and missing items have to be re-inserted us-
ing a problem specific heuristic. The algorithm suggested by Falkenauer (1996) implemented a concept
based on the dominance criterion due to Silvano and Paolo (1990).

The group based encoding has also been used by Iima and Yakawa (2003), who suggested a crossover
operator that makes use of MBS’ and a first-fit heuristic. Their crossover operator transmits some of
the parental segments to the offspring in their entirety, and the remaining items are added using the
aforementioned heuristics. Explicit care needs to be taken to ensure that no grouping exceeds any of
the bins’ capacities. They compared their GA against two non-evolutionary methods and concluded
that their GA produced results of greater accuracy. Another hybrid GA, due to Kao and Lin (1992),
utilised simulated annealing to improve its performance. The design of that algorithm was driven by
the stochasticity of both GAs and simulated annealing, which was believed to overcome some of the
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shortcomings of deterministic approaches such as FFD or BFD. There are numerous further evolutionary
approaches that have not been considered here as they are either tailored to specific instances of the BPP,
or designed for variants of the one-dimensional BPP (e.g., the two-dimensional BPP).

3.3 The Algorithm

The discussion of the BPP and the review of related work has shown that this problem has an inherently
modular composition. This is particularly evident in the success of methods that either adopt a bin-
focused view or a group-based encoding. This allows the exploitation of biologically inspired processes
that are directly linked to the modularity of eukaryotic genes. A highly abstract interpretation of the
theory of exon shuffling views this process as a modular bottom-up approach that incrementally leads
to proteins of increasing complexity. Exons, often synonymous with independent protein domains, are
combined in any perceivable way to create novel proteins of advanced functionality. The key idea is to
have modules that are known to work, and a process that allows the combination of these modules in a
meaningful way. This is the key principle underlying the design of ESGA.

The general evolutionary framework employed by ESGA is that of a steady-state GA: two parents
are selected from the population and crossed over to produce a single offspring. A binary tournament
determines the placement of the offspring into the current population. Each individual in the population
P represents a partition of the set U of n items, with labels l = 1, ..., n and weights {wl}, into |B|
disjoint sets B = {B1, . . . , B|B|}, where each bin Bi = {bi1, . . . , bimi} contains mi items with labels
bij ∈ {1, ..., n}. Each such B must satisfy:

⋃
Bi = U and Bi ∩ Bj = ∅,∀i, j; i (= j. In other words,

each individual represents a partition of U into non-overlapping sets, the union of which contains all
items exactly once. If the total bin capacity is c, the spare capacity si of each bin Bi is then

si = c −
mi∑

j=1

wbij (2)

Negative values correspond to overfilled bins, and these bins are penalised by a user-defined penalty
factor p ≤ −1 that negatively impacts on the cost of the bin, giving bin costs:

δi =
{

si if si ≥ 0
psi if si < 0 (3)

The fitness of the individual encoding B is the sum of bin costs
∑ |B|

i=1δi and the quality of the solution
is simply the number of bins |B|. The GA works best if some over-filled bins remain in the early
populations (i.e. |p| is not too high), but not too many (i.e. |p| is not too low). A penalty value of
p = −10 was found to be suitable for the test cases considered here, but other values may work better
for different sets of benchmark problems.

The evolution begins with a randomly initialized population. There are many ways this initialization
could be done, with various levels of complexity. For this study, the simplest possible process that
results in no over-filled bins was employed: First, a random permutation of all items is generated, giving
an ordered list of labels ∆U, and items are added sequentially to bins while possible. As soon as a bin is
full, or the inclusion of an item would exceed the current bin’s capacity, that bin is closed and added to
the individual, and a new bin is opened. The following shows a typical simple BPP initialization:

• Problem size: n = 5 items of capacity c = 7
• Problem weights: {w1 = 3, w2 = 5, w3 = 4, w4 = 6, w5 = 2}
• Random permutation of (labels of) items: ∆U = (5, 2, 3, 4, 1)
• Generate B by adding items one at a time:

– B = {}, B1 = {5}, s1 = 5 (spare capacity, continue adding)
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– B = {}, B1 = {5, 2}, s1 = 0 (bin full, start a new bin)
– B = {B1}, B2 = {3}, s2 = 3 (next item won’t fit, start a new bin)
– B = {B1, B2}, B3 = {4}, s3 = 1 (next item won’t fit, start a new bin)
– B = {B1, B2, B3}, B4 = {1}, s4 = 4 (all items placed, finish)

• Initialized individual: B = {{5, 2}, {3}, {4}, {1}}, |B| = 4

Once initialized in this way, the population evolves via a series of crossover and mutation operations.
The mutation operator considers every item contained within any newly generated offspring, and

mutates it with probability pm: the item to be mutated is, with probability 0.5, either moved to another
randomly chosen bin or exchanged with a randomly chosen item from another bin. It is possible that the
same item could be mutated multiple times, although the probability of that happening is very small.

The central feature of ESGA is its crossover operator which creates a single offspring Bγ from two
parents, Bα and Bβ , selected from P . First, the crossover operator merges Bα and Bβ to yield a set
of bins that contains every item exactly twice, and this needs to be reduced by half to yield a valid
offspring. This reduction not only aims to preserve as much as possible of the structural information (bin
memberships) from the parents, but also attempts to construct the offspring from the most promising
sub-solutions (bins Bi with the least cost). First, the cost δi of each bin in Bα ∪ Bβ is calculated and
used to establish an ordered list Λ = [Λi ∈ Bα ∪ Bβ : δΛi ≤ δΛi+1 ] of bins Λi sorted in non-decreasing
order of their cost (with bins of equal cost in random order). Starting from an empty offspring Bγ , the
first phase of crossover considers all bins in the order of increasing cost, and those that are disjoint to
all the bins already contained in Bγ are added to Bγ . In the second phase, all bins that contain at least
one item not yet contained in

⋃
Bγ are added to Bγ , with any duplicate items replaced by the most

similar items not already present. The similarity of items is judged by their weight differences. More
specifically, item bi is replaced by item bj /∈

⋃
Bγ if |wbi −wbj | ≤ |wbi −wbk

| ∀bk ∈ U −
⋃

Bγ . When
there are no remaining items to be added, the duplicates are simply deleted. The pseudocode for this
crossover operator is shown in Algorithm 1.

