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INTRODUCTION

Cognitive neuropsychology uses the patterns of performance observed in brain damaged pa-
tients to constrain our models of normal cognitive function. Historically, this methodology
was rooted in simple “box and arrow” models, with particular cognitive deficits being taken
to indicate selective breakdown of corresponding “boxes” or “arrows”. Studying patients
with complementary patterns of deficit allows us, in principle, to piece together a complete
model of mental structure (Shallice, 1988). Of particular importance in this process has
been the concept of double dissociation, which has been taken to imply modularity within
many systems. If one patient can perform task 1 better than task 2, and another can per-
form task 2 better than task 1, then a natural explanation is in terms of separate modules
for the two tasks.

In recent years, connectionist techniques have been employed to model the operation and
interaction of these “modules” in increasing detail (Farah, 1994). Networks of simplified
processing units loosely based on real neurons are set up with general architectures based
on known physiology, trained to perform appropriately simplified versions of the human
tasks, and iteratively refined by checking their performance against humans. Such network
models can clearly be wired together in the manner of the old box and arrow models, with
all the old explanations of patient data carrying through. The obvious advantage now is
that we can look at the details of the degradation of the various components, and removing
neurons or connections in our models constitute natural analogues of real brain damage.
Moreover, as well as providing elaboration of the previous models, we can also question the
validity of the old assumptions of neuropsychological inference, and explore the possibility
that processing is actually more distributed and interactive than the older models implied.

This article reviews the general issues involved in lesioning neural network models to
simulate neuropsychological deficits. I shall point out potential sources of misleading re-

sults, clarify apparent contradictions in the literature, and discuss some representative
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models.

LESIONING SIMPLE FEED-FORWARD NETWORKS

Many neural network models of human performance are based on simple feed-forward
networks that map between conveniently simplified input and output representations via a
single hidden layer, or have such systems as an identifiable sub-components. An important
feature of these models is that they learn to perform the relevant tasks by iteratively
adjusting their connection weights (e.g. by some form of gradient descent algorithm) to
minimise the output errors for an appropriate training set of input-output pairs. Generally,
we simply assume that the quick and convenient learning algorithms we choose will generate
similar results to those produced by more biologically plausible procedures. Comparisons
between Back Propagation and Contrastive Hebbian Learning by Plaut and Shallice (1993)
provide some justification for this assumption. We can then compare the development of the
networks’ performance during training and their final performance (e.g. their output errors,
generalization ability, reaction times, priming effects, speed-accuracy trade-offs, robustness
to damage, etc.) with the performance of human subjects to narrow down the correct
architecture, representations, and so on, to generate increasingly accurate models.

An obvious feature of network learning is that performance on one pattern will be
affected by training on other patterns. It follows straightforwardly from adding up the

network weight change contributions due to individual training patterns that:

1. Regular items will be learned more quickly than irregular items, because consistent

weight changes combine and inconsistent weight changes cancel.

2. High frequency items will be learned more quickly than low frequency items, because

the appropriate weight changes get applied more often.

3. Ceiling effects will arise as sigmoids saturate and weight changes tend to zero.
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These fundamental properties of neural network learning not only result in human-like age
of acquisition effects but indirectly account for realistic patterns of reaction times, speed-
accuracy trade-off effects, and so on (Bullinaria, 1997). Having trained our networks, and
confirmed that they are performing in a sufficiently human-like manner, we can then set
about inflicting simulated brain damage on them. Small (1991) considered the various ways
in which connectionist networks might be lesioned, and discussed their neurobiological and
clinical neurological relevance. He identified two broad classes of lesion: diffuse such as
globally scaling or adding noise to all the weights, and focal such as removing adjacent sub-
sets of connections and/or hidden units. Which of these we choose will naturally depend on
the type of patient we are modelling. Focal lesions would be appropriate for stroke patients,
whereas diffuse lesions would be required for diseases such as Alzheimer’s. Generally, for
our simplified models, it is appropriate to examine all these possibilities. Finally, we should
be aware that relearning after damage may affect the observed pattern of deficits, and so
we must check this also (Plaut, 1996).

The relevant issues have been explored in an abstract setting by Bullinaria (1999) who
trained a simple feed-forward network (with 10 inputs, 100 hidden units and 10 outputs,
with binary inputs and output targets) on two sets of 100 regular items (different permuted
identity mappings) and two sets of 10 irregular items (random mappings). One regular set
and one irregular set appeared during training 20 times more frequently than the others.
Figure 1 shows that both regularity and frequency do indeed affect the speed of learning
in the expected manner.

