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Abstract

Many connectionist language processing models have now reatdesl af
detail at which morerealistic representationsf semanticsarerequired. In
this paperwe discussthe extractionof semanticrepresentationgrom the
word co-occurrence statistics large text corporaand presenta preliminary
investigationinto the validation and optimisation of such representations.
We find that there is significantly more variation acrossthe extraction
procedures and evaluation criteria than is commonly assumed.

1 Introduction

How to represensemanticshasbeena difficult problemfor many years,andas yet
thereis no consensuss to exactly what is stored and how. With the rise of
cognitive modelling, the problem of representing semanfarmation must now be
addressed if any headway is to be maédthough semanticobviously plays a very
important role in language, cognitive models concerned with language haveneither
attempted to implement this component [2, 2B]jmplementedt only on a small-
scale [3, 4, 6, 7, 16, 17, 18]. tiie experimentaresultsfrom taskssuchasreading
andlexical decisionareto be simulated,there must be seriousinvestigationsinto
how semantics can be represented on a large scale, e.g. for thousands of words.
Recently, work has begun on using laggeporato extractsemanticinformation
in the form of vectorsof word co-occurrencestatistics. In this paper, we shall
discussthe results obtainedfrom a preliminary study of extracting co-occurrence
vectors from theBritish National Corpus(BNC) — a large corpusconsistingof 100
million words, both written and spoken [9]Thesevectorsare obtainedby counting
how often words occur near each other in a corpus to gigetar of probabilitiesfor
each word with components corresponding to the different wotte itorpus. There
are a number of parameters which specify the vereationprocessandtheir values
will affect the resultant vectordVe describe some simple evaluatigmoceduresvith
the aim of optimising these parameters to give thedeasantic representations.
This kind of analysisseeksto investigatethe degreeto which aspectsof the
meaningof a word arereflectedin its tendencyto occuraroundcertainotherwords.
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This may give insights into how semanticsmay be learnt by humansthrough
exposure to language and stored in the brain [Bjesevectorswill also be of great
use for representing semantics in modelsafous psychologicalprocessessuchas
reading and lexical decision. Tlearrentmethodsare somewhatnadequatesincethe
semantic representations are randomly generatbdral-crafted. Randomlygenerated
vectorsclearly haveno relationto real semantics. Hand-craftedrepresentationgre
subjective in that the modellers concerned decide how the meaning of a woats@and
what featuresof the meaning,shouldbe stored. For example different peoplewill
havedifferentideason how to best representhe meaningof dog. Also, creating
semanticrepresentationfor thousandsof words would be a time-consumingtask.
Hence, we need a technique which captures meaniragsdbjectivefashionand one
which would allow us to easily create semantic representations for many words.
We shall first briefly describework already performedin this areaof corpus
analysis and then describew semanticshasbeenrepresentegreviouslyin various
psychologicalmodelsand why the corpusbasedapproachfor obtaining semantic
representationfias advantageover these. Our main focus will be on how the
variousparametersnvolved in the corpusanalysiscanbe optimisedto producethe
best co-occurrence vectors. This wibpefully leadto a greaterawarenessf which
parameter values give what types of results. In the process, we will deéiation
procedures which can be used by other researchers working on corpus analysis.

2 Previous Corpora Work

Various relevant results hawadreadybeenobtainedfrom corpusanalysis[8, 11, 12,
19]. Lund and Burgess [11, 12], for example, derigedbccurrencerectorswith 200
componentfrom a 160 million word corpus, basedon words occurring within a
weighted window of terwords aroundthe targetword. Amongstotherthings, their
analyses showed that vectors derived for semantically related words tehestdser
in Euclideanspacethan was the casefor semanticallyunrelatedwords, e.g. the
semanticvector for cat was closer to other co-occurrencevectors representing
animals, such as lion, than to vectors representingbody parts, such as ankle.
Schiitze has carried out numerous experimentsxtractingsemantic§rom corpora.
His initial work [19] involved creatingco-occurrencerectorsfrom letter four-grams
as opposed to words. He showhdt semanticallyrelatedvectorstendedto be close
in distanceand demonstrateguccessfulsemanticdisambiguation. Together,these
investigationshave indicatedthat useful semanticrepresentationsan be produced
from corpora. Moreover, Bullinaria and Huckle [5] have already used semantic
vectors of this form with some success in connectionist models of lexical decision.

