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Abstract

Many connectionist language processing models have now reached a level of
detail at which more realistic representations of semantics are required.  In
this paper we discuss the extraction of semantic representations from the
word co-occurrence statistics of large text corpora and present a preliminary
investigation into the validation and optimisation of such representations.
We find that there is significantly more variation across the extraction
procedures and evaluation criteria than is commonly assumed. 

1  Introduction

How to represent semantics has been a difficult problem for many years, and as yet
there is no consensus as to exactly what is stored and how.  With the rise of
cognitive modelling, the problem of representing semantic information must now be
addressed if any headway is to be made.  Although semantics obviously plays a very
important role in language, cognitive models concerned with language have either not
attempted to implement this component [2, 20], or implemented it only on a small-
scale [3, 4, 6, 7, 16, 17, 18].  If the experimental results from tasks such as reading
and lexical decision are to be simulated, there must be serious investigations into
how semantics can be represented on a large scale, e.g. for thousands of words. 

Recently, work has begun on using large corpora to extract semantic information
in the form of vectors of word co-occurrence statistics.  In this paper, we shall
discuss the results obtained from a preliminary study of extracting co-occurrence
vectors from the British National Corpus (BNC) – a large corpus consisting of 100
million words, both written and spoken [9].  These vectors are obtained by counting
how often words occur near each other in a corpus to give a vector of probabilities for
each word with components corresponding to the different words in the corpus.  There
are a number of parameters which specify the vector creation process and their values
will affect the resultant vectors.  We describe some simple evaluation procedures with
the aim of optimising these parameters to give the best semantic representations. 

This kind of analysis seeks to investigate the degree to which aspects of the
meaning of a word are reflected in its tendency to occur around certain other words.
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This may give insights into how semantics may be learnt by humans through
exposure to language and stored in the brain [8].  These vectors will also be of great
use for representing semantics in models of various psychological processes, such as
reading and lexical decision.  The current methods are somewhat inadequate since the
semantic representations are randomly generated or hand-crafted.  Randomly generated
vectors clearly have no relation to real semantics.  Hand-crafted representations are
subjective in that the modellers concerned decide how the meaning of a word, and also
what features of the meaning, should be stored.  For example, different people will
have different ideas on how to best represent the meaning of dog.  Also, creating
semantic representations for thousands of words would be a time-consuming task.
Hence, we need a technique which captures meanings in an objective fashion and one
which would allow us to easily create semantic representations for many words.

We shall first briefly describe work already performed in this area of corpus
analysis and then describe how semantics has been represented previously in various
psychological models and why the corpus based approach for obtaining semantic
representations has advantages over these.  Our main focus will be on how the
various parameters involved in the corpus analysis can be optimised to produce the
best co-occurrence vectors.  This will hopefully lead to a greater awareness of which
parameter values give what types of results.  In the process, we will define evaluation
procedures which can be used by other researchers working on corpus analysis.

2  Previous Corpora Work

Various relevant results have already been obtained from corpus analysis [8, 11, 12,
19].  Lund and Burgess [11, 12], for example, derived co-occurrence vectors with 200
components from a 160 million word corpus, based on words occurring within a
weighted window of ten words around the target word.  Amongst other things, their
analyses showed that vectors derived for semantically related words tended to be closer
in Euclidean space than was the case for semantically unrelated words, e.g. the
semantic vector for cat was closer to other co-occurrence vectors representing
animals, such as lion, than to vectors representing body parts, such as ankle.
Schütze has carried out numerous experiments on extracting semantics from corpora.
His initial work [19] involved creating co-occurrence vectors from letter four-grams
as opposed to words.  He showed that semantically related vectors tended to be close
in distance and demonstrated successful semantic disambiguation.  Together, these
investigations have indicated that useful semantic representations can be produced
from corpora.  Moreover, Bullinaria and Huckle [5] have already used semantic
vectors of this form with some success in connectionist models of lexical decision. 

