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Abstract

This paper presents a series of new results on
corpus derived semantic representations based
on vectors of simple word co-occurrence
statistics, with particular reference to word
categorization performance as a function of
window type and size, semantic vector di-
mension, and corpus size. A number of out-
standing problems and difficulties with this
approach are identified and discussed.

1 Introduction

There is now considerable evidence that simple
word co-occurrence statistics from large text cor-
pora can capture certain aspects of word meaning
(e.g., Lund & Burgess, 1996; Landauer & Dumais,
1997; Bullinaria & Levy, 2007). This is certainly
consistent with the intuition that words with similar
meaning will tend to occur in similar contexts, but
it is also clear that there are limits to how far this
idea can be taken (e.g., French & Labiouse, 2002).
The natural way to proceed is to optimize the stan-
dard procedure as best one can, and then identify and
solve the problems that remain.

To begin that process, Bullinaria & Levy (2007)
presented results from a systematic series of experi-
ments that examined how different statistic collec-
tion details affected the performance of the resul-
tant co-occurrence vectors on a range of semantic
tasks. This included varying the nature of the ‘win-
dow’ used for the co-occurrence counting (e.g., type,
size), the nature of the statistics collected (e.g., raw
conditional probabilities, pointwise mutual informa-
tion), the vector space dimensionality (e.g., using

only the d highest frequency context words), the
size and quality of the corpus (e.g., professionally
created corpus, news-group text), and the semantic
distance measure used (e.g., Euclidean, City-block,
Cosine, Hellinger, Bhattacharya, Kulback-Leibler).
The resultant vectors were subjected to a series of
test tasks: a standard multiple choice TOEFL test
(Landauer & Dumais, 1997), a larger scale seman-
tic distance comparison task (Bullinaria & Levy,
2007), a semantic categorization task (Patel et al.,
1997), and a syntactic categorization task (Levy et
al., 1998). It was found that the set-up producing
the best results was remarkably consistent across all
the tasks, and that involved using Positive Pointwise
Mutual Information (PPMI) as the statistic to col-
lect, very small window sizes (just one context word
each side of the target word), and the standard Co-
sine distance measure (Bullinaria & Levy, 2007).

That study was primarily conducted using a 90
million word untagged corpus derived from the BNC
(Aston & Burnard, 1998), and most of the results
presented could be understood in terms of the qual-
ity or reliability of the various vector components
collected from it: Larger windows will tend to con-
tain more misleading context, so keeping the win-
dow small is advantageous. Estimations of word
co-occurrence probabilities will be more accurate
for higher frequency words, so one might expect
that using vector components that correspond to low
frequency context words would worsen the perfor-
mance rather than enhance it. That is true if a poorly
chosen statistic or distance measure is chosen, but
for PPMI and Cosine it seems that more context di-
mensions lead to more useful information and bet-
ter performance. For smaller corpora, that remains



true, but then larger windows lead to larger counts
and better statistical reliability, and that can improve
performance (Bullinaria & Levy, 2007). That will
be an important issue if one is interested in model-
ing human acquisition of language, as the language
streams available to children are certainly in that
regime (Landauer & Dumais, 1997; Bullinaria &
Levy, 2007). For more practical applications, how-
ever, much larger and better quality corpora will cer-
tainly lead to better results, and the performance lev-
els are still far from ceiling even with the full BNC
corpus (Bullinaria & Levy, 2007).

The aim of this paper is to explore how the re-
sults of Bullinaria & Levy (2007) extend to the
ukWaC corpus (Ferraresi, 2007) which is more than
20 times the size of the BNC, and to test the re-
sultant semantic representations on further tasks us-
ing the more sophisticated clustering tool CLUTO
(Karypis, 2003). The next section will describe the
methodology in more detail, and then the word cate-
gorization results are presented that explore how the
performance varies as a function of window size and
type, vector representation dimensionality, and cor-
pus size. The paper ends with some conclusions and
discussion.