Bullinaria and Chater (1995) explored the effects of damage on fully distributed, ho-
mogeneous, connectionist systems, and investigated the possibility that double dissociation
between regular and irregular items could arise without modularity. They found that le-
sioning trained networks by removing random hidden units, removing random connections,
globally scaling the weights, or adding random noise to the weights, all led to very similar

patterns of deficits. They concluded that, assuming one successfully avoids small scale ar-
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Figure 1: Regularity and frequency effects during the course of learning. HF, high fre-

quency; LF, low frequency.

tifacts, and controls for all other factors, only single dissociations were possible. Moreover,
these single dissociations were seen to be a natural consequence of the ease with which
the mappings were originally learned. Plotting the patterns of activation feeding into the
output units revealed why this should be the case. Each form of damage results in these
activations either drifting in a random direction or falling to zero. For every output unit
there will be some correct response threshold, and the items that are learned first during
training will end up furthest past the thresholds when the training is stopped. They will
consequently tend to be the last to cross over again and result in output errors during
increased degrees of damage. We thus we get clear dissociations with the regulars more
robust than frequency matched irregulars, and high frequency items more robust than reg-
ularity matched low frequency items. Figure 2 shows this explicitly for the network of
Figure 1.

These basic effects extend easily to more realistic models, for example, surface dyslexia

in the reading model of Bullinaria (1997). Here we not only successfully simulate the
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Figure 2: Regularity and frequency effects with increasing degrees of network damage. HF,

high frequency; LF, low frequency.

relative error proportions for the various word categories (i.e. regular/irregular, high/low
frequency), but also the types of errors that are produced. The closest threshold to an
irregularly pronounced letter will be that of the regular pronunciation, and hence the errors
will be predominantly regularizations of the lowest frequency irregular items, exactly as is
observed in acquired human surface dyslexia.

Figures 1 and 2 also reveal what is behind a potential source of confusion. Bullinaria
and Chater (1995) argued that network lesions would always result in single dissociations
with the regular items more robust. Marchman (1993), however, studied models of past
tense production and seemingly found dissociations with the irregular items more robust
than the regulars. It is easy to see from the figures that sufficiently high frequency irregulars
can be more robust than regulars. The English language has evolved to leave the irregulars
with much higher frequencies than the regulars — otherwise they would have been lost
from the language. Marchman built this into her models, with the expected consequences.

This illustrates how important it is to control for all confounding factors when describing
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dissociations and drawing conclusions from them. Lavric et al. (2001) provide a review of
the issues involved in understanding the dissociations of verb morphology.

It is also evident from Figure 2 that, if the frequencies and regularities are carefully
matched, the performance on the high frequency irregulars can cross that of the lower fre-
quency regulars. Initially there is a dissociation with better performance on the irregulars,
and later the opposite dissociation. Such a “double dissociation” is a form of resource arti-
fact that is well known not to imply underlying modularity (Shallice, 1988, p234). Patterns
of deficits of this type are actually rather easily obtainable in neural network models. Devlin
et al. (1998) present an interesting example involving a connectionist account of category
specific semantic deficits. The finer grain of detail that connectionist modelling affords here
allows explicit accounts of human deficits that would be difficult to accommodate in older
“box and arrow” models.

The general point one can make about single, fully distributed, sub-systems is that
some items are naturally learned more quickly and more accurately than others, and the
effects of subsequent network damage follow automatically from these patterns of learning.
There are actually many factors, in addition to regularity and frequency, that can cause
differing learning and damage rates. We can explore them all in a similar manner, and use
them in models of neuropsychological data in the same way. Consistency and Neighbour-
hood Density are the most closely related to regularity and are commonly found in models
of language tasks such as reading and spelling (e.g. Plaut et al., 1996; Bullinaria, 1997).
Representation Sparseness or Pattern Strength are often used to distinguish between con-
crete and abstract semantics, as in models of deep dyslexia (e.g. Plaut and Shallice, 1993).
Correlation, Redundancy and Dimensionality are commonly used in models to distinguish
the semantics of natural things versus artifacts, as in models of category specific semantic
deficits (e.g. Devlin et al., 1998). At some level of description, all these factors act in
a similar manner to frequency and regularity, and their effects can easily be confounded.

Which we use will depend on exactly what we are attempting to model, but clearly, if we
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want to make claims about neuropsychological deficits involving one of them, we need to
be careful to control for all the others.

Following brain damage, patients often show a rapid improvement in performance. This
is important to connectionist modellers for two reasons. First, if relearning occurs automat-
ically and quickly in patients, then we need to be sure that the same effects are observed
in our models, and that we are comparing patient and model data at equivalent stages of
the relearning process. Second, our models may be of assistance in formulating appropriate
remedial strategies for brain damaged patients (Plaut, 1996). Since learning and damage
have the same underlying regularity and frequency effects, relearning from the original
training data is unlikely to reverse this pattern, indeed it is likely to enhance it (Bullinaria
and Chater, 1995). However, if some rehabilitation regime is employed that involves a very
different set of training examples to that of the original learning process, it is possible for
different results to arise (Plaut, 1996). Here the models may be used to predict or refine
appropriate relearning strategies, and the patients’ responses can be used to validate our

models.

