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Abstract:  It is well known that incremental learning is often difficult for

traditional artificial neural networks, due to newly learned information

interfering with what was previously learned, and this proves problematic for

cognitive models.  This paper present a series of computational experiments

that explore the extent to which evolutionary techniques can be used to generate

simple neural network incremental learners that exhibit improved performance

over existing “hand-crafted” networks.  The nature of the learning difficulties

are inevitably application dependent, so a sequence of representative cases are

considered.  These range from pure memory networks, that must learn new

items without forgetting old items, to generalization networks, that must learn

from new items to improve their classification performance.  It is shown for all

cases that the evolutionary optimized traditional neural networks perform

considerably better than equivalent neural networks with standard parameter

values, casting doubt on the need for more complex specialist incremental

learning systems.  The implications for brain modelling are discussed.
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1. Introduction

Good incremental learning is the ability to learn effectively from new information as it becomes

available, without needing access to previous information (Polikar, Udpa, Udpa & Honavar, 2001).

This is of practical importance for humans and many real world applications where learning really

does need to be an ongoing process (Giraud-Carrier, 2000).  The human brain is certainly good at

usefully absorbing new information into what it already knows.  Traditional artificial neural

networks (Bishop, 1995), on the other hand, usually work best if they are trained on all the available

data during a single learning session, and it is often difficult to improve them by updating with new

information that becomes available later.  This poor incremental learning ability is obviously

problematic, both for building brain models, and for real world applications.  The problem is that

they do not handle the stability-plasticity dilemma (Grossberg, 1987) very well – the learning of

new data tends to interfere with the previously learned information.

While it is quite normal for humans to gradually forget what they have previously learned,

particularly during the learning of new information, in traditional artificial neural networks the

forgetting tends to be more catastrophic, and this proves to be a serious limitation of associated

cognitive models (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999, 2003).  Human brains

have presumably evolved by natural selection to minimize this problem (Sherry & Schacter, 1987).

This paper aims to take inspiration from that, and explore the extent to which simulated evolution

can be used to improve the performance of artificial neural networks too.

The neural networks should be able to use any new training data to improve their performance,

without requiring access to the previous data.  This may involve accommodating whole new classes

of information that are introduced with the new data, and remembering old classes that are not

represented in the new data.  There are two broad application areas to consider: memory tasks and

generalization tasks.  Memory tasks have been much studied in the cognitive modelling literature,

and involve the learning of new data patterns without forgetting those learned previously.

Generalization tasks have been studied more in the context of practical Artificial Intelligence (AI)

applications, with the aim of further improving existing generalization abilities as new data arrives.

Actually, both types of task are relevant to both cognitive modelling and practical AI applications,

and both will be studied in this paper.

The remainder of this paper begins by reviewing the idea of incremental learning in general, and

what this means for generalization and memory tasks.  Then the principal previous approaches for

improving incremental learning performance and avoiding catastrophic forgetting in memory tasks
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are outlined.  The idea of using simulated evolution to improve neural network performance is then

considered, and the particular approach adopted for this study is described.  The main part of the

paper consists of empirical studies of evolved neural network learners for representative memory

and generalization tasks, comparisons against existing systems, and analyses of how the evolved

networks achieve their improved performance.  The paper ends with some conclusions and a

discussion of how the results tie in with known brain structures and their evolution.

2. Incremental Learning

Chalup (2002) has provided a wide ranging review of the various types of incremental learning in

both biological and machine learning systems, and Lange & Grieser (2002) have presented a more

theoretical analysis of incremental learning.  For present purposes, a successful incremental learning

system will be defined, following Polikar et al. (2001), as one that involves the training data

becoming available in batches and satisfies the following useful properties:

1. No access is required to any of the previous training data from which the current state was

learned.

2. Learning from new training data does not cause large scale forgetting of previously

acquired information.

3. Additional information can be acquired from the new data, and hence the performance can

be improved.

4. There is no problem in accommodating any new data classes that are introduced in the new

training data.

Human brains have these properties, yet achieving them in artificial neural networks seems to pose

serious difficulties.

When a neural network that has been trained on one set of data is subsequently trained on a

new set, the performance on the original set is affected.  This is a direct consequence of the stability-

plasticity trade-off, and is known to be a major problem for artificial neural network models.  The

difficulty arises because the crucial feature that gives connectionist networks their generalization and

graceful degradation abilities, the single set of shared weights that forms a distributed representation

of the old information, necessarily gets modified as the new information is learned.  The aim, of

course, is to find a way of modifying the weights in a manner that is consistent with the four

incremental learning properties listed above.
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For memory tasks, attempts at incremental learning frequently result in catastrophic forgetting,

whereby the new training patterns seriously disrupt the patterns that were previously learned

(French, 1999, 2003).  This is because the new training patterns generally have little overlap with the

old patterns, and consequently it is difficult to satisfy incremental learning properties 1 and 2.

For generalization tasks (both classification and regression), the interference will generally be

much less catastrophic, particularly if the new training patterns only represent minor changes to, or

more information about, the existing classification boundaries or regression curves, but one still

needs to ensure that the new data improves the overall generalization performance rather than

making it worse.  In particular, it is important to ensure that the additional training does not cause

over-fitting, and it is not obvious how best to incorporate standard regularization techniques such as

stopping early and weight decay (Bishop, 1995) into incremental regimes.  Here, incremental

learning properties 1 and 2 tend to be less of a problem, but satisfying the other two properties is

not so straightforward.