2 Methodology

The basic word co-occurrence counts are the num-
ber of times in the given corpus that each context
word c appears in a window of a particular size s

and type w (e.g., to the left/right/left+right) around
each target word t, and from these one can easily
compute the conditional probabilities p(c|t). These
actual probabilities can then be compared with the
expected probabilities p(c), that would occur if the
words were distributed randomly in the corpus, to
give the Pointwise Mutual Information (PMI):

I(c, t) = log
p(c|t)

p(c)
(1)

(Manning & Schutze, 1999, Sect. 5.4). Positive val-
ues indicate that the context words occur more fre-
quently than expected, and negative values corre-
spond to less than expected. The study of Bullinaria
& Levy (2007) showed that setting all the negative
values to zero, leaving the Positive Pointwise Mutual
Information (PPMI), reliably gave the best perform-
ing semantic vectors across all the semantic tasks

considered, if the standard Cosine distance measure
was used. Exactly the same PPMI Cosine approach
was used for all the investigations here. The window
type and size, and the number of frequency ordered
context word dimensions, were allowed to vary to
explore their effect on the results.

The raw ukWaC corpus (Ferraresi, 2007) was first
preprocessed to give a plain stream of about two
billion untagged words, containing no punctuation
marks apart from apostrophes. Then the list of po-
tential target and context words contained within it
was frequency ordered and truncated at one million
words, at which point the word frequency was just
five occurrences in the whole corpus. This process
then allowed the creation of a one million dimen-
sional vector of PPMI values for each target word of
interest. The full corpus was easily split into disjoint
subsets to explore the effect of corpus size.

The quality of the resultant semantic vectors was
tested by using them as a basis for clustering the sets
of nouns and verbs specified for the Lexical Seman-
tics Workshop at ESSLLI 2008. Vector represen-
tations for the n words in each word-set were clus-
tered using the CLUTO Clustering Toolkit (Karypis,
2003), with the direct k-way clustering algorithm
and default settings. The quality of clustering was
established by comparison against hand-crafted cat-
egory labels using standard quantitative measures of
entropy E and purity P , defined as weighted aver-
ages over the cluster entropies Er and purities Pr:

E =
k∑

r=1

nr

n
Er , Er = −

1

log q

q∑

i=1

ni
r

nr

log
ni

r

nr

(2)

P =
k∑

r=1

nr

n
Pr , Pr =

1

nr

max
i

(ni
r) (3)

where nr and ni
r are the numbers of words in the

relevant clusters and classes, with r labelling the
k clusters, and i labelling the q classes (Zhao &
Karypis, 2001). Both measures range from 0 to 1,
with 1 best for purity and 0 best for entropy.

3 Results

It is convenient to start by looking in Figure 1 at the
results obtained by instructing the clustering algo-
rithm to identify six clusters in the semantic vectors
generated for a set of 44 concrete nouns. The six
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Figure 1: Noun categorization cluster diagram.

hand-crafted categories {‘birds’, ‘ground animals’,
‘fruits’, ‘vegetables’, ‘tools,’ ‘vehicles’} seem to
be identified almost perfectly, as are the higher
level categories {‘animals’, ‘plants’, ‘artifacts’} and
{‘natural’, ‘artifact’}. The purity of the six clusters
is 0.886 and the entropy is 0.120. Closer inspection
shows that the good clustering persists right down
to individual word pairs. The only discrepancy is

‘chicken’ which is positioned as a ‘foodstuff’ rather
than as an ‘animal’, which seems to be no less ac-
ceptable than the “correct” classification.

Results such as these can be rather misleading,
however. The six clusters obtained do not actually
line up with the six hand-crafted clusters we were
looking for. The ‘fruit’ and ‘vegetable’ clusters are
combined, and the ‘tools’ cluster is split into two.



1000000100000100001000100
0.0

0.2

0.4

0.6

0.8

1.0

L

Purity

R

Column 5

L+R

Column 7

L&R

Column 9

Dimensions

                                 Entropy

Pur i t y

Figure 2: The effect of vector dimensionality on noun
clustering quality.

This contributes more to the poor entropy and pu-
rity values than the misplaced ‘chicken’. If one asks
for seven clusters, this does not result in the splitting
of ‘fruit’ and ‘vegetables’, as one would hope, but
instead creates a new cluster consisting of ‘turtle’,
‘snail’, ‘penguin’ and ‘telephone’ (which are out-
liers of their correct classes), which ruins the nice
structure of Figure 1. Similarly, asking for only three
clusters doesn’t lead to the split expected from Fig-
ure 1, but instead ‘cup’, ‘bowl’ and ‘spoon’ end up
with the plants, and ‘bottle’ with the vehicles. It is
clear that either the clusters are not very robust, or
the default clustering algorithm is not doing a par-
ticularly good job. Nevertheless, it is still worth ex-
ploring how the details of the vector creation process
affect the basic six cluster clustering results.