The following simple example of crossover should clarify this: Consider a simple BPP with n = 5
items of weights {w1 = 1, w2 = 2, w3 = 3, w4 = 4, w5 = 5} and bin capacity c = 5. It is clear that the
optimum solution consists of 3 bins {{5}, {4, 1}, {3, 2}}. Two parents Bα and Bβ are crossed over to
yield offspring Bγ , and an overfill penalty value of p = −5 is used. For clarity, each bin is labelled by
its originating parent and its cost:

• Bα = {{5}α
0 , {1, 3, 2}α

5 , {4}α
1 }

• Bβ = {{5, 1}β
5 , {2, 3}β

0 , {4}β
1 }

• Λ = [{5}α
0 , {2, 3}β

0 , {4}β
1 , {4}α

1 , {1, 3, 2}α
5 , {5, 1}β

5 ]
• Phase 1: Bγ = {{5}α

0 , {2, 3}β
0 , {4}β

1 }
• Phase 2: Bγ = {{5}α

0 , {2, 3}β
0 , {4}β

1 , {1, ( 3, ( 2}α
4 }

The crossover operator is clearly greedy in the sense that it always considers the seemingly best (most
tightly packed) bins first. This approach will consequently be susceptible to entrapment in local optima,
particularly in cases where the optimal solutions contain bins with moderate amounts of free space.
Adding noise is a standard procedure for escaping local optima and although mutations supply this to
a certain extent, often they are insufficient by themselves. Here noise can be added directly to the cost
of each bin, rendering the ordering of the bins only approximate and thus affecting the formation of the
new offspring directly; unlike mutations, the noise only affects the ordering of bins, not their content.
The maximum amount of noise, measured as a percentage of a bin’s capacity, can be determined by the
evolutionary encoding itself: a binary sequence encodes an integer percentage of maximum potential
noise that can be randomly added to the bin’s true cost during each crossover event. A four bit control
sequence proved effective, encoding a maximum noise range of 5-20%. Attempts to evolve the noise
over the full 0-100% range failed to produce any further improvements.
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Algorithm 1 Pseudo-code for the crossover operator used in ESGA.
Select parents Bα and Bβ from P
Merge parents to give bin set Bα ∪ Bβ

Sort bin set by non-decreasing cost δi to yield Λ = [Λi ∈ Bα ∪ Bβ : δΛi ≤ δΛi+1 ]
Create an empty offspring Bγ ← {}
// Phase 1: find and add mutually exclusive bins
for i = 1, . . . , |Bα| + |Bβ| do
if Λi ∩ (

⋃
Bγ) = ∅ then

Bγ ← Bγ ∪ Λi

end if
end for
// Phase 2: allocate or delete items from remaining bins
for i = 1, . . . , |Bα| + |Bβ| do
if Λi ! (

⋃
Bγ) then

for bij ∈ Λi ∩ (
⋃

Bγ) do
if ∃bx ∈ U −

⋃
Bγ then

bij ← bx with min |wbij − wbx |
else
delete bij

end if
end for
Bγ ← Bγ ∪ Λi

end if
end for

The ESGA crossover process ensures that not only does the offspring inherit the most tightly packed
bins from both parents, but also that the bins with the least amount of free space are preferentially
preserved. Although the bins are considered as independent units, or modules, there exists an interrela-
tionship between them, because any individual must contain all items exactly once. This is guaranteed
by the replacement procedure, inspired by properties of the genetic code, with unwanted items replaced
by the most similar available ones. This means that even modified bins retain their original composition
to the maximum degree possible. Furthermore, the penalty term applied to infeasible bin arrangements
ensures that those bins are less likely to be considered first during crossover, and, assuming the penalty
term is chosen appropriately, will tend to purge all infeasible bins over time. The need for an explicit
repair procedure is thus avoided.

3.4 Experimental Setup

All experiments designed to test the ESGA were based on a canonical steady-state GA with a population
of size 150. Parents were selected at random and the offspring placed into the population depending on a
binary tournament with a randomly chosen individual. The previously discussed crossover operator was
applied with a probability of 0.8. In the event that crossover was not applied, a randomly chosen parent
was reproduced asexually (i.e. cloned). The mutation probability was set to 1/n, and the noise control
sequence was mutated by flipping each bit with probability 0.25. These parameters were established
systematically, although by no means exhaustively, in a preliminary series of experiments.

We are primarily interested in finding solutions for “hard” packing problems, that other algorithms
are known to perform poorly on, so our testing focussed mainly on the hardest group of benchmark
problems, set 3, which contains 10 problem instances. The algorithm was executed 50 times on each
instance, with an imposed limit of 50,000 function evaluations (FEs) for each run. The performance was
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Instance Opt % Avg FE Min FE Max FE Accuracy Avg over
hard0 56 100 7177.38 2488 17186 56 0
hard1 57 100 5826.58 2384 15996 57 0
hard2 56 0 - - - 57 0
hard3 55 0 - - - 56 0
hard4 57 98 13474.10 6362 35809 57.02 0
hard5 56 92 15361.15 6316 44610 56.06 0.04
hard6 57 100 5501.98 1924 10143 57 0
hard7 55 100 7899.92 2275 22461 55 0
hard8 57 100 5265.58 1830 21475 57 0
hard9 56 98 13931.55 5079 30045 56.02 0

Table 1: Summary of the ESGA results: Each instance is listed by its name and optimal number of bins
(Opt). The third column (%) is the percentage of solved trials, followed by the average number of func-
tion evaluations required (Avg FE). Next, the minimum and maximum number of function evaluations
required are shown (Min FE, Max FE). The last two columns show the overall accuracy of the algorithm
(Accuracy), and the average number of overfilled bins in the final solution (Avg over).

evaluated by measuring the number of times the optimum for each instance was found, and how many
FEs, on average, were required. Accuracy was measured by the average number of bins used and how
many bins, on average, were overfilled.

3.5 Results and Analysis

The results from all our ESGA experiments are summarized in Table 1. It shows that the algorithm
successfully found the global optimum in 8 out of the 10 problem instances. In 5 cases, the optimum was
found in all trials, while in 3 other cases the optimum was found in over 90% of trials. There are two
cases, hard2 and hard3, where the global optimum was not found at all. However, all the final solutions
for these two cases were exactly a single bin away from the optimal solution. The same is true for the
other instances which were not solved with 100% reliability – the unsuccessful trials were all at most one
bin away from the global optimum. Interestingly, there is only a single trial in which an invalid solution
was returned (for hard5), highlighting the algorithm’s ability to purge infeasible sub-solutions.