3. Previous Approaches

Numerous processes have already been developed with the aim of allowing neural networks to learn

new information without disrupting the existing information.  Perhaps the most obvious procedure

is interleaved learning (Ratcliff, 1990; McClelland, McNaughton & O’Reilly, 1995), whereby the

entire original training data set is mixed together with the new patterns, and the network is retrained

on the new expanded set.  This can involve continued training of the existing network, or discarding

the previously learned weights and starting the training from new random initial values.  Either way,

the key incremental learning properties are satisfied, except that access to past data is required,

which clearly violates property 1.  This approach clearly needs some refinement as a model of

human learning, and also tends to be impractical for real world applications in that it requires

permanent storage of all the old data for retraining.  Moreover, the nature of the learning task often

varies over time anyway, rendering the old data unhelpful.

The interleaving approach may also prove computationally expensive due to the longer training

times of the increasingly large training sets.  One can attempt to reduce the size of the full training

set by only using carefully chosen subsets of the new patterns.  Engelbrecht & Britis (2001), for

example, devised a system whereby the candidate set of new training patterns is divided into clusters,

and only the most informative pattern from each cluster is added to the training set.  This approach,

however, still has the problem of needing access to all the old data, and as the number of clusters
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increases, so does the computational complexity.

An extension of interleaving, that avoids the need to use the entire original training set, involves

employing rehearsal (Ratcliff, 1990; Robins, 1995), whereby only a subset of the original data is

used for further training.  By choosing such subsets appropriately, variations over time and recency

effects can also be incorporated.  Better still, pseudo-rehearsal (Robins, 1995, 2004; Robins &

McCallum, 1999) has the advantages of rehearsal without requiring access to the original data.

Here, after training the neural network on the original data, it is used to generate pseudo-patterns by

producing output vectors for randomly generated input vectors.  These pseudo-patterns approximate

the earlier learning of the network, to a degree that depends on their distribution throughout the

input space, and can be used for training along with the new data, hopefully preserving what was

learned before.  This approach has been shown to reduce substantially the interference between

sequential training items while allowing new information to be learned, but there remain the

problems of storing the pseudo-patterns and knowing how many of them to produce and how to

distribute them in the input space.  Frean & Robins (1999) carried out a formal analysis of the

pseudo-rehearsal approach for linear networks and showed that it is “guaranteed to succeed in high

dimensions under fairly general conditions”, but found that it can fail in low dimensions.

Since the underlying cause of catastrophic forgetting is interference in the shared weights,

many approaches have attempted to reduce that interference.  Typically they restrict the way in

which the hidden unit activations are distributed in order to modify the connection usage.  French

(1992) explored activation sharpening algorithms to reduce the overlaps between hidden unit

activations for different input patterns.  McRae & Hetherington (1993) showed how pre-training the

neural networks could affect the pattern of hidden unit activations in a such a way that catastrophic

interference was reduced.  The HARM (Hebbian Autoassociative Recognition Memory) model of

Sharkey & Sharkey (1995) effectively implements a neural network lookup table in which learning

is divided into two stages, first eliminating the overlap between input patterns at the hidden layer

using an orthogonalizer, and then using Hebbian learning to map the hidden representations to

appropriate outputs.  Other approaches have involved allowing two sets of weighted connections

between the nodes, such as the additive dual-weights of Hinton & Plaut (1987) with fast weights to

learn new patterns temporarily and slow weights for long-term storage.  Robins (1997, 2004) has

discussed how a second set of weights can be used as an alternative to explicit storage of pseudo-

patterns in the pseudo-rehearsal approach.

More complex modular/localist neural network approaches have also been proposed.  A range
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of ART (Adaptive Resonance Theory) networks (Grossberg, 1987; Carpenter & Grossberg, 1988,

2003) use pattern matching to enable the rapid learning of new information while preserving

previously learned patterns.  Similarly, the CALM (Categorization and Learning Module) approach

of Murre (1992) and the ALCOVE (Attention Covering Map) model of Kruschke (1992) have also

attempted to avoid catastrophic forgetting, in rather different ways, by recognizing new patterns for

storing on uncommitted nodes.

Further approaches have been based more directly on the brain structures that humans are

believed to employ for these tasks (McClelland, McNaughton & O’Reilly, 1995; O’Reilly & Rudy,

2000).  The idea is that humans do not suffer from catastrophic forgetting because their brains have

evolved two distinct areas to deal with the problem (Sherry & Schacter, 1987): a hippocampal

system that allows rapid learning of new information, and a neocortical system that slowly

consolidates the new information with the old for long-term storage, presumably using some form

of interleaved learning.  Some very successful dual-model architectures consisting of two distinct

networks, one for early processing and another for long-term storage of previously learned

information, together with an information transfer mechanism using pseudo-patterns, have been

developed to simulate this separation (French, 1997; Ans & Rousset, 1997, 2000; French, Ans &

Rousset, 2001; Ans et al., 2002).  Robins (1996) and Robins & McCallum (1999) have also

considered the relation of such consolidation processes to those that are thought to take place in the

sleeping brain.

Other researchers, more concerned with generalization problems, have developed somewhat

different approaches to eliminate the need for accessing the old training data.  One particularly

successful approach has been the Learn++ algorithm of Polikar et al. (2001) which employs an

ensemble of weak classifiers that generate multiple hypotheses by sampling the training data using

carefully customized distributions.  Empirical results for a range of benchmark classification

problems have shown how this algorithm satisfies all four incremental learning properties listed

above (Polikar, Byorick, Krause, Marino & Moreton, 2002; Muhlbaier, Topalis & Polikar, 2009).