The results shown in Figure 1, which were the
best obtained, used a window of just one context
word to the right of the target word, and the full set
of one million vector dimensions. Figure 2 shows
how reducing the number of frequency ordered con-
text dimensions and/or changing the window type
affects the clustering quality for window size one.
The results are remarkably consistent down to about
50,000 dimensions, but below that the quality falls
considerably. Windows just to the right of the tar-
get word (R) are best, windows just to the right (L)
are worst, while windows to the left and right (L+R)
and vectors with the left and right components sep-
arate (L&R) come in between. Increasing the win-
dow size causes the semantic clustering quality to
deteriorate as seen in Figure 3. Large numbers of di-
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Figure 3: The effect of window size on noun clustering
quality.

mensions remain advantageous for larger windows,
but the best window type is less consistent.

That large numbers of dimensions and very small
window sizes are best is exactly what was found by
Bullinaria & Levy (2007) for their semantic tasks
using the much smaller BNC corpus. There, how-
ever, it was the L+R and L&R type windows that
gave the best results, not the R window. Figure 4
shows how the clustering performance for the var-
ious window types varies with the size of corpus
used, with averages over distinct sub-sets of the full
corpus and the window size kept at one. Interest-
ingly, the superiority of the R type window disap-
pears around the size of the BNC corpus, and be-
low that the L+R and L&R windows are best, as was
found previously. The differences are small though,
and often they correspond to further use of different
valid semantic categories rather than “real errors”,
such as clustering ‘egg laying animals’ rather than
‘birds’. Perhaps the most important aspect of Figure
4, however, is that the performance levels still do not
appear to have reached a ceiling level by two billion
words. It is quite likely that even better results will
be obtainable with larger corpora.

While the PPMI Cosine approach identified by
Bullinaria & Levy (2007) produces good results for
nouns, it appears to be rather less successful for
verb clustering. Figure 5 shows the result of at-
tempting five-way clustering of the verb set vectors
obtained in exactly the same way as for the nouns
above. No reliably better results were found by
changing the window size or type or vector dimen-
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Figure 4: The effect of corpus size on noun clustering
quality.

sionality. There is certainly a great deal of seman-
tic validity in the clustering, with numerous appro-
priate word pairs such as ‘buy, sell’, ‘eat, drink’,
‘kill, destroy’, and identifiable clusters such as those
that might be called ‘body functions’ and ‘motions’.
However, there is limited correspondence with the
five hand crafted categories {‘cognition’, ‘motion’,
‘body’, ‘exchange’, ‘change-state’}, resulting in a
poor entropy of 0.527 and purity only 0.644.

Finally, it is worth checking how the larger size of
the ukWaC corpus affects the results on the standard
TOEFL task (Landauer & Dumais, 1997), which
contains a variety of word types. Figure 6 shows the
performance as a function of window type and num-
ber of dimensions, for the optimal window size of
one. Compared to the BNC based results found by
Bullinaria & Levy (2007), the increased corpus size
has improved the performance for all window types,
and the L+R and L&R windows continue to work
much better than R or L windows. It seems that, de-
spite the indications from the above noun clustering
results, it is not true that R type windows will always
work better for very large corpora. Probably, for the
most reliably good overall performance, L&R win-
dows should be used for all corpus sizes.

4 Conclusions and Discussion

It is clear from the results presented in the previous
section that the simple word co-occurrence count-
ing approach for generating corpus derived semantic
representations, as explored systematically by Bul-
linaria & Levy (2007), works surprisingly well in
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Figure 6: The effect of vector dimensionality on TOEFL
performance.

some situations (e.g., for clustering concrete nouns),
but appears to have serious problems in other cases
(e.g., for clustering verbs).