Although these studies have shown this approach to be useful, no systematic and
rigorous evaluations have yet been performed.  There are a variety of parameters
which specify how the co-occurrence vectors are created, for example, different
window shapes and sizes, different numbers of vector components, different corpora
sizes, and so on.  Here we shall create co-occurrence vectors for the same groups of
words for different parameter values.  These vectors will be then be evaluated using
two different criteria to optimise the parameter values and assess how good the best
resultant semantic representations really are. 
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3  Implementation of the Semantic Component
of Reading and Lexical Decision Models

Psychological models of reading and lexical decision have been implemented using
neural networks with varying degrees of success [2, 3, 4, 7, 16, 17, 18, 20].  A
major problem has been in implementing the semantic component of such models
since there is no established theory of what should be represented or how.  Modellers
have tended towards using simple notions of semantic micro-feature representations
as a practical way of implementing the lexical semantics of small sets of words.  For
example, Hinton & Shallice [7] generated their own semantic micro-features by hand
such that each stood for a specific concept such as has-legs or indoors.  A semantic
vector consisted of 30 components with each representing one semantic micro-
feature.  Similarly, Plaut & Shallice [17], used 86 semantic micro-features split into
categories such as visual characteristics, where found, etc.  Others have shown that
realistic patterns of performance can be obtained simply by using randomly generated
semantic representations, for example, both Plaut [16] and Bullinaria [3] in their
lexical decision models and Bullinaria [4] in his reading model.

A somewhat different approach investigated by Patel [15] involved using WordNet
definitions to represent semantics.  WordNet is a dictionary based on psycholinguistic
principles, developed at Princeton University by Miller et al. [13], that contains
approximately 57,000 nouns, 21,000 verbs and 19,500 adjectives.  For each word,
WordNet gives all possible meanings in terms of a number of definitions.  For
example, the WordNet representation for Sense 2 of hand is:

HAND : Sense 2 : hired hand, hand, hired man -- (a hired laborer on a farm or ranch)

=>  laborer, manual laborer, labourer -- (works with hands)
   => workman, working man, working person
     => employee -- (a worker who is hired to perform a job)
       => worker -- (a person who has employment)
          => person, individual, someone, man, mortal, human, soul -- (a human being)
             => life form, organism, being, living thing -- (any living entity)
                => entity -- (something having concrete existence; living or nonliving)

In the semantic vectors developed by Patel, each component corresponded to one
WordNet definition.  The component was on if the meaning contained that definition
otherwise it remained off.  Although, some promising results were obtained with this
approach, problems did occur occasionally with the total number of definitions used
to define a meaning.  In some cases for polysemous words, the wrong meaning had a
higher activation that the correct meaning simply because it consisted of more
WordNet definitions than the correct meaning.  Hence, for these cases, the more
components a vector had on, the greater advantage the corresponding meaning had of
gaining more activation.

The appealing factor of  the above vector based approaches is that they are simple
and intuitive.  However, in the long-term, they have no external validity, except
perhaps the WordNet approach which is at least based on psycholinguistic data.  The
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corpus based approaches for representing semantics may prove to be better if, after
rigorous evaluation, it can be shown that co-occurrence vectors do have some
interesting and psychologically realistic properties.  A technique will then have been
found which has many advantages over the usual hand-crafted approach towards
semantic representation.  For example, it does not rely on subjective judgements, it
is automatic and it produces data that are derived from genuine linguistic performance.
These co-occurrence vectors could then be used reliably in the semantic components
of connectionist language processing models.

4  Optimising the Vector Creation Parameters

The semantic vectors derived from corpus analysis are produced by simply counting
the occurrences of neighbouring words, e.g. by counting the number of occurrences
of the context words which neighbour flower to create the semantic vector for flower.
There are clearly a number of parameters that need to be specified to uniquely
determine this counting and vector creation process.  In this section we briefly
discuss five of the main parameters that we wish to vary in this preliminary study.

4.1  The Vector Creation Process

We begin with a simple illustration to show the roles the various parameters play in
creating the vectors.  Suppose we are producing the semantic vector for the word girl
using a window size of two words on either side of the target word girl.  Then
suppose that the phrase "the little girl said that ..." is the next one to appear in the
corpus.  The values below show the increments that will be given to the already
accumulated frequency counts of these words.  For a rectangular window, the current
total for each word around girl will be incremented by one, whereas for a triangular
window, the increment is larger the closer the word is to girl.

•   Rectangular Window (each word carries the same weight)

the little girl said that
1 1 0 1 1

•   Triangular Window (closer words carry more weight)

the little girl said that
1 2 0 2 1

Then, how we use these increments depends on the window types:

•   Left only - count words to left of target, e.g. "the little".

•   Right only - count words to right of target, e.g. "said that".

•   Left plus Right - count words on both sides of target, e.g. "the little said that".

•   Left and Right - concatenate left only and right only vectors from above.
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The final value of these frequency counts will then be used to calculate the co-
occurrence vector for girl, first by normalising to take account of the total window
size, and then dividing by the target word frequencies to give the probabilities of co-
occurrence.  We can now look at the main parameters in more detail.