Unfortunately, it involves numerous important parameters that need their values set by hand, and it is

not at all clear how the algorithm might relate to the processes that take place in brains.  Further

approaches have been developed to cope with incremental learning, such as the Neocognitron of

Fukushima (2004), ILUGA (Incremental Learning Using Genetic Algorithm) of Hulley & Marwala

(2007) and the NCL (Negative Correlation Learning) approaches of Lin, Tang & Yao (2008) and

Minku, Inoue & Yao (2009), but with neural architectures and algorithms of considerably increased
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complexity.  Recently, simpler approaches have also had some success, but at the expense of

requiring access to past data (e.g., Albesano, Gemello, Laface, Mana & Scanzio, 2006).

All the previous approaches noted above have been based on extensions of traditional neural

networks, with the designers themselves deciding on the architectures, learning algorithms, and

various associated parameter values.  The proposed approach here, to be presented in the remainder

of this paper, is to return to more traditional non-modular feed-forward neural networks with simple

gradient descent learning algorithms and employ evolutionary techniques to optimize them.  The aim

is to determine whether the usual problems of incremental learning can be sufficiently minimized in

these simple neural networks that more complex architectures are not required.  That will provide

better artificial systems to deal with these tasks, and better understanding of the computational

limitations of such networks.  In turn, that will elucidate the driving pressures behind human brain

evolution, offer insights into how brains might have evolved to be good incremental learners, and

provide a starting point for relating such emergent simulated networks to known brain structures.

That will result in a more solid foundation for future brain modelling studies.

4. Evolving Neural Networks

The general idea of applying the basic principles of evolution by natural selection to optimize the

performance of neural networks is now widely used (e.g., Yao, 1999; Bullinaria, 2003, 2007a,b;

Cantû-Paz & Kamath, 2005).  A population of individual neural networks is maintained, each with a

genotype representing an appropriate set of innate parameters.  Then for each generation throughout

the evolutionary process, the “fittest” individuals, i.e. those exhibiting the best performance on their

given task, are selected as parents.  Suitable crossover and mutation operators are then applied to

those parents to generate offspring for populating the next generation.  This process is repeated,

hopefully creating increasingly fit populations.  Such an approach can be used to select optimal

network architectures, learning algorithms, transfer functions, connection weights, and any other

network parameters.

An important feature of evolving neural networks in this way is that any aspect of the neural

network can be encoded and subjected to the evolutionary process, and it is possible for many

parameters that interact in complex manners to be optimized simultaneously.  This means that the

crucial, and usually extremely difficult, task of setting good neural network parameter values can be

left completely to the evolutionary process, rather than having to be done by hand by the network

designer.  The performances obtained from evolved neural networks are regularly reported to be
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significantly better than traditional hand built neural networks (Yao, 1999; Bullinaria 2003, 2007a,b).

In this paper, the aim is to evolve the various neural network topology and learning parameters

to produce systems that are good incremental learners with minimal catastrophic forgetting.  The

connection weights themselves are determined, as in humans, by the lifetime learning algorithm,

rather than being specified as innate parameters by the evolutionary process (Elman et al., 1996).

To satisfy incremental learning property 1, that access to past data is not required, the evolved

incremental learning performance is measured on data distinct from that used by the evolutionary

optimization process, in the same way that humans have evolved to perform well on data that is

distinct from, but of the same type as, that experienced by previous generations.  The underlying

network architecture and learning algorithm will be fixed to be standard Multi-Layer Perceptrons

with one hidden layer and sigmoidal processing units, trained by gradient descent weight updating

(back-propagation) with the Cross Entropy error measure (Bishop, 1995; Bullinaria 2003).

The simulated evolution involves populations of individual neural networks, each learning their

weights starting from random initial values drawn from their own innately specified distributions.

The process starts from an initial population with random innate parameters.  Then, for every

generation, each network goes through the chosen incremental learning process and has its fitness

(i.e. learning performance) determined.  The fittest half of the population are copied into the next

generation, and also randomly select a mating partner to produce one child, thus restoring the

population size.  The children inherit their innate characteristics (i.e. parameter values) randomly

from the corresponding ranges spanned by both parents, with random Gaussian mutations added to

allow final values outside the parental ranges (Bullinaria, 2003, 2007a,b).  For each new generation,

all the networks, both copies and new children, learn starting from new random initial weights.  This

process is repeated for a sufficient number of generations that no further improvements are evident

and a network, or group of networks, that best satisfy the performance criteria is obtained.

The application of simulated evolution is not totally straightforward, however.  Obtaining

optimal networks relies on maintaining diversity in the populations, and the evolutionary process can

easily become trapped in local optima, particularly when computational resource limitations restrict

the size of the population.  Using appropriate initial populations is important, as is identifying good

representations, crossovers and mutations, but often one must simply run the simulations many

times and discard any that have clearly not achieved their full potential (Bullinaria, 2007a).

The main difficulty is in deciding which of the innate parameters in the genotype are worth

evolving, and which are better left fixed.  This paper aims to explore a fairly complete range of
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possibilities, and determine which factors contribute to improved incremental learners, and which are

no help at all.  Since it is likely that different architectures and parameter values will emerge from the

evolutionary process depending on the details of the incremental learning problem under study, the

two extreme cases are initially considered separately: first pure memory tasks, and then pure

generalization tasks.  That then leads to a better understanding of what is happening when mixed

cases are considered.  All the simulation results presented are based on populations of 100

individuals, and involved at least ten independent evolutionary runs using different random numbers.

5. Memory Tasks

The empirical part of this study begins by looking at catastrophic forgetting in pure memory tasks.