Although these studies have shown this approadfe teseful, no systematicand
rigorous evaluationshave yet been performed. There are a variety of parameters
which specify how the co-occurrencevectors are created,for example, different
window shapesandsizes,different numbersof vector componentsgifferent corpora
sizes, and so onHerewe shall createco-occurrencerectorsfor the samegroupsof
words for different parametervalues. Thesevectorswill be then be evaluatedusing
two different criteriato optimise the parametervaluesandasses$iow goodthe best
resultant semantic representations really are.
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3 Implementation of the Semantic Component
of Reading and L exical Decision Models

Psychologicaimodelsof readingandlexical decisionhave beenimplementedusing
neuralnetworkswith varying degreef succes§2, 3, 4, 7, 16, 17, 18, 20]. A
major problemhasbeenin implementingthe semanticcomponentof such models
since there is no established theory of what shoulefesentedr how. Modellers
havetendedtowardsusing simple notions of semanticmicro-featurerepresentations
as a practical way of implementing the lexical semantics of small seisrd§. For
example, Hinton & Shallice [7] generated thewn semanticmicro-featuresdy hand
such that each stoddr a specific conceptsuchas has-legs or indoors. A semantic
vector consistedof 30 componentswith each representingone semantic micro-
feature. Similarly, Plaut & Shallice [17], us86 semanticmicro-featuressplit into
categoriessuchasvisual characterigtics, where found, etc. Othershaveshown that
realistic patterns of performance can be obtained sitmplysing randomly generated
semanticrepresentationsfor example,both Plaut [16] and Bullinaria [3] in their
lexical decision models and Bullinaria [4] in his reading model.

A somewhat different approach investigated by Patel [15] invahs#oly WordNet
definitions to represent semantics. WordNet is a dictionary baspslysholinguistic
principles, developedat PrincetonUniversity by Miller et al. [13], that contains
approximately57,000nouns, 21,000 verbsand 19,500 adjectives. For eachword,
WordNet gives all possible meaningsin terms of a numberof definitions. For
example, the WordNet representation for Senseharaf is:

HAND : Sense 2 : hired hand, hand, hired man -- (a hired laborer on a farm or ranch)

=> laborer, manual laborer, labourer -- (works with hands)
=> workman, working man, working person
=> employee -- (a worker who is hired to perform a job)
=> worker -- (a person who has employment)
=> person, individual, someone, man, mortal, human, soul -- (a human being)
=> life form, organism, being, living thing -- (any living entity)
=> entity -- (something having concrete existence; living or nonliving)

In the semanticvectorsdevelopedby Patel, eachcomponentcorrespondedo one
WordNet definition. The component wasif the meaningcontainedthat definition
otherwise it remainedff. Although, some promising results were obtained with
approach, problems dioccur occasionallywith the total numberof definitions used
to define a meaning. In some cases for polysemous wordsydimg meaninghada
higher activation that the correct meaning simply becauseit consistedof more
WordNet definitions than the correctmeaning. Hence,for thesecases,the more
components a vector had, the greateradvantagehe correspondingneaninghad of
gaining more activation.

The appealing factor of the above vector based approacties they are simple
andintuitive. However,in the long-term, they have no externalvalidity, except
perhaps the WordNet approach which is at leasedon psycholinguisticdata. The
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corpusbasedapproachesor representingsemanticamay proveto be betterif, after
rigorous evaluation, it can be shown that co-occurrencevectors do have some
interesting and psychologically realistic propertids techniquewill thenhavebeen
found which has many advantagesover the usual hand-craftedapproachtowards
semantic representation. Fexample,it doesnot rely on subjectivejudgementsijt
is automatic and it produces data that are derived from genuine lingugdticmance.
These co-occurrence vectarsuld then be usedreliably in the semanticcomponents
of connectionist language processing models.