The overall behaviour of the algorithm was further examined by looking at its convergence over time.
This was done by focussing on the best individual in the population at each generation. There are three
factors to consider: fitness (bin slack), number of bins, and number of constraint violations. Three rep-
resentative instances were selected for this analysis, one of which had been solved consistently (hard0),
one which had never been solved (hard2), and one that had been solved but not all the time (hard5).
Averages over 50 trials are presented in Figure 1. These graphs indicate that the algorithm quickly con-
verges towards a (near-)optimal number of bins, although several of them are initially overfilled. In fact,
the number of overfilled bins roughly peaks when the optimal number of bins is first found. The fitness
of the best individual also seems to stagnate around that point. The subsequent change is very gradual,
reducing the number of overfilled bins without affecting the actual number of bins. This change is hardly
visible in the graphs: although a penalty factor of p = −10 is applied to infeasible bin arrangements,
the penalty only applies at the level of the bin and hence may not make a significant contribution to the
overall fitness of an individual (especially if only few bins are overfilled).

It is clearly important that any new algorithm be tested against existing algorithms. A comparison of
different approaches for this particular set of benchmark problems is presented in Table 2, and shows that
ESGA ranks highly in terms of success rate. In fact, only the HI BP algorithm of Alvim et al. (2004)
performs better. Moreover, HI BP requires a number of pre-processing steps, and undergoes multiple
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Figure 1: Graphs showing the algorithm’s convergence for three selected problems: hard0 (a,b,c), hard2
(d,e,f) and hard5 (g,h,i). The first graph in each row depicts the best fitness over time as measured by
the space available across all bins. The second graph shows the number of bins of the population’s best
solution over time. The third graph shows the number of overfilled bins in the best solution over time.

phases exploiting several mathematical properties of the BPP. ESGA, on the other hand, is very simple
to implement and could be easily applicable to other problems that exhibit similar structural properties.

3.6 Further Experimentation

The greedy nature of the crossover operator and its ability to purge invalid sub-solutions makes ESGA
highly suitable for those instances of the BPP that are usually considered difficult or “hard” (e.g., those
where the global optimum consists of very tightly packed bins). Although we are primarily concerned
with solving those problems that existing algorithms find difficult, for completeness it is worth checking
how well ESGA performs on other instances, that are normally considered “less difficult”. The algorithm
was therefore tested on the other two sets of benchmark problems described above (i.e. Sets 1 and 2),
for problem sizes up to 200 items. That means a total of 540 + 360 = 900 instances. For each instance,
the algorithm was executed 25 times with a limit of 25,000 FEs. Tables 3 and 4 show the success rates
obtained, averaged over the various problem classes. The success rates are seen to be very similar for
both sets. Table 5 summarises the performance of ESGA across all three sets of benchmark problems,
and shows that it is relatively robust across different types of instances. In fact, there seems to be no
single attribute that indicates why the algorithm fails to solve some instances and not others, and more
analysis of this issue will clearly be required to develop the algorithm further.
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Approach Reference Solved
MBS (Gupta and Ho 1999) in (Fleszar and Hindi 2002) 0
MBS’ (Fleszar and Hindi 2002) 0
Perturbation MBS’ (Fleszar and Hindi 2002) 0
Sampling MBS’ (Fleszar and Hindi 2002) 0
FFD (Scholl et al. 1997) in (Fleszar and Hindi 2002) 0
BFD (Scholl et al. 1997) in (Fleszar and Hindi 2002) 0
WFD (Scholl et al. 1997) in (Fleszar and Hindi 2002) 0
B2F (Scholl et al. 1997) in (Fleszar and Hindi 2002) 0
FFD-B2F (Scholl et al. 1997) in (Fleszar and Hindi 2002) 0
Relaxed MBS’ (Fleszar and Hindi 2002) 2
VNS (Fleszar and Hindi 2002) 2
Perturbation MBS’ & VNS (Fleszar and Hindi 2002) 2
Genetic Algorithm (Iima and Yakawa 2003) 3
BISON (Scholl et al. 1997) in (Iima and Yakawa 2003) 3
Dual Tabu (Scholl et al. 1997) in (Fleszar and Hindi 2002) 3
Exon Shuffling GA This paper 8
HI BP (Alvim, Ribeiro, Glover, and Aloise 2004) 10

Table 2: A comparison of ESGA with previously published algorithms in terms of cases solved among
the same set of 10 benchmark instances.

Class % Class % Class %
N1C1W1 95.4 N2C1W1 96.4 N3C1W1 81.2
N1C1W2 100 N2C1W2 96.2 N3C1W2 84.0
N1C1W4 99.6 N2C1W4 96.8 N3C1W4 93.2
N1C2W1 99.2 N2C2W1 77.0 N3C2W1 63.2
N1C2W2 97.6 N2C2W2 90.2 N3C2W2 79.2
N1C2W4 93.8 N2C2W4 93.0 N3C2W4 83.6
N1C3W1 95.6 N2C3W1 82.8 N3C3W1 51.6
N1C3W2 100 N2C3W2 87.8 N3C3W2 70.6
N1C3W4 97.0 N2C3W4 89.8 N3C3W4 73.0

Table 3: Summary of the success rates of ESGA on Set 1 of benchmark problems.

We do not compare ESGA to other approaches on these instances as we did in the previous section.
ESGA was aimed at solving problem instances that other algorithms find difficult or impossible, and
Table 2 demonstrates its success. Further comparison is less relevant to this objective, and may indeed
be misleading if we only compare the success rates without regard to running times. It is actually very
difficult to make meaningful comparisons to these highly problem specific methods, as they usually run
very fast, but may not be able to locate the best-known solutions. ESGA, on the other hand, is designed
to find the optimal solution reliably and within ‘reasonable’ time, and this ability is reflected in the data.

4 The Exonic Genetic Algorithm (ExGA)

The design of the ExGA was motivated by the fact that many hard packing problems in the real world
involve more complex constraints than the BPP considered previously. Constraints essentially fragment
the search space into feasible and unfeasible regions, and considerable effort may be wasted exploring the
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Class % Class % Class %
N1W1B1 99.6 N2W1B1 98.8 N3W1B1 96.0
N1W1B2 100 N2W1B2 73.6 N3W1B2 23.2
N1W1B3 72.0 N2W1B3 59.6 N3W1B3 14.4
N1W2B1 100 N2W2B1 100 N3W2B1 90.0
N1W2B2 100 N2W2B2 99.2 N3W2B2 81.2
N1W2B3 100 N2W2B3 85.6 N3W2B3 42.4
N1W3B1 99.6 N2W3B1 91.2 N3W3B1 80.0
N1W3B2 100 N2W3B2 100 N3W3B2 99.6
N1W3B3 98.8 N2W3B3 100 N3W3B3 65.2
N1W4B1 100 N2W4B1 100 N3W4B1 100
N1W4B2 100 N2W4B2 100 N3W4B2 100
N1W4B3 100 N2W4B3 94.4 N3W4B3 86.4

Table 4: Summary of the success rates of ESGA on Set 2 of benchmark problems.