The immediate problem is that humans and other animals typically learn items one at a time after a

single presentation, and that appears incompatible with the neural network learning of batches of

items over many epochs of training that this study aims to investigate.  To proceed, one has to

assume that the training patterns are maintained somehow, either individually or in batches, long

enough for sufficient numbers of epochs of gradient descent training to take place.  Although many

of the details remain uncertain, the idea that the hippocampus provides such an initial storage

medium in the human brain has considerable support (e.g., McClelland, McNaughton & O’Reilly,

1995; Nadel & Moscovitch, 1997), so this paper will concern itself only with the later gradient

descent learning phase.  How realistic sensory inputs get encoded into suitable internal

representations for that learning to take place efficiently is something that also remains a topic of

ongoing research, so again this paper will leave that to be studied elsewhere (e.g., O’Reilly &

McClelland, 1994; Stern et al., 1996; Deadwyler & Hampson, 1999; Eichenbaum, 2001, 2004;

Davachi, 2006; Rolls & Kesner, 2006).  However, once it is clear what emerges from the simulated

evolution of simple gradient descent based networks, that will then need to be placed into the context

of known memory systems and how they may have evolved (e.g., Sherry & Schacter, 1987;

O’Reilly & Rudy, 2000).  What is needed here is a convenient memory association task that is

simple enough for large numbers of simulations to run reasonably quickly, yet complex enough to

be representative of realistic problems, and flexible enough for a range of batch sizes and task

difficulties to be explored.

For consistency and ease of comparison with earlier work, a variation of the task used by

Hinton & Plaut (1987) was chosen, namely random associations of 12 bit random binary patterns

with 6 bits “on”.  Sparser representations might have been more ecologically valid (e.g., Weliky et
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al., 2003; Olshausen & Field, 2004), but that would render the task easier, and a task is needed for

this study that will not run into ceiling effects before the full range of potential performance

improvement mechanisms have been exhausted.  The aim here is to have brain like solutions emerge

from the evolutionary simulations, not to build them in from the beginning.  To ensure that networks

evolve which can cope with the general task, rather than particular sets of training patterns, new

random data sets of this specification were generated for each generation.  For every generation,

each network was trained on the same initial set of patterns until it had learned all those patterns (i.e.

had all its output activations within a particular learning tolerance of their target values) or until a

maximum number of epochs of training had been reached.  They were then trained on a new set of

patterns in the same manner.  When the new patterns had been learned to the same tolerance as the

original patterns, each network was tested again to see how well the original patterns were

remembered.  This was measured as the percentage of output units over all the original patterns that

were still “correct” (i.e. within a particular testing tolerance).  The fittest individuals were naturally

those with the highest percentage remembered.

5.1 Baseline Performance

Before embarking on the evolutionary simulations, some baseline performance levels were

established using traditional neural network learning parameters.  This allowed the identification of

tasks of appropriate complexity, and provided starting points for the evolutionary study.  Enough of

the potential 12 bit random binary associations needed to be used to make the learning task

reasonably hard and statistically representative, yet not too many that it rendered the proposed

systematic investigation computationally infeasible.  Each network was therefore trained on 20 such

patterns until the error on each output bit was less than the learning tolerance of 0.1.  It was then

trained in the same way on a different set of N  such patterns, and the number of output bits

remembered correctly over the original 20 patterns was determined using an increased testing

tolerance of 0.2.  The left graph in Figure 1 shows the mean percentages remembered over 2500

individuals with different random training data sets, trained using a traditional back-propagation

learning rate of 0.1 and random initial weights uniformly distributed in the standard range [–1, +1],

for four different values of N.  There is a fairly large variance (of the order of 5%) in all the results

due to some data sets being “easier” than others, but the large number of individuals leads to the

small standard errors shown on the means.  Naturally, the fewer new patterns learned, the better the

original ones are remembered.  The best remembering performance in each case is obtained using
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very large numbers of hidden units.

That having more hidden units results in less interference has been observed before (e.g.,

Yamaguchi, 2004), but one must not be too quick to draw this conclusion.  A well known difficulty

with analyzing neural network performance is that the various parameters can interact in unexpected

ways, and this can lead to misleading results.  For example, simply increasing the testing tolerance

to 0.5, which allows the maximum level of interference in the output activations without “correct”

outputs being more wrong than right, leads to the changed pattern of results seen in the graph on the

right of Figure 1.  Here, increasing the number of hidden units provides improvement initially, but

then performance worsens, before rising and leveling off, sometimes at a level above the first peak,

and sometimes below.  Exactly how this depends on the other training parameters is not clear.  The

key idea behind this paper is that evolutionary computation techniques can be used to optimize

simultaneously all the relevant parameters, including the number of hidden units, to achieve the best

possible remembering performances.  The crucial questions are whether the resulting performance

levels of evolved simple neural networks can reach those of the more complex hand-crafted neural

networks that have been designed to deal with the same problem, and how they relate to the

evolution of known brain structures.

5.2 Evolving the Learning Parameters

As might be predicted from the left graph of Figure 1, a difficulty that the proposed evolutionary

approach quickly runs into is that the evolved number of hidden units NHid just keeps on increasing.

On a serial computer, that brings the simulations to a standstill, the crucial learning parameters never

settle down to optimal values, and a fully systematic investigation is rendered computationally

infeasible.  The various “design problems” relating to changes in real brain sizes have been

discussed by Kaas (2000), and Striedter (2005) provides a good overview of the evolutionary

pressures that determine the sizes of brains and brain regions.  The crucial issue is that real brains

have various processing overheads (such as growth costs, energy/oxygen consumption, heat

dissipation, wiring volumes, and such like) which constrain their sizes.  Ultimately, the models

should include a brain size related cost in the fitness function that will prevent the number of hidden

units growing unrealistically, but that depends on being able to reliably assign such costs according

to the relative complexities of the tasks and hidden layers in the models, informed by the

corresponding factors in real brains, and that is currently proving impossible.  A simpler approach is

to assume that there will be some maximum number of hidden units NMax corresponding to each
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given task, and simply include that as a hard maximum in the model.  Since it is difficult to know

what that limit should really be, for the following simulations it was first set at the computationally

feasible number of 50, which is close to the first performance peaks in the right graph of Figure 1,

and then at 10000, which is in the region where performance stabilizes in both graphs of Figure 1.

