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Abstract: This paper considers the evolutionary forces that might determine how neural plasticity varies during
an individual’s lifetime. Explicit simulations of an evolving population of adaptable artificial neural systems
suggest that there may be a real advantage of having a plasticity that declines with age, quite independently of

the physical overheads of that plasticity.
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1 Introduction

There is an old saying that “you cannot teach old
dogs new tricks”. This might not be totally true, but
there is certainly considerable evidence that neural
plasticity does decrease with age [4]. One plausible
reason for this is that the necessary resources are
depleted or removed early in life, leaving little for
the “new tricks” later on. In our evolutionary past
this may not have been too detrimental, since
individuals could probably cope sufficiently well
with what they had learned early on in their short
lives. There would consequently have been little
pressure to preserve a large potential for neural
plasticity late into life with its inherent cost in terms
of physical resources. When it comes to building
artificial adaptable systems, however, the overheads
of learning and accidents of evolutionary history are
not so important. The question to be considered in
this paper, is whether there is any advantage in an
adaptable system of having a plasticity that declines
with age, quite independently of the physical
overheads of that plasticity.

The approach I shall adopt is to consider a
simplified generic neural network control system
with four adaptable parameters (i.e. connection
weights) each with its own plasticity (i.e. learning
rate). It will also have two additional parameters
that specify how the plasticity varies with age. The
system thus has ten innate parameters: four initial
weights, four initial learning rates, and two plasticity
variation parameters. We can consider these to
specify the genotype of each individual system.
Each such system is then expected to adjust its
weights by a simple gradient descent learning
algorithm so that it performs as best it can on the
training data it is given. The important feature of
this approach is that we do not just consider one

individual system, but a whole population of them
that learn, procreate and die over many generations.
By implementing reasonably realistic natural
selection, procreation and mutation for this process,
the population evolves into better and better
adaptable controllers. As this process approaches
asymptote we shall see what values of the ten
parameters are optimal. In particular, we shall see if
there is any advantage to having neural plasticities
that fall with age in a manner allowed by our
parameterization.

2 The Simplified Control Model

The simplified control system that will form the
basis of the investigation is shown in Figure 1. The
input is a sequence of target responses and a
feedback loop allows the determination of an error
signal. This signal feeds into simple integral and
proportional controllers, the outputs of which are
added to bias and tonic signals, and fed into the
plant to produce the response. The bias provides an
appropriate resting state, and the tonic allows short
time-scale adaptation of the resting state during
periods of constant demand. The system can be
regarded as a fully dynamical network of leaky
integrator neurons. In the human accommodation
(eye focussing) system, for example, we have blur
being processed to generate signals for the ciliary
muscles in the eye appropriate for the distance of the
visual target. In our model the four adjustable
parameters (weights WC, WP, WT, and bias WB) are
learned by a simple gradient descent algorithm that
minimizes a cost function consisting of response
error and regularization (smoothing) components
which will be readily available to the system.
Corresponding to these learnable weights, each
instantiation of the model also has four fixed initial
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Figure 1: Simplified generic control model with four learnable parameters.

weights (WC, iWP, iWT, iWB), four variable
learning rates rates (eWC, eWP, eWT, eWB), and
four fixed initial learning rates (ieWC, ieWP, ieWT,
eWB). The model also has various other parameters
(neuron time constants, plant characteristics,
feedback time delay, and so on) which we take to be
the same for all instantiations. Such a system that
has learned/evolved a good set of parameters will
produce appropriate damped responses to arbitrary
discontinuous output requirements (steps) and
smooth pursuit of arbitrary continuous output
changes (ramps).

This model is a simplified version of a model
used elsewhere [3] to explore the Baldwin Effect
[1, 2] in adaptable control systems. Here the system
has two additional parameters in the genotype that
allow the learning rates to vary with age. For
completeness, we consider two different parameter-
izations, one deterministic variation, and one that
will adapt appropriately to the environment:

Deterministic: The learning rates are constant till
age pAGE, after which they increase or decrease
exponentially by a constant scale factor 1+pSF
every ten weeks. This is easily implementable in
real or artificial systems, but could potentially
leave an individual vulnerable if it needs to adapt
to variable environments late in life.

