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Abstract

For autonomous neural network systems one
usually needs fast learning and good generalization
performance, and there will inevitably be a trade-off
between these two requirements.  Using evolutionary
techniques can generate high performance networks,
but this often leads to unwanted side effects, such as
occasional instances of very poor performance.  This
paper explores the problems that arise for traditional
evolved neural networks using a range of evolutionary
approaches, and shows how they can, to a large
extent, be overcome by allowing the networks to evolve
age dependent plasticities.

1.  Introduction

Evolutionary techniques are increasingly being used
for optimising the performance of neural network
systems, and they certainly appear to be rather
successful (as seen in the recent review [1]).  Such a
hybrid approach will be particularly useful for creating
autonomous systems that need to learn quickly from
training data how to perform well when placed in new
environments.  One simply evolves them to learn as
quickly as possible to generalize as well as possible.
However, there are a number of feasible evolutionary
approaches that could be employed for carrying out the
evolution, and some of these can lead to unwanted side
effects in the form of occasional very poor performance
by the ‘optimized’ neural networks [2].  A detailed
analysis indicates that such problems arise as a
consequence of the trade-off between learning quickly
and having good final generalization performance.
This paper presents a series of simulations that
illustrate exactly what happens, and shows how
allowing appropriate age dependent plasticities
(learning rates) to evolve can avoid the problematic
cases found in traditional evolved neural networks.

2.  Evolving Neural Networks

The key idea of evolving neural networks is fairly

straightforward.  One takes a whole population of
neural networks, measures their individual fitnesses at
the task in question, and takes the best to form the
next generation using appropriate forms of cross-over
and mutation.  Good innate properties (e.g. parameter
values) will tend to proliferate in the population and
poor ones will be lost.

It is generally not worth the computational effort to
evolve a neural network to learn a particular set of
training data quickly, because it will be quicker overall
to just let it learn slowly.  However, it does make
sense to evolve neural networks that can learn quickly
to generalize well on new tasks drawn from a particular
class of tasks, e.g. to cope well in a new environment
drawn from a range of possible environments.

Most biological populations contain competing
individuals of all ages, and the need to compete with
older individuals inevitably leads to individuals that
learn quickly to improve their fitness.  Such a steady
state approach can be used to evolve neural networks
that learn quickly to generalize well [3].  

The obvious alternative is a generational approach
in which all individuals compete on an equal footing,
one generation at a time.  There are several feasible
variations on this theme [2].  The first (which we shall
call G1) has each neural network start from random
initial weights and learn for a fixed number of epochs
NG.  An individual’s fitness then naturally corresponds
to its generalization performance at the end of that
training period.  One might expect that to cause good
generalizers to evolve, but it is not obvious that this
will result in them learning quickly to generalize, nor
is it obvious how to choose an appropriately small
value of N G before we have even started the
evolutionary process.

One approach to encourage faster learning would be
to start off with NG at some sufficiently large value,
and as soon as a sizeable fraction (say half) of the
population learns to reach a clear maximum level of
performance in that time, move on to a second stage of
evolution in which the performance is averaged over
increasingly long periods at the end of those NG

epochs, in line with the evolving performance levels.
We shall call this two stage evolutionary strategy the



G1+G1 approach.  A more direct second stage strategy
involves taking the fitness there to be the number of
epochs required to reach the maximum performance
level.  This we shall call the G1+G2 approach.

The next two sections will present a series of
simulations which show the levels of performance that
arise from the steady state approach (SS) and the three
generational approaches (G1, G1+G1, G1+G2), and
allow us to identify their respective advantages and
disadvantages.  These will reveal the unwanted side
effects that can emerge from these approaches, and
suggest how age dependent plasticity may help.

3.  Baseline Simulation Details

For concreteness, let us assume that we want to
build neural networks that can learn to generalize well
on classification tasks, in particular, classifications
over unit two dimensional input spaces with random
circular classification boundaries.  Figure 1 shows
some representative cases this covers.  Though
simplified, such data covers the essential features and
difficulties of many real world problems.  Each neural
network is expected to learn a particular randomly
chosen classification boundary from a stream of
randomly drawn input data samples.  The natural
measure of each network’s task performance at each
stage is the average number of correct outputs (e.g.
within 0.2 of the binary targets) before training on
them.  For the purposes of computing average
performance levels, and updating the steady state
populations, it is convenient to separate the training
data presentations into blocks of 1200 patterns and call
each block a ‘simulated year of experience’.

For ease of computation, we shall take our neural
networks to be traditional multi-layer perceptrons with
one hidden layer, sigmoidal processing units, trained
by gradient descent using the cross-entropy error
measure.  As previous studies have shown [3], it is
appropriate to evolve separate learning rates ηL and
initial weight distributions [-rL, +rL] for each of the
four distinct network components L  (the input to
hidden weights IH, the hidden unit biases HB , the
hidden to output weights HO , and the output unit

biases OB).  With standard momentum and weight
decay parameters, this gives ten evolvable innate
parameters for each network.  We could also evolve the
number of hidden units, but this invariably results in
the maximum number allowed, which slows down the
simulations considerably, so we keep this fixed at 20
for all networks, which is plenty for the given task.