This allows the evolutionary process to concentrate on optimizing the other parameters, while

providing an indication of how the results depend on the number of hidden units.

The first idea to be explored was the suggestion of French (1992) that “sharpening” the

hidden unit activations might reduce forgetting by developing semi-distributed representations in the

hidden layer which lead to less interference between new and old training patterns.  At each epoch of

training, the input to hidden weights are modified in such a way that the NH highest activation hidden

units become closer to one, and the NL lowest activations become closer to zero, by a “sharpening

factor” of ! times the difference.  Two variations were simulated.  First, the sharpening parameters

(NH, NL , !) were evolved with the constraint NH + NL = NHid  so that all the hidden unit activations

were modified.  In this case, the sharpening factor ! invariably evolved to zero, leaving a standard

network.  Second, NH and NL were allowed to evolve freely.  In this case, they both evolved quickly

towards zero, again leaving a standard network.  The conclusion is that neither form of node

sharpening is able to effectively reduce catastrophic forgetting, at least for this class of training data

with traditional learning parameters.  As a check, the node sharpening parameters were left free to

evolve in all the subsequent simulations, in case some added evolved flexibility made them

profitable, but in all the simulations the node sharpening was quickly “turned off”.

After this initial negative result, attention turned to evolving the more traditional learning

parameters in the hope that deviations from the standard values could improve matters.  A

preliminary study (Seipone & Bullinaria, 2005a) showed that evolving values for each parameter

alone provided improved performance, but the parameters interacted in such a way that the best

performances were achieved by evolving many of them together.  For example, for 50 hidden units,

4 new training patterns and testing tolerance of 0.2, the remembering performance went up from the

68% baseline to 78% by evolving just the learning rates, 75% by evolving just the initial weight

distributions, and 87% if they were evolved together.  Consequently, for this study, all the traditional

neural network parameters were evolved together:

1. The number of hidden units NHid subject to some specified fixed maximum NMax.

2. The connectivity levels between layers (cIH, cHO), specified as the proportion of possible
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connections that are used by the network, with the actual connections chosen randomly.

3. The gradient descent learning rates "L, for which earlier studies have established that allowing

different values for each of the four network components L (input to hidden weights IH,

hidden unit biases HB, hidden to output weights HO, and output unit biases OB) can result in

massively improved performance over having a single value for all of them as in traditional

hand crafted networks (Bullinaria, 2003).  

4. The random initial weight distribution for each network component L.  There are several

options for specifying these, such as means and standard deviations of Gaussian distributions

G(µL,!#L), but here the lower and upper limits of uniform distributions [-lL,!uL] were used.

5. A Sigmoid Prime Offset oSPO that is added to the sigmoid derivative factor in the hidden layer

weight updates to prevent  them going to zero when the sigmoids saturate (Bullinaria, 2003).

6. A weight decay regularization parameter $ that can act to prevent over-fitting of the training

data (Bishop, 1985).

7. The node sharpening parameters described above (NH, NL , !).

8. The output error tolerances that determine when a particular output activation is deemed

“correct”, with different values for the learning and testing phases (tl, tt).

Successful evolution of all these details simultaneously is difficult, and, even with careful choices of

initial populations and mutation rates, around 15% of runs fail to evolve well, for example because

they become trapped in a local optima of fitness.  This is a well known problem when computational

feasibility severely restricts the population sizes, and the easiest solution is simply to repeat the runs

many times and discard those runs that fail (Bullinaria, 2007a).

The initial populations were created with random parameter values drawn uniformly from

traditional ranges (learning rates, initial weight distribution parameters, and connectivity proportions

from [0,!1], weight decay parameters from [0,!0.001], sigmoid prime offsets from [0,!0.2], tolerances

from [0,!0.5], and numbers of hidden units from [0,!NMax]).  The precise starting parameter ranges

were found to have little effect on the final results, but poor values often led to an extremely slow

start to the evolutionary process.

Figure 2 shows how the key parameter values then co-evolved for a maximum of 50 hidden

units and 4 new training patterns, with the corresponding performance levels.  There is remarkable

consistency across ten independent evolutionary runs, with the instances of large parameter
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variability reflecting their small effect on fitness, rather than runs becoming trapped in different local

optima.  The number of hidden units rises quickly to near the maximum allowed, as does the

number of hidden to output connections.  The input to hidden unit connectivity settles to only about

0.38, presumably because such sparsity limits the interference between new and old patterns.  The

hidden to output learning rates evolve to high values, over 100, while the other learning rates take on

more traditional small values, under 0.1.  The evolved initial weight distributions are rather different

to the traditional hand-crafted ranges of [-1,+1], with the input to hidden distribution close to

[-10,!0], the hidden bias distribution close to [0,+2], the hidden to output distribution relatively

unconstrained around [-10,+10], and the output bias distribution smaller but still relatively

unconstrained around [-0.3,+0.3].  The sigmoid prime offset parameter and weight decay

regularization parameters both evolve to very low values, that are effectively zero, as do the node

sharpening parameters NH and NL.  The training tolerance is fairly unconstrained around 0.15, but

the testing tolerance consistently settles just below 0.5, which is as close as the mutations can get it

to the maximum value of 0.5 that allows any output on the right side of 0.5 to be deemed correct.