Adaptable: When two weight changes are consistent
(i.e. in the same direction) the corresponding
learning rate changes by a constant scale factor
1+pSFI, and when they are inconsistent (i.e. in
opposite directions) the corresponding learning
rate changes by a constant scale factor 1+pSFD.
This is harder to implement than the deterministic
case but allows the different learning rates to adapt
independently and allows the plasticity to increase
again should the environment change.

It is not uncommon in the neural network literature
to see modellers varying their network learning rates
during the course of training [5]. The rates may be
decreased near the end of training to minimise the
weight variations seen after each sample in online

training, or increased to speed the saturation of
sigmoids as the errors become small. The aim here
is to see if such strategies evolve naturally, and if
different strategies will evolve under different
circumstances.

3 Evolving the Model

Simulating an evolutionary process for our model
involves taking a whole population of individual
instantiations and allowing them to learn, procreate
and die in a manner approximating these processes
in real (living) systems. The genotype of each new
individual will depend on the genotypes of its two
parents and random mutation. Then during their life
the individuals will learn from the environment how
best to adjust their weights to perform most
effectively. Finally, each individual eventually dies,
perhaps after producing a number of children.

In realistic situations, the ability of an individual
to survive or reproduce will rely on a number of
factors which can depend in a complicated manner
on that individual’s performance on a range of
related tasks (food gathering, fighting, running, and
so on). For the purposes of our simplified model,
we shall consider it to be a sufficiently good
approximation to assume a simple linear relation
between our single task fitness function and the
survival or procreation fitness. In fact, any
monotonic relation will result in similar
evolutionary trends.

It seems appropriate to follow a more natural
approach to procreation, mutation and survival than
many evolutionary simulations [2]. Rather than
training each member of the whole population for a
fixed time and picking the fittest to breed and form
the next generation, our populations contain
competing learning individuals of all ages, each with
the potential for dying or procreation at each stage.
During each simulated year, each individual learns
from their own experience with a new randomly
generated common environment (i.e. set of training/
testing data) and has its fitness measured. A biased
random subset of the least fit individuals, together
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Figure 2: Evolution of the basic system with deterministic plasticity variation.

with a flat random subset of the oldest individuals,
then die. These are replaced by children, each
having one parent chosen randomly from the fittest
half of the population who randomly chooses their
mate from the rest of whole population. Each child
inherits characteristics from both parents such that
each innate free parameter is chosen at random
somewhere between the values of its parents, with
sufficient noise (or mutation) that there is a
reasonable possibility of the parameter falling
outside the range spanned by the parents.
Ultimately, our simulations might benefit from more
realistic encodings of the parameters, concepts such

as recessive and dominant genes, learning and
procreation costs, different inheritance and mutation
details, different survival and procreation criteria,
more restrictive mate selection regimes, offspring
protection, different learning algorithms and fitness
functions, and so on, but for the purposes of this
paper, our simplified approach seems adequate.

4 Simulation Results

Even when a good set of innate parameters have
evolved, a control system will still benefit from
being plastic since that will allow it to fine tune its
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Figure 3: Evolution of the basic system with adaptable plasticity variation.

performance after a noisy procreation process and/or
being born into an unpredictable environment. In
many cases it will also need plasticity to compensate
for the changes that naturally take place during its
maturation period. For this study, such a maturation
process was simulated by a simple output scale
factor that varies linearly from 0.5 to 1.0 over the
first ten years. In humans this might correspond to
changes in inter pupil distance for oculomotor
control, or changes in arm length for reaching or
pointing. The important consequence is that the
appropriate innate/newborn weights will not be the
same as the adult values. The plasticities that evolve
will allow the system to learn most efficiently how
to change the weights throughout its life.

Unfortunately, limited computational resources
allowed only a rather coarse simulation of the
evolutionary process, but it proved sufficient for our
purposes to have a fixed population size of only 200,
with around 12 deaths per year due to competition,
and 4 individuals over 30 years old dying each year
due to old age. The procreation and mutation
parameters were chosen to speed the evolution as
much as possible without introducing too much
noise into the process. All these details were kept
constant across all the simulations.