% % %
n→ 50 100 200 100% 0%
Set 1 97.6 90.0 75.5 62.8 4.8
Set 2 97.5 91.9 73.2 81.9 8.3
Set 3 78.8 50.0 20.0

Table 5: Summary of the average success rates of ESGA on all three sets of benchmark problems. The
second row shows the number of items n for each class of problems and the three rows below show the
average success rate across all instances of that class. The two right-most columns indicate the percentage
of instances that have been solved across all trials (100%) and those that have never been solved (0%).

unfeasible regions. We have shown elsewhere (Rohlfshagen and Bullinaria 2006) that repair functions
perform significantly better than penalty based approaches (such as that used with the ESGA) for the
instances of the MKP considered here, and a similar conclusion was arrived at by Gréwal et al. (2006)
for a set of digital signal processor benchmark problems. Here we show how the principles of RNA
editing can be abstracted to create effective repair functions that allow constraint satisfaction and modular
encoding within our evolutionary framework. We present several variants of our algorithm, and test them
on the well known MKP problem.

4.1 The Multiple Knapsack Problem (MKP)

The MKP is a much studied NP-hard combinatorial optimisation problem that is a generalisation of
the single knapsack problem. It is highly constrained, and has received particular attention in the GA
community because it can be conveniently encoded by binary strings. There are actually many variants
of the MKP. We shall use the version for which the objective is to fill a series of m knapsacks, each of
capacity cj , with any subset of n items, each of value vi and weight wij when in knapsack j, in such a
way that the combined value of all chosen items is maximized without exceeding any of the knapsack’s
capacities. More formally, the aim is to find the maximum fitness

max(
n∑

i=1

viXi) |
n∑

i=1

wijXi ≤ cj ∀j = 1, . . . ,m (4)
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in which Xi ∈ {0, 1} indicates inclusion of item i. We studied the widely used SAC’94 suite of bench-
mark MKP problems, which may be found online at http://elib.zib.de/pub/Packages/
mp-testdata/ip/sac94-suite/. It contains 55 problem instances which range in size from
15-105 objects and 2-30 knapsacks.

4.2 Related Work

The MKP problem is one of the most widely studied constrained optimisation problems in the field of
EC. Here we concentrate on reviewing four approaches that have attempted to solve instances of the
SAC’94 library of benchmark problems. The earliest was by Khuri, Bäck, and Heitkötter (1994) who
suggested the use of a graded penalty term (violation product) that penalises invalid solutions depending
on the number of constraint violations. They used a cGA with a modified fitness function to focus
the search on the feasible regions of the search space. This concept was taken further by Kimbrough,
Lu, Wood, and Wu (2002) who proposed a 2-Market GA (2-MGA) that restores feasibility using a two
phase procedure. The first phase performs optimality improvement and the second phase feasibility
improvement. They tested two different penalty terms, violation product and sum of violations, the
former of which is identical to the graded penalty term suggested by Khuri et al. (1994).

Further improvement was achieved by using instance specific knowledge: Cotta and Troya (1997)
suggested a Hybrid GA (HGA) with a greedy construction heuristic that builds solutions by selectively
choosing items of high value-weight ratios. The encodings represent perturbations of the problem in-
stance, generated by manipulation of the profits across all items (noise). Jun, Xiande, and Lu (2003)
suggested an Evolutionary Game Algorithm (EGA) that also utilised the value-weight ratio of each item.
That domain-specific information was used to construct a repair function that removes items in order
of increasing ratios until feasibility is obtained. This is followed by a second phase that adds items, if
possible, in order of their decreasing value-weight ratios. Diversity was maintained by a perturbation
phase that inflicts random changes with small probability prior to repair (mutations). The results of these
four studies are summarised in Table 6 and are used later for comparison with the performance of our
new approach. The superiority of EGA over the previous approaches demonstrates the importance of
repair functions that produce tightly packed solutions and maximize the value-weight ratios of the items
considered for inclusion.

4.3 Problem Specific Knowledge

A general review of numerous different optimisation techniques shows that problem specific approaches
are generally likely to outperform their ‘blind’ counterparts (Grefenstette 1987). Most algorithms use
some understanding of the structure of the problem in their design, but only a few use instance specific
attributes. As the previous section showed, approaches for the MKP that make explicit use of the items’
value-weight ratios clearly outperform approaches that do not exploit such information. It may be dif-
ficult, however, to utilise domain specific knowledge properly. It is, for example, not clear whether to
use the average value-weight ratio of an item across all knapsacks or the minimum/maximum value. The
new algorithm we are proposing here does not depend on such instance specific knowledge. Instead, it
relies upon a general assumption made about the class of MKP problems in general: namely that optimal
solutions have, on average, minimal waste of capacity and, because fitness is the sum of values, are more
likely to contain items with higher value-weight ratios. This intuitive concept has already proved useful
in the previously mentioned EGA approach of Jun, Xiande, and Lu (2003).

4.4 ExGA Variant I

During evolution, crossover and mutation may generate individuals that violate one or more constraints,
and these must be discarded, unless they can be used to generate valid individuals. This is analagous to
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Approach
cGA HGA EGA 2-MGA

Instance n/m Opt 5,000-200,000 20,000 20,000 2,500,000
hp2 35/4 3186 - - 100% 3186 - 3186
pb6 40/30 776 - - 100% 776 - 730.2
pb7 37/30 1035 - - - 1034.6 - 1033
pet3 15/10 4015 83% 4012.7 100% 4015 100% 4015 -
pet4 20/10 6120 33% 6102.3 94% 6119.4 100% 6120 -
pet5 28/10 12400 33% 12374.7 100% 12400 100% 12400 -
pet6 39/5 10618 4% 10536.9 60% 10609.8 99% 10617.9 -
pet7 50/5 16537 1% 16378 46% 16512 100% 16537 - 16486.6
sent01 60/30 7772 5% 7626 75% 7767.9 100% 7772 - 7769.8
sent02 60/30 8722 2% 8685 39% 8716.5 69% 8721.7 - 8720.4
weing7 105/2 1095445 0% 1093897 40% 1095386 100% 1095445 - 1094727
weing8 105/2 624319 6% 613383 29% 622048.1 73% 623844.8 - 623627.8
weish12 50/5 6339 - - 100% 6339 - 6339
weish17 60/5 8633 - - 100% 8633 - 8633
weish21 70/5 9074 - - 100% 9074 - 9074
weish22 80/5 8947 - - 100% 8947 - 8947
weish25 80/5 9939 - - 100% 9939 - 9939
weish29 90/5 9410 - - 100% 9410 - 9203.2

Table 6: Summary of previous results from the literature: Each problem instance is listed alongside its
size (number of items/number of knapsacks) and optimal solution (Opt). For each approach is shown
the percentage of times the global optimum has been found and the final average value, for all available
instances. The number of function evaluations are shown below the name of each approach: cGA refers
to the canonical GAwith graded penalty term, HGA is the Hybrid GAwith greedy construction heuristic,
EGA is the Evolutionary Game Algorithm, and 2-MGA is the 2-Market GA.