This makes sense, since it renders the remembering as easy as possible without affecting the

learning.  (This parameter becomes more interesting in situations where the fitness function favours

a “don’t know” response over an incorrect output, but such cases will not be presented in this

paper.)  It is hard to see how a human designer could arrive at such a pattern of parameter values.

The mean remembering performance is now 88.9%, with standard deviation across data sets of

1.2%, but much lower standard error on the mean.  This is clearly a massive improvement over any

of the hand-crafted network results for 4 new patterns seen in Figure 1.

5.3 Evolving Dual-Weight Architectures

The next question is whether moving to the next level of network complexity, namely to dual-weight

architectures, can lead to further improvements.  Levy & Bairaktaris (1995) have reviewed the key

possibilities, which range from simple feed-forward networks with two additive weights between

each pair of nodes, to complex dual-network systems.  In line with the aim of seeing what can be

achieved by evolving standard feed-forward networks, this study will look at the simplest possible

approach.  This, as originally proposed by Hinton & Plaut (1987), has a pair of additive weights on

each connection, consisting of one standard weight plus an additional “fast weight” that has a

learning rate larger by some scale factor, and a larger weight decay rate that prevents it from having

long term memory.  Both the normal and fast weights are driven by the same error signals, but the
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fast weights change more quickly, so initially they contribute most to the overall performance, and

on their own would perform much better than the normal weights.  But their fast decay causes the

error signal to persist and the normal weights slowly adjust to accommodate that until there is no

error signal left to cause any weight changes, and the fast weights eventually decay to small values,

leaving the normal weights to do all the work on their own.  The only persisting contribution of the

fast weights is to lead the final normal weights to perform better than if they had not been involved.

However, getting such networks to work well relies on them having appropriate fast-weight learning

and decay parameter values, and these prove extremely difficult to set “by hand”, but this is a

problem that the evolutionary approach should be able to deal with easily.

Obviously, with the fast weights decaying over time, it makes a difference whether the networks

are tested immediately at each stage of training, or after the fast weights have had time to decay to

negligible values.  If, as in the preliminary study of Seipone & Bullinaria (2005b), they are tested

immediately, evolving the new scale factor and decay rate, along with all the other details described

above, constitutes an even more difficult search space than before, with around 40% of runs failing

to reach the optimum level.  Nevertheless, the successful runs provide dual-weight networks with an

improved remembering performance of 95.0%.  Not surprisingly, including the extra set of fast

weights leads to rather different optimal values emerging for many of the evolved parameters

compared with those of Figure 2.  Significantly, the evolved training tolerance takes on a much

lower and less variable value than before (around 0.01), with an associated large (approximately

seven-fold) increase in the number of epochs of training required.

It seems more natural, however, to consider the long term stable state with the fast weights

merely facilitating the training process of the standard weights, and having decayed to zero for

testing purposes.  Evolving everything in this case leads to much more consistency across different

evolutionary runs, with all runs achieving the same optimum level as shown in Figure 3.  The dual

weights now provide a further level of performance improvement up to 97.9%.  The involvement of

fast weights here still results in different parameter values emerging compared with those of Figure

2, including a much higher input to hidden layer connectivity (around 0.86).  Throughout the

incremental learning process, any new patterns are learned quickly by the fast weights, and the

information is then slowly integrated into the standard weights.  The training tolerance is relatively

high again (around 0.35), but testing with the fast weights fully decayed requires completed

consolidation before the training stops, again resulting in a large (approximately seven-fold)

increase in the number of epochs of training needed over the single weight networks.  Of course, the



16

advantage of slow consolidation is not a new idea to memory modelling (e.g., McClelland,

McNaughton & O’Reilly, 1995; O’Reilly & Rudy, 2000), and it is interesting to see it emerging

automatically here from the evolutionary process.

5.4 Varying the Memory Task and Network Complexity

At this stage it is important to consider the issue of network and memory task complexity, and

return to the matter of restricting the number of hidden units.

The simulations so far have tested how many of 20 original patterns are remembered after

training on 4 new patterns.  There is a clear need to explore the extent to which the number of new

patterns, and hence the complexity of the task, affects the results.  It is also important to test whether

general purpose neural networks emerge, that work well for all task complexities, or whether they

become over-tuned to particular levels of complexity.  The obvious way to proceed is by evolving

more networks as before, but to deal with different numbers of new patterns.  For reliable testing,

however, the simple population means presented in Figures 3 and 4 are not good enough.  A

significant population diversity is deliberately maintained by mutations and cross-overs to facilitate

the evolutionary process, and that results in many sub-optimal individuals in the population.  To

avoid these artificially poor individuals, the testing was restricted to the best 10% of the final

population on the last random data set used for evolution, and averages taken over large enough

numbers of new random test data sets that the potential errors on the means were negligible.

Figure 4 shows such performance measures for 50 hidden unit networks evolved to deal with

either 2, 4, 10 or 20 new patterns, and tested with 0, 2, 4, 10 and 20 new patterns.  For both the

standard (left graph) and dual-weight (right graph) cases, the best performance for each number of

new patterns is achieved by the networks evolved using that number of new patterns (i.e. line X is

always top for X new patterns), and in each case the performance is better with fewer new patterns

and worse with more (i.e. all lines fall with the number of new patterns).  One can also attempt to

generate general purpose networks, that perform well on any number of new patterns, by evolving

the networks using a new randomly chosen number of new patterns from the range [2, 20] for each

generation.  These result in the thick performance lines shown in Figure 4, exhibiting the kind of

performance compromises one would expect.