Figure 2 shows the evolution of the basic model
with deterministic plasticity variation. As I have
also found elsewhere [3], the system quickly evolves
appropriate initial weights (iW¢) and initial learning
rates (ieWt), despite there being no direct inheritance
of learned behaviours. The scatter plot of the
weights WC against Age for the evolved population
shows how the plasticity allows it to change from
the innate newborn values i/ C to the appropriate
adult values. The big question for this study is: how
does the evolved population vary its plasticity with
age? The scatter plot of the learning rates e WC
against Age shows a clear decline in plasticity with
age. The plot of the initial learning rates ieWWC
against Age indicates that this is not simply a matter
of the low ieWC individuals living longer. The
graphs of the plasticity variation parameters pAGE
and pSF against Year confirm that the system does
evolve an exponential decay of plasticity that starts
from an early age (1 or 2 years old) with a scale
factor 1+pSF of around 0.96.

Figure 3 shows that a remarkably similar
population evolves for our adaptable plasticity
variation version. The increasing plasticity scale
factor 1+pSFI applied after consistent weight
changes differs little from 1, whilst the decreasing
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Figure 4: Evolution of a system requiring later life adaptation with deterministic plasticity variation.

scale factor 1+pSFD applied after inconsistent
weight changes is around 0.92. The plots of eWC
and WC against Age indicate that these scale factors
have a similar effect to the more frequently applied
deterministic scale factor observed above.

The obvious question arises as to what happens
if an individual needs to adapt/learn later in life,
after the standard maturational period is over. It
seems unlikely that evolution will allow the
plasticities to decay away to very small values in
this case. To test this we make our output scale
factor decrease linearly from 1.0 to 0.75 between the
ages of 20 and 25 and return linearly back to 1.0
between 25 and 30. There is no need to specify
whether this corresponds to an internal factor (e.g.
compensation for system damage or deterioration)
or an external factor (e.g. adaptation to changes in
the operating environment), as they will have the
same effect. Obviously, real late life adaptation will
rarely be so predictable, but the consequences for
our model will be similar, and the simplification
makes it easier to interpret the results.

Figure 4 shows how this need for additional
adaptability affects the deterministic plasticity
variation model. We see that the initial learning
rates are lower, the decrease in plasticity is slower,

and the decrease starts at a later age. The net effect
of all this is that there is enough plasticity remaining
to bring about the necessary weight adaptations
between the ages of 20 and 30, but not too much at
any other age.

Figure 5 shows how the adaptable plasticity
variation case is affected by the need for later life
adaptation. Here there appears to be little reduction
in the initial learning rates, but the plasticity varying
scale factors are modified to result in appropriate
plasticity during the late life adaptation period.

The important point to note from both these
cases is that, even when late life adaptation is
required, the systems still evolve plasticities that
have large innate values that then decrease during
the maturation period.

5 Conclusions

By simulating evolving populations of simple
adaptable neural network control systems we have
seen that there is a natural propensity for the
evolution of plasticities that decrease with age, quite
independently of any physical overheads of the
plasticity. This is consistent with the well known
“critical periods” of brain development [4].
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Figure 5: Evolution of a system requiring later life adaptation with adaptable plasticity variation.

There are two competing effects at play. In
order to survive in competition with fitter adults
and/or a hostile environment, a newborn needs to
adapt as quickly as possible to its environment. It
also needs to adapt efficiently to its own maturation.
Large plasticities will be beneficial for both. In
adults, however, large plasticities can lead to an
unstable learning system, in which unusual/extreme
experiences can potentially result in a large shift of
the systems’ parameters and a serious reduction in
overall fitness. Lower learning rates here allow
smoother optimal parameter estimation and more
consistently good responses in a varied environment.
In this paper it has been demonstrated how a process
of evolution by survival of the fittest can result in a
population of individual systems that deal with these
conflicting requirements by having plasticities that
decrease appropriately with age. Moreover, the
process will provide a pattern of decrease that is
appropriate for its environment. For example, a
system that requires adaptation later in life will
evolve differently to one that does not.

In complex systems, such as the human brain, we
can expect each of the various sub-systems to evolve
appropriately for its own requirements, so there may
well be no single global behaviour. It is also likely

that they will be able to evolve more complicated
plasticity variability than was possible in our simple
two parameter simulations. The next stage of this
work will be to develop and test more realistic
simulations of specific human sub-systems, and to
explore how these ideas could be applied to the
formulation of efficient artificial adaptable systems
for real world engineering applications.
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