RNA sequences that are discarded by means of “nonsense-mediated decay” because they fail to produce
functional proteins as a result of premature stop codons or shifted reading frames. RNA editing, however,
may selectively target individual nucleotides to restore protein synthesis, and can thus be viewed as a
repair algorithm that prevents degradation. The idea of ExGA is to create a repair function, loosely
based upon the principles of RNA editing, that keeps all individuals within the feasible region of the
search space.

For the MKP, the solutions are sub-sets of the available items, that are conveniently encoded as binary
inclusion vectors "X over all items, rather different to the sets of bins B that partition the set of all items
in the BPP. We need repair procedures to adjust "X so that the constraints are satisfied. Jun, Xiande,
and Lu (2003) used a repair function which adjusts knapsack contents in order of value/weight ratios
until feasibility is achieved. ExGA follows a similar approach, but rather than using value/weight ratios,
it evolves the relative order of items to be considered for removal or inclusion. That ordering of items
is partial, rather than strict: groupings are used to establish order, but items within the same grouping
are chosen randomly. The encoding of each individual solution ("X, "G) thus consists of two vectors:
an inclusion vector "X ∈ {0, 1}n that is identical to the traditional encoding of the MKP as a binary-
encoded optimisation problem, with item i included in the solution if and only if Xi = 1. A second
vector, "G ∈ {1, . . . , k}n, assigns to each item i a grouping number Gi, with a user-defined number of
groupings k. Throughout the execution of the algorithm, a mutation operator is used that iterates over all
items and randomly re-assigns the value of Gi with probability pmG . Also, a standard binary mutation
operator works in an identical fashion on the Xi with bit-probability pmX .

The grouping numbers Gi define a structure that is subsequently exploited during the repair process.
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Prior to the application of the repair procedure, the overall fitness, and the spare capacity

sj = cj −
n∑

i=1

wijXi (5)

of each knapsack j is computed. Any negative values for sj indicate that there is a constraint violation
that needs repair. The repair consists of two phases: an exclusion (feasibility) phase that removes a
sufficient number of items to render all spare capacities positive, and then an inclusion (greedy) phase
that adds as many additional items as possible without violating any constraints. The second phase takes
place even if there are no constraint violations needing repair.

The grouping numbers establish a partial ordering of items. All items are sorted according to in-
creasing grouping numbers to give a hierarchy of k sets "H = [H1,H2, . . . ,Hk] withHj = {i | Gi = j}.
Here, the vector "H contains, in order, k sets, each of which contain indices to the items under consider-
ation. The feasibility phase considers all groupings Hj in increasing order (j = 1, 2, . . . , k) and chooses
items Hji within the same grouping j in random order for removal from the knapsacks (i.e. for setting
XHji = 0). After each removal, the spare capacities are updated, and the process continues until no
constraint violations remain. The repair moves on to the next grouping only once all items within the
current grouping have been considered.

The second phase considers the groupings in reverse order (j = k, k − 1, . . . , 1), and attempts to
fill any spare capacity by adding items (i.e. setting XHji = 1) as long as the inclusion does not result
in the violation any of the constraints. This process continues until all items in all groupings have been
considered. The pseudocode for the full repair mechanism is shown in Algorithm 2.

As with ESGA, ExGA employs a standard evolutionary framework that consists of the common
selection, crossover, mutation and replacement cycle. However, because of the greedy nature of the
repair process, a few changes were made in an attempt to preserve the population’s diversity. Now, the
first parent is chosen at random, and the second parent is chosen to be the individual in the population
with maximum Hamming distance to the first. Also, each offspring now replaces one of its parents,
chosen randomly (rather than, as in the ESGA, a completely randomly chosen individual), and duplicate
encodings are not allowed to enter the population. Although it is debatable whether these changes can be
considered ‘nature inspired’, with our limited population sizes they are certainly important for improving
the algorithm’s overall performance.

4.5 ExGA Variant II

A major disadvantage of any repair technique is the additional computational cost inherent in the in-
spection and modification of infeasible encodings. This cost should be accounted for, and, if significant,
minimized. The fitness of an encoding can be calculated in O(n), and the constraints require O(mn),
giving a total evaluation cost of O(n + mn). In the worst case, the cost of repair is O(2mn). The idea
behind ExGA II is to reduce the cost of repair by carrying it out as a solution is constructed from an
evolved construction template, rather than beginning from a potential solution that has been evolved. In
the process, we shall see if such an alternative encoding can result in better solutions too.

The encoding ( "X, "G) for the first variant, ExGA IIa, is essentially identical to that of ExGA I, except
that the binary inclusion vector "X is now constructed on-the-fly using the grouping numbers "G alone.
In effect, we start with "X = "0, so there are automatically no constraint violations to begin with, and the
‘repair’ process is reduced to the second phase, which is now more accurately described as a decoder-
like construction process. The constraints now only need checking during the construction of "X from
"G as described above, and the search is effectively restricted to the feasible regions of the search space
by mini-repair events at each stage. The pseudocode for the construction process for "X is shown in
Algorithm 3.
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Algorithm 2 Pseudocode for the repair mechanism of ExGA I.
Construct "H from "G such that Hj = {i | Gi = j}
//Phase 1: Exclusion (feasibility) phase
if ∃sr < 0 then
for j = 1, 2, . . . , k do
for i ∈ Hj do
if Xi = 1 then

Xi ← 0
update all sr

if all sr ≥ 0 then
terminate phase 1

end if
end if

end for
end for

end if
//Phase 2: Inclusion (greedy) phase
for j = k, k − 1, . . . , 1 do
for i ∈ Hj do
if Xi = 0 then

Xi ← 1
update all sr

if ∃sr < 0 then
Xi ← 0
revert all sr

end if
end if

end for
end for

Although "X is generated dynamically, it is still used to compare individuals in the population during
selection and replacement. Furthermore, it is used to guide the mutation operator that alters the grouping
numbers in "G. The mutation operator ensures an item is moved from a group where it has a certain
binary value (0 or 1) to a group that contains at least one item with the opposite binary value. The reason
for this is as follows: the first group (from left to right) that contains an item that can not be included (i.e.
its binary value is 0) defines a critical threshold. All items situated in groups to the left of this threshold
will be included in the solution independent of their order. The mutation operator moves items across
this threshold to ensure that the mutation is likely to affect the construction of the next solution.