SMALL SCALE ARTIFACTS

One should never forget that modelling massively parallel brain processes by simulating
neural networks on serial computers is only rendered feasible by abstracting the essential
details and scaling down the size of the networks. It is clearly important not to take the
abstraction and scaling process so far that we miss important fundamental properties of the
systems we are modelling, or introduce features that are nothing but small scale artifacts.
The damage curves of Figure 2 are relatively smooth because our network has many more
hidden units and connections than are actually required to perform the given mappings,
and individual connections or hidden units make only small contributions to the network’s

outputs. For smaller networks, however, the effect of individual damage contributions can
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be large enough to produce wildly fluctuating performance on individual items, and this can
result in dissociations in arbitrary directions. Often these small scale artifacts are sufficient
to produce convincing looking double dissociations (Shallice, 1988, p254). Bullinaria and
Chater (1995) showed that as we scale up to larger networks, the processing becomes more
distributed and apparent double dissociations dissolve into single dissociations.

Our modelling endeavours would be much easier if some independent procedure could
determine when networks were sufficiently distributed to obtain reliable results. In effect,
we need to make sure that individual processing units are not acting as “modules” in their
own right, and the obvious way to do this is by checking that all the individual contributions
feeding into to each output unit are small compared to the total. In this case, many such
lost contributions must conspire to result in an output change large enough to be deemed
an error. This is the brain-like resilience to damage often known as graceful degradation.
Fortunately, this distribution of information processing tends to occur automatically simply
by supplying the network with a sufficiently large number of hidden units. However, in
general, it seems that we really do need very many hidden units to avoid small scale
artifacts — many times the minimal number required to learn the given task (Bullinaria,
1999). So, what can be done if limited computational resources make this impossible?
Obviously, after removing a random subset of the hidden units or connections, the number
of contributions will be reduced by some factor, but, in large fully distributed networks, the
mean contribution will not change much and so the total contribution after damage is simply
reduced by the same factor. Clearly we can achieve the same result by simply globally
scaling all the weights by the same factor. In smaller networks, this equivalence breaks
down because the means tend to suffer relatively large random fluctuations during damage.
However, since global weight scaling does not suffer from such random fluctuations, it can
be used to simulate a smoothed form of lesioning and give a reasonable approximation in
small networks to what will happen in more realistic networks. Alternatively, if one wants

to claim that each hidden unit corresponds to a number of real neurons, then the weight
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scaling can be regarded as removing a fraction of those neurons.

LESIONING ATTRACTOR NETWORKS

Many successful models of human performance and their associated neuropsychological
deficits have been based on attractor networks (see COMPUTING WITH ATTRACTORS)
rather than simple feed-forward networks. These are recurrent networks which develop
attractors to appropriate patterns of activity, i.e. they have points in the state space of
output activations to which the network settles. Lesions to this type of network can alter
the settling behaviour by distorting or shifting the basins of attraction. Here the errors
correspond to the network settling into the wrong attractor, rather than an output unit
activation failing to reach a particular threshold. But still, the resilience to damage follows
directly from how the particular items were originally learned.

One of the earliest applications of attractor networks to neuropsychology was the Mozer
and Behrmann (1990) model of neglect dyslezia. But, perhaps the most successful models
of this type are the Plaut and Shallice (1993) models of deep dysleria, which were exten-
sions of earlier work by Hinton and Shallice (1991) showing how both visual and semantic
errors could arise from a single lesion. These attractor networks mapped from orthogra-
phy to semantics via a layer of hidden units, and then from semantics to phonology via
another set of hidden units, with layers of clean-up units at the semantics and phonology
levels. One particular model was trained on 40 words, using back-propagation through
time, until it settled into the correct semantics and phonology when presented with each
orthography. Lesions at two different locations in the trained network were then found to
produce a double dissociation between concrete and abstract word reading, where concrete-
ness was coded as the proportion of activated semantic micro-features. Specifically, removal
of orthographic to hidden layer connections resulted in preferential loss of abstract word

reading, whereas removal of connections to the semantic clean-up units primarily impaired
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performance on the concrete words. Although the two damage locations do not constitute
modules in the conventional sense, it is not difficult to understand how they contribute to
the processing of the two word types to different degrees, and give opposite dissociations
when damaged. It is simply a consequence of the sparser representations of the abstract
words making less use of the semantic clean-up mechanism, and depending more on the
direct connections, than the richer representations of the concrete words (Plaut and Shal-
lice, 1993). This does not conflict with the claim of Bullinaria and Chater (1995) that only
single dissociations are possible. The robustness of each location in the attractor network
is fully consistent with the general discussion above, and the only disagreement concerns
the appropriateness of using the word “module” to describe the two damage locations. As
Plaut himself points out (Plaut, 1995), one of the problems when discussing “modularity”
is that different authors use different definitions of the term. This is fine, but to avoid

confusion one should be careful to quote the definitions along with the conclusions.

DISCUSSION

This article has covered the basic issues and complications involved in lesioning neural net-
work models to provide accounts of neuropsychological deficits, and has provided pointers
to a range of representative case studies. It seems clear that, despite all the abstractions
and simplifications involved, connectionist modelling has a lot to offer in fleshing out the
details of, or even replacing, earlier “box and arrow” models to provide a more complete
picture of cognitive processing. The resulting enhanced models and the new field of connec-
tionist neuropsychology are not only producing good accounts of existing empirical data,
but are also already beginning to suggest more appropriate experimental investigations for
further fine tuning of these models, and an ethical approach for exploring potential remedial

actions for neuropsychological patients.
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