4 Optimising the Vector Creation Parameters

The semanticvectorsderivedfrom corpusanalysisare producedby simply counting
the occurrence®f neighbouringwords, e.g. by countingthe numberof occurrences
of the context words which neighbdiower to create the semantiectorfor flower.
There are clearly a number of parametersthat needto be specified to uniquely
determinethis counting and vector creation process. In this section we briefly
discuss five of the main parameters that we wish to vary in this preliminary study.

4.1 TheVector Creation Process

We begin with a simple illustration to show the rotlke variousparameterplay in
creating the vectors. Suppose we are producing the semaaator for the word girl
using a window size of two words on either side of the target word girl. Then
suppose that the phrase "title girl saidthat..." is the next oneto appearin the
corpus. The valuesbelow show the incrementsthat will be given to the already
accumulated frequency counts of theseds. For a rectangular window, the current
total for eachword aroundgirl will be incrementecby one, whereador a triangular
window, the increment is larger the closer the word girio

» Rectangular Window (each word carries the same weight)

the little  girl said that
1 1 0 1 1

» Triangular Window (closer words carry more weight)

the little  girl said that
1 2 0 2 1

Then, how we use these increments depends owitldew types:

» Left only - count words to left of target, e.g. "the little".
» Right only - count words to right of target, e.g. "said that".
» Left plus Right - count words on both sides of target, e.g. "the little said that".

» Left and Right - concatenate left only and right only vectors from above.
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The final value of thesefrequencycountswill then be usedto calculate the co-
occurrencevector for girl, first by normalisingto take accountof the total window
size, and then dividing by the targeord frequenciego give the probabilitiesof co-
occurrence. We can now look at the main parameters in more detail.

4.2 TheMain Parameters

Window Size

This defines the number of neighbouriwgrdsthat we countas occurring“near” to
the target worde.g. do we countthe two wordsimmediatelynextto it, or the five
words next to it, or the fifty words next to it, et@ne might conjecturethat a large
window size gives more semanticinformation whereasa small window size gives
more syntactic information.

Window Type
This refers to which side of the target word we count the neighbouring words:

* Left only - countonly wordsoccurringto the left of the targetword, producing
vectors with one component for each of the D different words in the corpus.

* Right only - countonly wordsoccurringto the right of the targetword, again
producing vectors with D components.

» Left plus Right - countwordsoccurringto the left andright of the targetword,
still producing vectors with D components.

» Left and right - concatenate the vectors formed by looking at justefieandright
sides,i.e. the vectorsfrom left only andright only, producingvectorswith 2 x D
components.

We shall not investigatethe possibility here,but one might also wish to consider
treating the left and right contexts asymmetrically.
Window Shape

It might be appropriateto treatthe contextwords differently dependingon how far
away they are from the target words, so we have windows of different shape:

* Rectangular/Flat - eachneighbouringword aroundthe targetword is given the
same weight.

» Triangular/Weighted - as a neighbouring word gets further frtime targetword, it
is given linearly less weight - a technique used by Lund and Burgess [8].

and one can imagine other possibilities that we shall not consider in this paper.

Number of Vector Components

Clearly we generally do not want to use alcBmponentf our vectors,because
will be a very large numberandthe resultantvectorswould be too large and very
difficult to process. Hence some analysis must be carried out to determimadrgw
vector componentsare appropriateto obtain the best results, e.g. doesrestricting
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ourselves to 100 components givetterresultsthan, say, using 1000 components?
In this paper we shall use the componarsespondingo the contextwords of the
highest frequency. In future work we shiadledto considerif it is more appropriate
to use the components with the highest variance, we ihoulduse somethinglike
principal component analysis to reduce the dimension of the space.