The encoding for the second variant aims to achieve an even better performance by allowing the num-
ber of groupings to adapt during the evolutionary process. It now consists of four vectors ("X, "G, "K, "R),
with "X and "G as before, "K ∈ {0, 1}q and "R ∈ [0, 1]n. The binary vector "K, which undergoes stan-
dard binary mutation, encodes the number of groupings k used to group the items, and "R encodes the
ordering. The k and "R are used together to construct the group membership vector "G on-the-fly using:

Gi = .Rik/ (6)

and this is subsequently used to construct the binary solution "X as described above. The vector "R is
mutated in a similar fashion to "G in ExGA IIa, with each floating point number replaced by a randomly
chosen one (in [0, 1]) such that the item would cross the threshold as discussed above. Any mutations
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Algorithm 3 Pseudocode for the decoder-like construction mechanism of ExGA IIa.
Construct "H from "G such that Hj = {i | Gi = j}
//Construct "X from "H starting from "X = "0
for j = k, k − 1, . . . , 1 do
for i ∈ Hj do

Xi ← 1
update all sr

//Mini-repair
if ∃sr < 0 then

Xi ← 0
revert all sr

end if
end for

end for

to "R will change the number of groups k used and this will in turn affect the distribution of items. The
length q of "K is chosen to allow any power of 2 smaller than n to be expressed. The use of floating point
numbers to evolve permutations is not new (e.g., see the random keys of Bean (1994)), but has not yet,
to the best knowledge of the authors, been used before in combination with a segmented encoding (i.e.
to evolve a partial ordering).

4.6 Illustrative Example of Encodings and Algorithms

The following simple example illustrates all three ExGA variants. Consider the n = 5, m = 2 MKP
shown in Table 7 with capacities c1 = c2 = 25.

In the case of ExGA I, assume an individual has been generated with k = 4, "X = (1, 1, 1, 0, 1) and
"G = (1, 3, 3, 2, 4). It follows that s1 = −2 and s2 = −11 (as

∑ "W = 27 for c1 and
∑ "W = 36 for c2),

and the ‘repair’ proceeds as follows:

• Phase 1: Process the components of "H = ({1}1, {4}2, {2, 3}3, {5}4) in order i = 1, 2, 3, 4:
– Group H1: X1 = 1, invert to give X1 = 0, s1 = 3 and s2 = −3
– Group H2: X4 = 0, so ignore
– Group H3: randomly choose item X3 = 1, invert to give X3 = 0, s1 = 13 and s2 = 9
– No constraint violations remaining, so proceed to next phase

• Phase 2: Process the components of "H = ({1}1, {4}2, {2, 3}3, {5}4) in order i = 4, 3, 2, 1:
– Group H4: X5 = 1, so ignore
– Group H3: randomly choose item, X3: if X3 is inverted, s1 = 3 and s2 = −3 so ignore
– Group H3: remaining item, X2 = 1, so ignore
– Group H2: if X4 is inverted s1 = 10 and s2 = 6, so include: X4 = 1
– Group H1: if X1 is inverted s1 = 5 and s2 = −2, so ignore

The final solution after repair is thus "X = (0, 1, 0, 1, 1) which is feasible.
In the case of ExGA IIa, assume an individual has been generated with k = 4 and "G = (1, 3, 3, 2, 4).

We start with "X = "0, s1 = 25 and s2 = 25. The algorithm then ‘constructs’ "X as follows:

• Process the components of "H = ({1}1, {4}2, {2, 3}3, {5}4) in order i = 4, 3, 2, 1:
– Group H4: if X5 ← 1, s1 = 23 and s2 = 20, so include X5 = 1
– Group H3: randomly choose item, X2: if X2 ← 1, s1 = 13 and s2 = 9, so include X2 = 1
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Items 1 2 3 4 5
Values 10 13 10 7 5
Weights 5 10 10 3 2

8 11 12 3 5

Table 7: A simple n = 5,m = 2MKP.

Parameter ExGA I ExGA IIa ExGA IIb
population size 100 100 100
selection random tournament tournament

k n/2 n/4 adaptive
pc 0.9 0.9 0.9

pmX 0.5/n - -
pmG 0.5/n 1/n 1/n

Table 8: The various parameter settings for ExGA I, IIa and IIb.

– Group H3: remaining item X3: if X3 ← 1, s1 = 3 and s2 = −3 so keep X3 = 0
– Group H2: if X4 ← 1, s1 = 10 and s2 = 6, so include X4 = 1
– Group H1: if X1 ← 1, s1 = 5 and s2 = −2, so keep X1 = 0

This yields the feasible solution "X = (0, 1, 0, 1, 1).
Finally, in the case of ExGA IIb, assume an individual has been generated with "K = (0, 1, 0, 0) and

"R = (0.17, 0.55, 0.71, 0.30, 0.89). The vector "K translates to k = 4. Then, the actual groups, "G, are
established as follows:

• G1: .0.17 ∗ 4/ = 1
• G2: .0.55 ∗ 4/ = 3
• G3: .0.71 ∗ 4/ = 3
• G4: .0.30 ∗ 4/ = 2
• G5: .0.89 ∗ 4/ = 4

This yields the same "G as in the ExGA IIa example, and so the remainder of this example is identical.

4.7 Experimental Setup

Experiments were conducted to perform a comparison of the ExGA variants, and with the earlier ap-
proaches reviewed in Section 4.2. Each ExGA algorithm was executed 100 times on each instance of
the SAC’94 library of benchmark problems, with a maximum of 20,000 function evaluations. The most
successful ExGA variant was subsequently compared against the earlier approaches on a subset of 18
instances. The parameter settings for each variant are shown in Table 8. For each algorithm and instance
was recorded the percentage of times the global optimum was found and the average number of FEs
required to find it, and the statistical significance of the differences in FEs required between algorithms
was determined using t-tests requiring p < 0.005.