There remain a number of evolutionary parameters
to specify.  For the steady state simulations, after each
simulated year 10% of the least fit individuals are
selected by pair-wise fitness comparisons and removed
from the population.  Also, to prevent the populations
from being dominated by a few very old and very fit
individuals, a random 20% of individuals over the age
of 30 simulated years are removed each year.  In the
generational approaches, the least fit 50% of the
population are removed at each generation, which for
the G1 stages corresponds to 60 simulated years.  A
fixed population size of 200 is used throughout, with
the removed individuals being replaced by children
generated from random pairs of the most fit
individuals.  Innate parameter values for each child are
inherited randomly from the corresponding ranges
spanned by its two parents, plus random mutations
(from a Gaussian distribution) that allows them to fall
outside their parents’ ranges.

4.  Baseline Simulation Results

We can now generate random initial populations
and run the evolutionary simulations as described
above.  Figure 2 shows the evolution of the average
learning rates for the four evolutionary approaches,
with the standard deviations of the population averages
across 10 runs.  We can see that the four approaches
settle down over rather different evolutionary time-
scales, and that the final evolved parameters are
similar, but significantly different.  There are
enormous differences in the learning rates that emerge
for the different parts of the network, and from the
values traditionally used with hand crafted networks.
If we evolve a single learning rate for all four
components, it comes out at around 0.2 which is in
line with traditional values.  The evolved initial

Figure 1. Four typical training data sets – circular classification boundaries in a 2D continuous input space.



weight distributions also exhibit large differences
across components, and from the traditional values.
The distributions for the initial input to hidden
weights and the biases take on well defined values, but
for the hidden to output weights we find much wider
variations within and across runs, which is a
consequence of their relatively minor effect on final
performance.  The momentum and weight decay
parameters invariably take on such low values that
their effect is negligible, as one would expect given the
way the stream of training data is drawn randomly
from a continuous distribution.

In this study it is the performance levels of the
evolved populations that we are primarily interested in.
To provide a statistically reliable measure, the evolved
individuals were each tested on 100 different random
data distributions.  The means and variances of the
error rates during learning are plotted in Figure 3.  The
relatively high error values and standard deviations for
the steady state and two stage generational approaches,
compared with the single stage G 1  generational
approach, suggest significant tails at the high end of
the error distributions.  This is confirmed by Figure 4

which shows the average error distributions for trained
evolved networks between the ages 50 and 60.  All
four evolved populations have massive peaks at zero
errors, as one would hope, but there remain surprising
numbers of very large errors.  Only the G1 approach
manages to be fairly free of such problems.  By
comparison, most evolved networks with only a single
learning rate will still not have fully learned the task
by age 60, but there are very few that exhibit very large
errors beyond age 50.

To understand the differences between the evolved
populations for the four approaches, we need to
consider the different evolutionary pressures involved.
The G1 approach only has the performance at age 60
driving the evolution, and consequently it ends up
with the best performance at that age.  It has nothing
to directly encourage fast learning, so we might expect
it to be slower to learn at earlier ages, but in fact it
does not end up that much slower than the other
approaches.  The G1+G1 approach measures the fitness
as the average performance over an increasing number
of years prior to age 60, which will naturally improve
the rate at which most individuals learn, but this also

180000120000600000
10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

   3600002400001200000
10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

180000120000600000
10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

   180000120000600000
10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

Year

etaHO

etaIH

etaHB

etaOB

Figure 2. Evolution of the neural network learning rates, with means and standard deviations over 10 runs, for the
four evolutionary approaches: SS (top left), G1 (top right), G1+G1 (bottom left), G1+G2 (bottom right).



indirectly encourages a more risky learning strategy
with some individuals occasionally failing to learn
properly at all, leaving large errors at all ages.  The
G1+G2 approach encourages fast learning even more
directly, by measuring the fitness as the number of
epochs required to reach zero errors, and this does lead
to even faster learning, but with even more high error
instances as a result.  Finally, the S S  approach
encourages faster learning at all ages, resulting in better
learning again, but even more of the problematic high
error cases.

Often one may be able to tolerate occasional very
poor performance in return for faster learning most of
the time, or faster learning on average.  Certainly, in
natural systems it can be a good strategy overall for
individuals to respond as quickly as possible, even if
it leads to occasional deaths.  This will be particularly
true if it allows more children to be produced before an
untimely death than would otherwise be possible in a

full lifetime.  On the other hand, if we are using
evolution to design a single autonomous system, such
a strategy would be unacceptably foolhardy.  