Corpus Size

We would expectthe vectorsproducedirom a large corpusto be betterthan those
producedfrom a smaller one, simply becausehe relative noise in the frequency
countswill fall with the countsthemselvesandthesewill clearly increasewith the
corpus size. We nedd determinehow crucial this factoris andhow it dependson
the frequencies of the target and context words and on the evaluation criteria.

5 Evaluation Criteria

We thus have five main parameterswvhose values can be varied. Obviously,
changing these values will produce differing co-occurrence vectotisd@ameset of
words. Hence, evaluation techniques need to be formulatititewhich parameter
valuesgive the bestsetof co-occurrencevectorsand how good thesebest vectors
really are. In this sectionwe begin a systematicinvestigationby describingtwo
simple criteria for evaluatingthe different sets of co-occurrencevectorsand in the
next section we present some preliminary results.

The most natural conjectureis that if we define some distancemetric on our
semantic vector space, then the vectors corresponding to semaniicalgtedwords
should be further apartthan those for related words. Since there are numerous
normalisation artefactsthat may arise when we compare vectors derived using
different values of the above parameters (e.g. different amounts of bas®ing the
natural dimension free quantity to compare is the relatedness ratio:

R = Meandistancebetweercontrolwords
Mean distance between related words

The largerthis ratio, the relatively closer are the relatedwords, and the better our
semanticrepresentations We chosea representativeset of 100 pairs of words that
had beenjudgedby humansubjectsto be nearsynonyms[14] andfor eachpair we
took eight frequency matched random pairs of wordsct@s our controls. We then
createdthe co-occurrencevectorsand calculatedthe ratio R using simple Euclidean
distances for these pairs for a range of parameter sets.

To checkthe extentto which our resultsdependedn the details of the chosen
evaluationcriterion, our secondcriterion was basedon a somewhatdifferent idea.
Given a set of words which humanbjectshaveassignedo different categorieswe
candefine categorycentresin the semanticvector spaceand ask how many of the
vectors do actuallyall closerto the correctcategorycentrethanto any of the other
centres. If our vectors really are a good representation of semargieguld expect
all the vectors to fall closer to an appropriate category cémdreto an inappropriate
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Figure 1: The distancesbetweenvectors createdfrom different halves of the
corpus showing that the higher frequency word vectors tend to be more reliabli

centre. We took ten words for eachtef Battig and Montague[1] categorieswvhich
had minimal categoryoverlapand countedthe numberof correct classificationsfor
each parameter set.

6 Results

The first thing we need to consider is the reliability of Wieetorswe create. We are
estimating probabilities by counting theord occurrencesn a finite corpus,andwe
thereforeexpectthe randomvariationsin the vectorsto be smallestfor the high
frequency words anfbr very large corpora. The importantquestionsarehow small
canthe corpusbe andhow low canthe frequenciese beforewe start running into
problems. We begin by checking that our full corpus ofrBfion written wordsis
large enoughand that the frequenciesof our chosenwords are high enough, and
considerwhat happengor smallercorporaat the endof this section. We generated
vectors of the left & right type using a weighted window of size two with
components corresponding to the 128 highest frequencgls. Figure 1 showsthat
the distancedetweenvectorsfor the sameword createdfrom different halvesof the
full corpus are smaltomparedwith the meandistanceshetweendifferent relatedand
control words within the corpus. Figure 2 confirms this forabtialword pairs we
usedand showsthe distribution of relatedand unrelateddistanceswhich is our first
indication that we really are extracting semantic effedisgethertheseFiguresgive
us confidence that our results are not going to be swamped by statistical noise.
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Figure 2: A comparisonof the inter-word distancesfor vectors derived from
different halvesof the corpus.As one would hope, semanticallyrelated word
pairs tend to be closer together than random control word pairs.