4.8 Results and Analysis

The results of all experiments are presented in Tables 9 and 10. For each variant is shown the success rate
and the average number of FEs required, and the significant differences in performance between variants.
The overall performance differences are summarised in Table 11. It is evident that all three algorithms
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Instance n m ExGA I ExGA II a ExGA II b I-IIa I-IIb IIa-IIb
FLEI 20 10 100% 1773 100% 2175 100% 2118
HP1 28 4 100% 3247 100% 2397 100% 2417 * *
HP2 35 4 100% 4048 100% 3546 100% 3537
PB1 27 4 100% 2333 100% 2130 100% 2508
PB2 34 4 100% 4048 100% 3466 100% 3441
PB4 29 2 100% 2148 100% 2253 100% 2123
PB5 20 10 100% 1916 100% 2023 100% 2190
PB6 40 30 100% 2019 100% 1893 100% 1913
PB7 37 30 100% 4130 100% 4075 100% 4014
PET2 10 10 100% 111 100% 105 100% 114
PET3 15 10 100% 579 100% 512 100% 628
PET4 20 10 100% 993 100% 813 100% 888 *
PET5 28 10 100% 1467 100% 1503 100% 1617
PET6 39 5 100% 6208 100% 5102 100% 5223 *
PET7 50 5 100% 7534 100% 6359 99% 6316 * *
SENT01 60 30 100% 5910 100% 6328 100% 6210
SENT02 60 30 100% 9548 100% 8965 100% 8409 *
WEING1 28 2 100% 2513 100% 2450 100% 2658
WEING2 28 2 100% 2394 100% 2223 100% 2403
WEING3 28 2 100% 2118 100% 1620 100% 1695 * *
WEING4 28 2 100% 1726 100% 1628 100% 1937
WEING5 28 2 100% 1563 100% 1416 100% 1500
WEING6 28 2 100% 2843 100% 2394 100% 2693 * *
WEING7 105 2 18% 14499 64% 12875 37% 17402 * * *
WEING8 105 2 86% 8349 100% 9198 94% 8828 * *

Table 9: Comparison of the performance of the three ExGA variants, showing percentages correct and
average number of FEs, and the differences that are statistically significant (as indicated by *). (Contin-
ued in Table 10.)

have a very high success rate across all instances in SAC’94. ExGA I solves all but two instances in all
trials. ExGA IIb solves all but three instances in all trials, but has better success rates overall than ExGA
I . ExGA IIa only fails to solve weing7 in all trials, and has a much higher success rate than the other
two algorithms in that case. In summary, ExGA IIa has the highest success rate across all instances, but
ExGA I and ExGA IIb require fewer FEs on average. ExGA I is significantly better than ExGA IIb on
the smaller instances, but significantly worse on the larger instances. A graphical comparison of the three
ExGA variants is shown in Figure 2.

Table 12 compares the performance of ExGA IIa to the other algorithms in the literature reviewed
earlier. ExGA IIa was chosen because it shows the highest success rate across all instances and is the
computationally least expensive of the three ExGA variants. ExGA IIa performs better on almost all
instances compared to the other approaches, including the most promising approach, EGA. The only
instance ExGA IIa performs worse on is weing7, which proved difficult for all algorithms except EGA.
The cost of repair for EGA is similar to that of ExGA I, however, and it follows that ExGA IIa is
computationally more efficient. Finally, it should be noted that ExGA I and IIb are also better across
most instances compared to the other approaches as they have a similar success rate as ExGA IIa.

The only instance not solved consistently by ExGA IIa within the allowed limit of FEs was weing7.
It is instructive to establish whether this poor performance is simply due to the limit imposed on the FEs,
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Instance n m ExGA I ExGA II a ExGA II b I-IIa I-IIb IIa-IIb
WEISH01 30 5 100% 2684 100% 2789 100% 2942
WEISH02 30 5 100% 2528 100% 2655 100% 2620
WEISH03 30 5 100% 1641 100% 2029 100% 2248 * *
WEISH04 30 5 100% 1014 100% 1451 100% 1562 * *
WEISH05 30 5 100% 810 100% 940 100% 1086 *
WEISH06 40 5 100% 3241 100% 3787 100% 3625 * *
WEISH07 40 5 100% 2666 100% 3373 100% 3395 * *
WEISH08 40 5 100% 2987 100% 3304 100% 3178
WEISH09 40 5 100% 2348 100% 2707 100% 2600 * *
WEISH10 50 5 100% 4314 100% 5728 100% 5468 * *
WEISH11 50 5 100% 2672 100% 3896 100% 3692 * *
WEISH12 50 5 100% 3666 100% 4152 100% 4130 * *
WEISH13 50 5 100% 3281 100% 4149 100% 4303 * *
WEISH14 60 5 100% 4131 100% 5409 100% 5076 * *
WEISH15 60 5 100% 4245 100% 5405 100% 5055 * *
WEISH16 60 5 100% 4732 100% 5323 100% 5195 * *
WEISH17 60 5 100% 3624 100% 4276 100% 4078 * *
WEISH18 70 5 100% 6640 100% 6798 100% 6289
WEISH19 70 5 100% 4928 100% 5208 100% 4764 *
WEISH20 70 5 100% 6016 100% 7219 100% 6336 * *
WEISH21 70 5 100% 5232 100% 5584 100% 5120 * *
WEISH22 80 5 100% 6619 100% 6492 100% 5773 * *
WEISH23 80 5 100% 5796 100% 6266 100% 5593 *
WEISH24 80 5 100% 7837 100% 7890 100% 7215 *
WEISH25 80 5 100% 7771 100% 8398 100% 7320 *
WEISH26 90 5 100% 7369 100% 7962 100% 6986 *
WEISH27 90 5 100% 6102 100% 6521 100% 5935 * *
WEISH28 90 5 100% 7032 100% 7671 100% 6707 * *
WEISH29 90 5 100% 7130 100% 7075 100% 6314 * *
WEISH30 90 5 100% 7182 100% 7914 100% 7168 * *

Table 10: Comparison of the performance of the three ExGA variants, showing percentages correct
and average number of FEs, and the differences that are statistically significant (as indicated by *).
(Continued from Table 9.)

Variant ExGA I ExGA IIa ExGA IIb
FEs % FEs % FEs %

ExGA I +7 +2 +6 +2
−18 −0 −14 −0

ExGA IIa +18 +0 +12 +0
−7 −2 −1 −2

ExGA IIb +14 +0 +1 +2
−6 −2 −12 −0

Table 11: Quantitative comparison of ExGA I, IIa and IIb showing how many instances each algorithm
is significantly better (+) or worse (−) in terms of success rate and number of FEs required. To be read
top-down.
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Figure 2: A comparison of the average number of function evaluations required by ExGA I, IIa and IIb
to reach the global optimum.