4.2  The Main Parameters

Window Size

This defines the number of neighbouring words that we count as occurring “near” to
the target word, e.g. do we count the two words immediately next to it, or the five
words next to it, or the fifty words next to it, etc.  One might conjecture that a large
window size gives more semantic information whereas a small window size gives
more syntactic information.

Window Type

This refers to which side of the target word we count the neighbouring words:

•   Left only - count only words occurring to the left of the target word, producing
vectors with one component for each of the D different words in the corpus.
•   Right only - count only words occurring to the right of the target word, again
producing vectors with D components.
•   Left plus Right - count words occurring to the left and right of the target word,
still producing vectors with D components.
•   Left and right - concatenate the vectors formed by looking at just the left and right
sides, i.e. the vectors from left only and right only, producing vectors with 2 × D
components.

We shall not investigate the possibility here, but one might also wish to consider
treating the left and right contexts asymmetrically.

Window Shape

It might be appropriate to treat the context words differently depending on how far
away they are from the target words, so we have windows of different shape:

•   Rectangular/Flat - each neighbouring word around the target word is given the
same weight.
•   Triangular/Weighted - as a neighbouring word gets further from the target word, it
is given linearly less weight - a technique used by Lund and Burgess [8].

and one can imagine other possibilities that we shall not consider in this paper. 

Number of Vector Components

Clearly we generally do not want to use all D components of our vectors, because D
will be a very large number and the resultant vectors would be too large and very
difficult to process.  Hence some analysis must be carried out to determine how many
vector components are appropriate to obtain the best results, e.g. does restricting
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ourselves to 100 components give better results than, say, using 1000 components?
In this paper we shall use the components corresponding to the context words of the
highest frequency.  In future work we shall need to consider if it is more appropriate
to use the components with the highest variance, or if we should use something like
principal component analysis to reduce the dimension of the space.

Corpus Size

We would expect the vectors produced from a large corpus to be better than those
produced from a smaller one, simply because the relative noise in the frequency
counts will fall with the counts themselves and these will clearly increase with the
corpus size.  We need to determine how crucial this factor is and how it depends on
the frequencies of the target and context words and on the evaluation criteria.

5  Evaluation Criteria

We thus have five main parameters whose values can be varied.  Obviously,
changing these values will produce differing co-occurrence vectors for the same set of
words.  Hence, evaluation techniques need to be formulated to decide which parameter
values give the best set of co-occurrence vectors and how good these best vectors
really are.  In this section we begin a systematic investigation by describing two
simple criteria for evaluating the different sets of co-occurrence vectors and in the
next section we present some preliminary results. 

The most natural conjecture is that if we define some distance metric on our
semantic vector space, then the vectors corresponding to semantically unrelated words
should be further apart than those for related words.  Since there are numerous
normalisation artefacts that may arise when we compare vectors derived using
different values of the above parameters (e.g. different amounts of baseline noise), the
natural dimension free quantity to compare is the relatedness ratio:

R   =      Mean       distance       between       control        words   

Mean distance between related words

The larger this ratio, the relatively closer are the related words, and the better our
semantic representations.  We chose a representative set of 100 pairs of words that
had been judged by human subjects to be near synonyms [14] and for each pair we
took eight frequency matched random pairs of words to act as our controls.  We then
created the co-occurrence vectors and calculated the ratio R using simple Euclidean
distances for these pairs for a range of parameter sets. 

To check the extent to which our results depended on the details of the chosen
evaluation criterion, our second criterion was based on a somewhat different idea.
Given a set of words which human subjects have assigned to different categories, we
can define category centres in the semantic vector space and ask how many of the
vectors do actually fall closer to the correct category centre than to any of the other
centres.  If our vectors really are a good representation of semantics, we would expect
all the vectors to fall closer to an appropriate category centre than to an inappropriate
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centre.  We took ten words for each of ten Battig and Montague [1] categories which
had minimal category overlap and counted the number of correct classifications for
each parameter set. 