The following graphs showing how otwo performancaneasurevary with our
main parameterarefairly self explanatory. Figures3 and4 show how our criteria
vary with the number of frequency ordered vecomponents. We usedleft & right
type vectorsfor flat and weightedwindows of sizetwo. We see that the ratio
measurehasa peakat arounda hundredcomponentsandthenfalls slowly, whereas
the classificationmeasureincreasesapidly up to about 64 componentsand then
remains fairlylevel. Figures5 and6 show the variationwith the window size and
between flat and weighted windows feft & right type vectorsof 128 components.
The ratio measure hagpaakat window size two whereaghe classificationmeasure
peaks nearesixteen. In eachof thesegraphswe havea trade-off betweenacquiring
more information againstmore noise from the extravector componentsor window
positions. For both measuresye can see that large weighted windows behave
equivalently to a flat window of about half the size.
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Figure 3: The plot of our Control/Relateddistanceratio as a function of the
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70 80 90 100

60

Correct Classifications

50

] —®— Weighted window
—2A— Flat window

40

30

1 10 100 1000 10000
Number of Vector Components

Figure 4:The plot of the numberof correctclassificationsas a function of the
number of frequency ordered vector components rises and eventually levels off
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size has a maximum at 2 and then falls till it levels off at around 100.
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Figure 6: The plot of the numberof correctclassificationsas a function of

window size has a maximum around 16 and falls for larger windows.
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Figure 7: The plot of our Control/Relateddistanceratio for the four main
window types as a function of window size.
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Figure 8: The plot of the numberof correctclassificationsfor the four main
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Figure 9: Both criteria for validating our semanticvectors show the expected
improvement in vector quality as we increase the size of the corpus.

Figures7 and 8 show the differencesbetweenthe window types for weighted
windows of different sizes for vectors of 128 components. Fordti@ measurethe
performance ordering is independent of the window witle the left contextsalways
giving the bestvectorsand the right contextsthe worst. For the classification
measurethe combinedleft & right contextvectorsare always the best, but the
window size has a more variable effect on the others. Again, waagle optimal
choice of parameters depends on what you want to do.

Finally, Figure 9 shows how the quality of theft & right type vectors varyvith
corpussizefor 128 vector components. We usednear optimal weighted window
sizes of 2 for the distance ratio ah@ for the classificationmeasure. This confirms
our natural expectatiothat, for both performancemeasuresthe vectorsdo improve
aswe increasethe corpussize, but it is slightly worrying to seethat they are still
improving even at the 89 million words which is the whole of the written BNC.

7 Conclusions

We have discussedhow we can derive semantic representationsfor use in
connectionistmodelsfrom the word co-occurrencestatistics of large text corpora.
Arguments concerning their psychological realism have been suggested eld8jvhere
Here, we have been concerned with optimising a numbearaimetershat affect the
quality of the representationsbtainedfrom this approach,and have suggestedand
investigated two simple criteria for evaluating this quality.
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Already we haveseenthat the optimal valuesof the various parameterswill be
dependent on theriteriawe use. For example,our simple ratio of meanEuclidean
distancesbetweensemanticallyrelated and unrelated words tells us that a co-
occurrencevindow of two words produceshe bestresults,whereasour measureof
correct category classification suggests that a window some eight times ldrgst. is
Preliminary analysis of other distance measures and criteria [10] stiggess even
more variability to be found. We havealso seenthat evenwith corporaof tens of
millions of words,thereis still room to improve our resultsby using still larger
corpora. Clearly thereis significantly more variation acrossthe vector creation
procedures and evaluation criteria than is commonly assumed.

This work, togetherwith the preliminary applicationof similar corpusderived
semanticrepresentationin a connectionistlexical decision model [5], gives us
confidencein the usefulnesf this approachbut clearly we needmore extensive
analysisto determineexactly how theserepresentationselateto thoseemployedin
real brains. For example,it doesnot seemappropriateto use different semantic
representations fadifferent tasks,andit is difficult to arguethat our corpusderived
representations are realistic if they require a corpus much largethiagotal amount
of written and spoken input experienced in a whole lifetiriawever,variationson
this theme are already looking promising [8, 10].
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