Referring back to Figure 1 shows that, with the number of hidden units fixed at 50, evolving all

the other network parameters leads to improvements far superior to the improvement achievable by

simply increasing the number of hidden units by a factor of 200.  It remains to be determined
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whether allowing more hidden units now can improve the evolved performance even further, or if a

performance ceiling has been reached.  Figure 5 shows the performance results, analogous to Figure

4, when the maximum number of hidden units is raised to 10000.  Evolution quickly increases the

number of hidden units up to that maximum, and ends up with new appropriate values for all the

other evolved parameters, resulting in further performance improvements.  For both the standard

(left graph) and dual-weight (right graph) cases, the extra hidden units do allow considerable further

improvement in remembering performance.

Figure 6 compares directly the various performance results for the 50 and 10000 hidden unit

cases.  In each case are shown the remembering performance for traditional networks, evolved

networks with and without fast-weights, and tuned to the number of new patterns or general

purpose.  It is clear that evolving the traditional network learning parameters, as described above,

leads to considerable improvement in remembering performance, and further large improvements are

achievable with evolved dual-weight networks.

5.5 Further Enhancements: Batch Learning and Network Ensembles

To complete the study of pure memory tasks, there are two further potential enhancement techniques

that have proved sufficiently successful elsewhere to be worth considering here.

Evolutionary optimized learning parameters and dual weights allow a smoother interleaving of

new patterns among previously learned patterns using standard online (i.e. one pattern at a time)

gradient descent learning.  Using batch learning rather than online learning might be expected to

have a similar effect, but this is known to generally require smaller learning rates and more epochs

of training (Bishop, 1995).  This possibility was tested by evolving the 50 hidden unit networks

again using batch learning and the same maximum number of epochs of training as before.  The

resulting remembering performances for general purpose networks are shown in the left graph of

Figure 7.  For both the standard and dual-weight cases there is improved performance for small

numbers of new patterns, but worse performance for larger numbers of new patterns.  It seems that

this approach may be useful in certain circumstances, but it is not always beneficial.

Remembering performance was also improved by increasing the number of hidden units and

letting the evolution adjust the learning parameters appropriately.  It is known for other tasks that

more sophisticated extensions of the neural structure can also lead to improved performance, such

as combining the outputs of several independent neural modules to produce an overall output, or

using error correcting codes to represent the outputs, so that small numbers of errors can be
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eliminated.  It is not feasible to consider all such possibilities here, but one simple example will be

sufficient to demonstrate that further significant performance enhancements for the memory task are

easily achievable in this way.

Each individual in an evolved population represents a single neural network.  If one takes a

number (or ensemble) of these networks to be modules of a larger network, and combines their

binary outputs using a simple voting procedure to give an overall binary output, a small number of

errors by each module are likely to be out-voted leading to better overall performance (Hansen &

Salamon, 1990; Battiti & Colla, 1994; Yao & Liu, 1998; Bullinaria, 2007a).  Of course, this depends

on the errors in different modules being uncorrelated, and empirical tests are required to see how

useful this approach might be in practice for the memory task.  The right graph of Figure 7 shows

the performance of ensembles of three individual general purpose networks compared with the

single individual results obtained previously.  There are considerable improvements for all numbers

of new patterns in both the standard and dual-weight cases.  The left graph of Figure!8 shows that

larger ensembles give even more improvements, though correlations in the errors do limit how far

this can be taken.  The right graph of Figure 8 shows that even more substantial improvements can

be achieved in this way for the 10000 hidden unit case too.  The remaining errors are now so small

that more difficult memory tasks are required to test further the limits of this approach.

5.6 Understanding the Enhanced Performance

The question remains as to what it is about the evolved networks that makes them perform so much

better than traditional networks.  There are several noteworthy features.  First, for the standard (no

fast-weight) networks, the distributions for the initial input to hidden weights are tightly constrained,

indicating the importance of getting good random hidden representations prior to learning.  Then the

learning rates for the input to hidden weights are very low compared to those for the output layer

weights.  This corresponds to having relatively stable hidden unit representations that are minimally

affected by the learning processes, and thus suffer little disruption when new training patterns are

learned.  The idea of having fixed hidden representations in neural networks has been shown to be

successful in the context of Extreme Learning Machines (Huang, Zhu & Siew, 2006), so it is not

surprising to find that relatively fixed hidden representations evolve here.  A related factor is that the

input to hidden unit connectivity proportion is also low (around 0.38), so changing the input pattern

only has limited impact on the hidden representation.  This low connectivity and the predominately

negative (inhibitory) input to hidden layer weights lead to sparse hidden layer representations that
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are already known to minimize interference in memory tasks (e.g., O’Reilly & Rudy, 2000;

Olshausen & Field, 2004).  These advantages are further enhanced by using as many hidden units

as possible, since that results in the need for smaller individual weight changes when a new input-

output mapping is learned that are less likely to interfere with existing mappings.

The evolved dual-weight networks allow a smoother interleaving of new patterns with older

patterns, minimizing interference and leading to even better performance than the evolved standard

networks.  Interestingly, compared to the standard networks, the input to hidden layer weights here

have nearer full connectivity (around 0.86) and a more symmetric distribution for their initial values,

so that prior to training the hidden layer representations are not sparse at all, though sparser

representations do emerge from the training process.  Individually, each of the evolved factors

reduce catastrophic forgetting, and together they result in massively improved performance.

Although the best results are achieved by evolving networks to deal with specific numbers of new

patterns, particularly when dual weights are employed, general purpose networks can also be evolved

with very little degradation in performance.  

6. Generalization Tasks

Having established that evolving standard neural networks can provide massive improvements for

memory tasks, the issue of generalization performance is now considered.  For concreteness, the

study will be restricted to classification problems, but the applicability to regression problems too

should be apparent.  In particular, for ease of comparison with earlier research, the main incremental

learning data sets studied by Polikar et al. (2001) will be used, namely their artificial “circular

regions” data set, and the optical digits database from the UCI machine learning repository

(Asuncion & Newman, 2007).  The evolutionary approach will be described in detail for the optical

digits task, and then results will be presented more briefly for the circular regions task, as a test of

how widely applicable the evolved networks are.