6  Results

The first thing we need to consider is the reliability of the vectors we create.  We are
estimating probabilities by counting the word occurrences in a finite corpus, and we
therefore expect the random variations in the vectors to be smallest for the high
frequency words and for very large corpora.  The important questions are how small
can the corpus be and how low can the frequencies be before we start running into
problems.  We begin by checking that our full corpus of 89 million written words is
large enough and that the frequencies of our chosen words are high enough, and
consider what happens for smaller corpora at the end of this section.  We generated
vectors of the left & right type using a weighted window of size two with
components corresponding to the 128 highest frequency words.  Figure 1 shows that
the distances between vectors for the same word created from different halves of the
full corpus are small compared with the mean distances between different related and
control words within the corpus.  Figure 2 confirms this for the actual word pairs we
used and shows the distribution of related and unrelated distances which is our first
indication that we really are extracting semantic effects.  Together these Figures give
us confidence that our results are not going to be swamped by statistical noise.
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Figure 1: The distances between vectors created from different halves of the
corpus showing that the higher frequency word vectors tend to be more reliable.
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The following graphs showing how our two performance measures vary with our
main parameters are fairly self explanatory.  Figures 3 and 4 show how our criteria
vary with the number of frequency ordered vector components.  We used left & right
type vectors for flat and weighted windows of size two.  We see that the ratio
measure has a peak at around a hundred components and then falls slowly, whereas
the classification measure increases rapidly up to about 64 components and then
remains fairly level.  Figures 5 and 6 show the variation with the window size and
between flat and weighted windows for left & right type vectors of 128 components.
The ratio measure has a peak at window size two whereas the classification measure
peaks nearer sixteen.  In each of these graphs we have a trade-off between acquiring
more information against more noise from the extra vector components or window
positions.  For both measures, we can see that large weighted windows behave
equivalently to a flat window of about half the size.
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Figure 2: A comparison of the inter-word distances for vectors derived from
different halves of the corpus. As one would hope, semantically related word
pairs tend to be closer together than random control word pairs.
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Figure 3: The plot of our Control/Related distance ratio as a function of the
number of frequency ordered vector components has a maximum and then falls.
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Figure 4: The plot of the number of correct classifications as a function of the
number of frequency ordered vector components rises and eventually levels off.
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Figure 5: The plot of our Control/Related distance ratio as a function of window
size has a maximum at 2 and then falls till it levels off at around 100.
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Figure 6: The plot of the number of correct classifications as a function of
window size has a maximum around 16 and falls for larger windows.
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Figure 7: The plot of our Control/Related distance ratio for the four main
window types as a function of window size.
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Figure 8: The plot of the number of correct classifications for the four main
window types as a function of window size.
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Figures 7 and 8 show the differences between the window types for weighted
windows of different sizes for vectors of 128 components.  For the ratio measure, the
performance ordering is independent of the window size with the left contexts always
giving the best vectors and the right contexts the worst.  For the classification
measure, the combined left & right context vectors are always the best, but the
window size has a more variable effect on the others.  Again, we see that the optimal
choice of parameters depends on what you want to do.

Finally, Figure 9 shows how the quality of the left & right type vectors vary with
corpus size for 128 vector components.  We used near optimal weighted window
sizes of 2 for the distance ratio and 16 for the classification measure.  This confirms
our natural expectation that, for both performance measures, the vectors do improve
as we increase the corpus size, but it is slightly worrying to see that they are still
improving even at the 89 million words which is the whole of the written BNC. 

7  Conclusions

We have discussed how we can derive semantic representations for use in
connectionist models from the word co-occurrence statistics of large text corpora.
Arguments concerning their psychological realism have been suggested elsewhere [8].
Here, we have been concerned with optimising a number of parameters that affect the
quality of the representations obtained from this approach, and have suggested and
investigated two simple criteria for evaluating this quality. 
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Figure 9: Both criteria for validating our semantic vectors show the expected
improvement in vector quality as we increase the size of the corpus.
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Already we have seen that the optimal values of the various parameters will be
dependent on the criteria we use.  For example, our simple ratio of mean Euclidean
distances between semantically related and unrelated words tells us that a co-
occurrence window of two words produces the best results, whereas our measure of
correct category classification suggests that a window some eight times larger is best.
Preliminary analysis of other distance measures and criteria [10] suggest there is even
more variability to be found.  We have also seen that even with corpora of tens of
millions of words, there is still room to improve our results by using still larger
corpora.  Clearly there is significantly more variation across the vector creation
procedures and evaluation criteria than is commonly assumed. 

This work, together with the preliminary application of similar corpus derived
semantic representations in a connectionist lexical decision model [5], gives us
confidence in the usefulness of this approach, but clearly we need more extensive
analysis to determine exactly how these representations relate to those employed in
real brains.  For example, it does not seem appropriate to use different semantic
representations for different tasks, and it is difficult to argue that our corpus derived
representations are realistic if they require a corpus much larger than the total amount
of written and spoken input experienced in a whole lifetime.  However, variations on
this theme are already looking promising [8, 10].
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