For the verb clustering task of Figure 5, there
is clearly a fundamental problem in that the hand-
crafted categories correspond to just one particular
point of view, and that the verb meanings will be
influenced strongly by the contexts, which are lost
in the simple co-occurrence counts. Certainly, the
more meanings a word has, the more meaningless
the resultant average semantic vector will be. More-
over, even if a word has a well defined meaning,
there may well be different aspects of it that are rele-
vant in different circumstances, and clustering based
on the whole lot together will not necessarily make
sense. Nor should we expect the clustering to match
one particular set of hand crafted categories, when
there exist numerous equally valid alternative ways
of doing the categorization. Given these difficulties,
it is hard to see how any pure corpus derived seman-
tic representation approach will be able to perform
much better on this kind of clustering task.

Discrepancies amongst concrete nouns, such as
the misplaced ‘chicken’ in Figure 1, can be explored
and understood by further experiments. Replacing
‘chicken’ by ‘hen’ does lead to the correct ‘bird’
clustering alongside ‘swan’ and ‘duck’. Adding
‘pork’ and ‘beef’ into the analysis leads to them be-
ing clustered with the vegetables too, in a ‘food-
stuff’ category, with ‘pork’ much closer to ‘beef’
and ‘potato’ than to ‘pig’. As we already saw with
the verbs above, an inherent difficulty with testing
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Figure 5: Verb categorization cluster diagram.

semantic representations using any form of cluster-
ing is that words can be classified in many differ-
ent ways, and the appropriate classes will be context
dependent. If we try to ignore those contexts, ei-
ther the highest frequency cases will dominate (as
in the ‘foodstuff’ versus ‘animal’ example here), or
merged representations will emerge which will quite
likely be meaningless.

There will certainly be dimensions or sub-spaces
in the semantic vector space corresponding to par-
ticular aspects of semantics, such as one in which
‘pork’ and ‘pig’ are more closely related than ‘pork’
and ’potato’. However, as long as one only uses
simple word co-occurrence counts, those will not be
easily identifiable. Most likely, the help of some
form of additional supervised learning will be re-
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Figure 7: Extended noun categorization cluster diagram.

quired (Bullinaria & Levy, 2007). For example, ap-
propriate class-labelled training data might be uti-
lized with some form of Discriminant Analysis to
identify distinct semantic dimensions that can be
used as a basis for performing different types of
classification that have different class boundaries,

such as ‘birds’ versus ‘egg laying animals’. Alter-
natively, or additionally, external semantic informa-
tion sources, such as dictionaries, could be used by
some form of machine learning process that sepa-
rates the merged representations corresponding to
word forms that have multiple meanings.



Another problem for small semantic categoriza-
tion tasks, such as those represented by Figures 1
and 5, is that with so few representatives of each
hand-crafted class, the clusters will be very sparse
compared to the “real” clusters containing all pos-
sible class members, e.g. all ‘fruits’ or all ‘birds’.
With poorly chosen word sets, class outliers can
easily fall in the wrong cluster, and there may be
stronger clustering within some classes than there
are between other classes. This was seen in the
overly poor entropy and purity values returned for
the intuitively good clustering of Figure 1.

In many ways, there are two separate issues that
both need to be addressed, namely:

1. If we did have word forms with well defined
semantics, what would be the best approach for
obtaining corpus derived semantic representa-
tions?

2. Given that best approach, how can one go on to
deal with word forms that have more than one
meaning, and deal with the multidimensional
aspects of semantics?

The obvious way to proceed with the first issue
would be to develop much larger, less ambiguous,
and more representative word-sets for clustering,
and to use those for comparing different semantic
representation generation algorithms. A less com-
putationally demanding next step might be to per-
severe with the current small concrete noun cluster-
ing task of Figure 1, but remove the complications
such as ambiguous words (i.e. ‘chicken’) and class
outliers (i.e. ‘telephone’), and add in extra words so
that there is less variation in the class sizes, and no
classes with fewer than eight members. For the min-
imal window PPMI Cosine approach identified by
Bullinaria & Levy (2007) as giving the best general
purpose representations, this leads to the perfect (en-
tropy 0, purity 1) clustering seen in Figure 7, includ-
ing “proof” that ‘tomato’ is (semantically, if not sci-
entifically) a vegetable rather than a fruit. This set
could be regarded as a preliminary clustering chal-
lenge for any approach to corpus derived semantic
representations, to be conquered before moving on
to tackle the harder problems of the field, such as
dealing with the merged representations of homo-
graphs, and clustering according to different seman-

tic contexts and criteria. This may require changes
to the basic corpus approach, and is likely to require
inputs beyond simple word co-occurrence counts.
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