ExGA IIa Differences
Instance Solved FunEvals Average SGA HGA EGA 2-MGA
hp2 100% 3546 3186 - - ±0% ±0
pb6 100% 1893 776 - - ±0% +45.8
pb7 100% 4075 1035 - - +0.4 +2
pet3 100% 512 4015 +17% ±0% ±0% -
pet4 100% 813 6120 +67% +6% ±0% -
pet5 100% 1503 12400 +67% ±0% ±0% -
pet6 100% 5102 10618 +96% +40% +1% -
pet7 100% 6359 16537 +99% +54% ±0% +50.4
sent01 100% 6328 7772 +95% +25% ±0% +2.2
sent02 100% 8965 8722 +98% +61% +31% +1.6
weing7 64% 12875 1095422 +64% +24% −36% +694.9
weing8 100% 9198 624319 +94% +71% +27% +691.2
weish12 100% 4152 6339 - - ±0% ±0
weish17 100% 4276 8633 - - ±0% ±0
weish21 100% 5584 9074 - - ±0% ±0
weish22 100% 6492 8947 - - ±0% ±0
weish25 100% 8398 9939 - - ±0% ±0
weish29 100% 6521 9410 - - ±0% +206.8
Instances worse 0 0 1 0
Instances equal 0 2 13 6
Instances better 9 7 4 8

Table 12: Comparison of ExGA IIa with the earlier approaches in the literature, in terms of how fre-
quently each instance was solved across all trials. The only exception is the comparison with 2-MGA
where the average fitness of the best individual in the final generation is used. A positive/negative differ-
ence indicates by how much ExGA IIa performed better/worse than the approach named.
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Limit (FEs) % solved
20000 64
50000 87
100000 97
124812 100

Table 13: The performance of ExGA IIa on weing7 depends on the number of FEs allowed, and increases
to 100% as the limit on the FEs is increased.
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Figure 3: The number of groups evolved in ExGA IIb compared to the maximum (a), and the average
number of items per group (b).

or whether the algorithm is truly incapable of producing a consistent performance in this case. If the
limit on the FEs is increased to infinity, the algorithm does manage to solve all instances with an average
of only 24,778 FEs. The worst case requires 124,812 FEs. It is thus evident that the algorithm does not
get stuck at local optima for very long, but merely requires additional resources to solve this particular
instance. The success rates for different FE limits are shown in Table 13.

Finally, the adaptive attributes of ExGA IIb may be used to investigate the impact of the segmented
encoding and the distribution of items across the groups. The maximum number of groups possible in
ExGA IIb is restricted to the power of 2 closest to, but less than, n. If, for example, an instance contains
80 items, a binary sequence of 6 bits is chosen for a maximum of 26 + 1 = 65 groups (because there
has to be at least one group). Figure 3(a) shows the maximum number of groups possible (upper line)
and the actual number of groups in the final solution (lower line). The result is fairly consistent with
respect to problem size, and it can be seen in Figure 3(b) that the number of items per group averages
approximately 2.5 items. There are some clear variations, however, indicating that the optimal average
number of items per group is indeed an instance specific property.

5 Conclusions

This paper has presented two novel nature inspired genetic algorithms (GAs) that address two repre-
sentative classes of hard packing problems: the bin packing problem (BPP) and the highly constrained
multiple knapsack problem (MKP). Empirical results indicate that these algorithms are likely to provide
improved performance across a range of real world problems.

The Exon Shuffling GA (ESGA) has been applied successfully to a benchmark suite of hard BPPs.
This algorithm uses a biologically inspired group based encoding to achieve an appropriate modular-
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isation of the search space which allows the assignment of cost values to individual sub-solutions.
The crossover operator is based loosely upon the theory of exon shuffling, and combines parental sub-
solutions (bins) in a greedy fashion to produce a single offspring. A control sequence is used to introduce
noise during the crossover event to prevent stagnation at local optima. The resulting algorithm has a very
low number of parameters, but produces a very high success rate, solving 8 out of the 10 most difficult
problem instances. The performance of ESGA on the other benchmark instances is similar, resulting in
a very good robust performance overall compared with existing approaches in the literature.

The Exonic GA (ExGA) was proposed for more highly constrained problems, such as the MKP, and
three different variants of the algorithm were implemented and compared on a large set of benchmark
problems. This algorithm utilises a biological RNA editing inspired repair function that relies upon the
relative order of items (left to right, right to left). The actual order of items is adaptive and evolves during
the evolutionary process. This is a partial ordering only, with items of equal priority being selected at
random during the repair process. This adaptive approach offers at least two advantages over the other
approaches in the literature: first, instance specific knowledge is not required. Secondly, items of low
value-weight ratios may be part of the globally optimum solution; a rigid approach will always attempt
to exclude such items if the solution is unfeasible, but the ExGA may place such items in a position such
that it will never be considered for removal (or always be considered for inclusion). It was shown that
ExGA has excellent performance compared to other algorithms in the literature.

In summary, we have demonstrated how nature inspired techniques can lead to improved GAs for
two broad classes of hard packing problems of importance for many real world applications.

5.1 Future Work

There remain numerous variations of our algorithms still to explore, such as improved population ini-
tialization procedures, the incorporation of repair procedures in the ESGA, and further variations of the
ExGA encodings. There is also much scope for future work that addresses whether these algorithms may
be applied successfully to other constrained optimisation problems, such as the maximum clique or the
degree-constrained minimum spanning tree problem. Both of our algorithms exploit domain specific in-
formation, but do not exploit instance specific attributes. This should, in general, allow their application
to other problems that exhibit similar structural properties. Finally, although both algorithms exhibit a
very high success rate across all instances tested, there are some cases (hard2 and hard3 for the ESGA,
and weing7 for the ExGA) where the performances of the algorithms deteriorates significantly. This
issue will be addressed in the near future, and it is expected that the abstraction of additional phenomena
from molecular genetics may help to improve performance further.
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Khuri, S., T. Bäck, and J. Heitkötter (1994). The zero/one multiple knapsack problem and genetic
algorithms. In E. Deaton, D. Oppenheim, J. Urban, and H. Berghel (Eds.), Proceedings of the
1994 ACM Symposium of Applied Computation proceedings, pp. 188–193. ACM Press.

Kimbrough, S., M. Lu, D. Wood, and D. J. Wu (2002). Exploring a two-market genetic algorithm.
In Proceedings of the 2002 Genetic and Evolutionary Computation Conference, California, pp.
415–422. Morgan Kaufmann.

25



Kolkman, J. A. and W. P. C. Stemmer (2001). Directed evolution of proteins by exon shuffling. Nature
Biotechnology 19, 423–428.

Langton, C. G. (1992). Artificial life. In L. Nadel and D. Stein (Eds.), Lectures in Complex Systems,
pp. 189–241. Addison-Wesley Publishing Company.
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