5.  Age Dependent Plasticity

It seems likely, given the lack of problems with
the slower single learning rate and G1 networks, that it
is the relatively large evolved learning rates that are at
the root of the problems with the faster learning
populations.  It is well known that, for many human
abilities, there are critical periods for learning, with
high learning rates initially, but much lower rates at
older ages (e.g. [4, 5]).  More sophisticated learning
rate adaptation has also previously proved beneficial
for computational systems (e.g. [6]).  The idea here is
that by allowing learning rates that can vary with age,
it may be possible to evolve higher learning rates and
faster learning at early ages, whilst having lower

6420
10 - 4

10 - 3

10 - 2

10 - 1

10 0

Errors

1 eta
SS

G1G1+G1

G1+G2

   9060300
0

0

0

0

Errors

1 eta

SS

G1

G1+G1

G1+G2

x 
10

-5

 1

 2

 3

Figure 4. The error distributions for trained evolved networks: peaks (left) and tails (right).  The four evolved
populations are shown (SS, G1, G1+G1, G1+G2), plus a single learning rate G1 population (1 eta) for comparison.
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Figure 3. The errors during learning for the evolved networks: means (left) and variances (right).  The four evolved
populations are shown (SS, G1, G1+G1, G1+G2), plus a single learning rate G1 population (1 eta) for comparison.



learning rates later and less chance of large errors
persisting to older ages.

We can simulate such an age dependence by using
a simple two parameter exponential scale factor:

ηL (t) =  s(t) ηL (0)   ,  s(t) =  β +  (1− β) e−t / τ

in which the baseline β and the time constant τ  can
evolve to take on any positive values.  It is then
relatively straightforward to repeat all the above
simulations with everything else the same, apart from
the insertion of this scale factor and its two evolvable
parameters.   

The resulting evolved scale factors, with variances
across 10 populations of 200 individuals, are shown
on the left of Figure 5.  As one might expect, the
relatively problem free G 1  populations have a
noticeably slower fall off of learning rates with age
than the other populations.  On the right of Figure 5 is

shown how, for the SS populations, the age dependent
learning rates compare with the fixed learning rates we
had before.  We see that the initial learning rates have
adjusted themselves by different amounts to take
advantage of the age dependent scaling.  Not
surprisingly, given the rather different emergent scale
factors, the evolved adjustments vary with approach,
which means that we no longer have the similarity we
saw in Figure 2 between the learning rates across the
four evolutionary approaches, and this in turn leads on
to somewhat different learning performances.

The mean error rates and standard deviations during
learning are shown in Figure 6.  The first thing to note
is the ten-fold scale reduction compared with the
corresponding Figure 4, so there is a clear overall
improvement.  The G1 populations, whose evolution
is only driven by final performance, not surprisingly
end up with a much improved final performance at age
60, but the initial rate of learning, which was
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Figure 6. The error rates during learning for the evolved age dependent plasticity networks: means (left) and
variances (right).  Population averages from the four evolutionary approaches are shown (SS, G1, G1+G1, G1+G2).
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previously comparable to the evolved fast learners, is
now significantly poorer.  The G1+G1 populations,
which are evolved to have good performance for as
many years prior to age 60 as possible, now have a
much lower and consistent error rate across those final
years, but the earlier reductions in errors are slower.
The SS and G1+G2 populations, which are evolved to
reduce their error rates as quickly as possible, do now
learn much more quickly, but suffer from more cases
where there are persistent small errors that are not
eliminated by age 60.  We see that a consequence of
the inherent trade-offs is that evolving improvement in
one aspect leads to degradation of others.

We have clearly achieved overall lower average error
rates by allowing age dependent plasticity, but have we
achieved the main objective of reducing the occasional
problematic high error cases?  Figure 7 shows the error
distributions for the trained evolved networks for
comparison with Figure 4.  The peaks now show much
wider variation between evolutionary approaches than
before, with the widths of the peaks in proportion to
how much the learning speed is taken into account in
the evolutionary fitness evaluation.  However, all the
average error rates are low, and none are significantly
worse than we had without the age dependent
plasticity, so no new problems have been introduced.
In the tails, all four approaches show the hoped for
massive reduction in the numbers of very large errors.
Naturally, deciding whether that level of reduction is
sufficient will be rather problem dependent, but we do
now have a much clearer picture of how the different
factors interact within the various evolutionary
approaches, and what the trade-offs are.

6.  Conclusions

In this paper we have investigated four natural
approaches for evolving neural networks that learn to

classify as well as they can as quickly as they can.
Such systems are likely to be a crucial component of a
wide range of neural network based autonomous agent
applications.  The four evolutionary approaches differ
in the manner in which the various fitness measures
drive the evolution.  The more we force faster learning,
the riskier the learning strategies that emerge, and the
greater the chance of very poor performance.  The main
aim of this paper was to show how the incorporation
of age dependent plasticities could reduce the risk of
occasional very poor performance.  This reduction was
clear, for all four evolutionary approaches, but it also
affected the learning speeds, not always for the better.
This study has considered the various possibilities,
and provides the necessary information for making
better informed design decisions in the future.
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Figure 7. The error distributions for trained evolved age dependent plasticity networks: peaks (left) and tails (right).
Population averages from the four evolutionary approaches are shown (SS, G1, G1+G1, G1+G2).