The optical digits database contains hand-written samples of the digits 0 to 9 digitised on to an

8%8 grid to create 64 input attributes for each sample.  The full training set consists of 3823 such

patterns, and a separate test set contains a further 1797 patterns, with both sets fairly evenly spread

over the ten classes.  To study incremental learning, the training data set is divided randomly into six

distinct batches of 200 patterns (each with 20 patterns from each digit class) to be used for six

stages of incremental training, plus a further distinct sub-set of 1423 patterns to be used as a

validation set during the evolution.  That leaves another six batches of 200 unseen training patterns
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to be used only after the whole evolutionary process has been completed, which ensures that the

evolved networks only see new data and fully satisfy incremental learning property 1 that no access

to past data is needed.  The aim, of course, is to maximise the generalization performance after

training.  The validation set is used to estimate that to provide a measure of fitness to drive the

evolutionary process.  The test set is not used at all until the whole evolutionary process is

completed, at which point it is used to evaluate the incremental learning performance of the evolved

networks on the unseen training patterns.

The incremental learning takes place over six training sessions Ti, during each of which only

one batch Bi of 200 patterns is used to train the network to some stopping condition.  The networks’

classification outputs are taken to be the class corresponding to the highest activated output unit for

each input pattern.  At the end of each session, the network is re-tested on all the training sets used

in the previous sessions to see how much interference has taken place, and also on the validation set

to provide a measure of the generalization ability.  As more of the training batches are used, the

generalization ability is expected to increase, demonstrating good incremental learning capability, but

at the same time the performance on the previous batches should not be seriously reduced.

6.1 Baseline Performance

Before embarking on the evolutionary simulations, baseline performance levels were established

using traditional neural network learning parameters.  The same type of network was employed as

for the memory task, with the nature of the training data fixing the number of input units to be 64,

and the number of output units to be 10, one for each class.  One thousand such networks with 100

hidden units were initialized with random weights drawn uniformly from the standard range [-1,!1],

and trained for 5000 epochs per data batch, with all the learning rates fixed at 0.02 (which is just

below the maximum value that allows stable training for this network) and no weight decay or

sigmoid prime offsets.  The average performances of these standard networks are shown in Table 1,

as percentages with the standard errors in brackets.  The columns show the network’s classification

performance at the end of each of the six stages of training Ti, on the current data-batch Bi, all

previous data-batches Bj<i, and the test set.  A general fall off in performance is observed on each

training data batch as the later batches are learned.  The generalization (i.e. test set) performance

does increase with the first two batches, but then starts falling again as the later batches are learned,

presumably because of over-fitting of the training data.  This is a clear demonstration of poor

incremental learning ability.  Of course, different training parameter values may improve or worsen
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these baseline results.  The aim here is to use evolutionary techniques to find the best possible

parameter values, and to compare those optimized standard networks with more complex models.

Polikar et al. (2001) developed their Learn++ system, and Lin, Tang & Yao (2008) their

SNCL algorithm, specifically to obtain better incremental learning.  The results they achieved with

the same training data are shown in Table 2.  Although their initial training performances start lower,

they remain more steady as further training data sets are used, and there is a steady increase in

generalization performance as more data is made available.  Their final generalization performance is

92.7% for Learn++ and 93.5% for SNCL, compared with only 86.4% for the baseline standard

neural networks.  The question to be explored next is whether it is possible to do any better here by

evolving neural networks to be good at incremental learning, in the same way that they were evolved

to perform better on memory tasks.

6.2 Evolving the Learning Parameters

The same evolutionary neural network approach as described above was used, based on standard

one hidden layer feed-forward neural networks trained by gradient descent with the cross-entropy

cost function.  Each of the six training sessions continued until the innately specified stopping

criterion was satisfied, or until a maximum number of training epochs was reached.  That maximum

number of epochs was set large enough that it only prevented successful learning during the first

few generations while the learning abilities were still very poor.  The individuals that had the lowest

error on the validation set after training on all six batches were taken to be the fittest, and used to

produce the next generation using crossover and mutation as before.

The learning parameters to be evolved were essentially the same as for the memory task: the

number of hidden units NHid , connectivity proportions cIH and cHO between layers, four learning rates

"L and initial weight distributions [-lL, uL], a sigmoid prime offset oSPO , a weight decay regularization

parameter $, and the training tolerance t.  The network’s classification output was simply the output

unit with the highest activation, so no testing tolerance was required.  However, unlike in the

memory task, where all the training patterns needed to be learned before stopping the training, it

could be advantageous to stop the training for generalization tasks before all the training patterns

have been learned (to within the tolerance t), to prevent over-fitting of noisy data.  Therefore, a

second training tolerance parameter s was evolved to specify the fraction of training patterns that

could be left unlearned (i.e. not within the training tolerance t) when the training was stopped.  As

before, the number of hidden units NHid tended to evolve to near the maximum number permitted,
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inflicting a considerable strain on the computational resources, so this was constrained to be no

more than 100, which is many times that needed to learn the given training data, and allows a fair

comparison with the baseline performance.

Also as before, all the populations consisted of 100 individuals and the initial populations were

created with random innate parameter values drawn from traditional ranges.  Then, for each

generation, each individual network has new random initial weights drawn from their own innately

specified ranges, and learns according to their other innately specified parameters.  There were two

natural approaches for using the training data during the evolutionary process.  One could, for each

generation, randomly select (from the set of 2623 patterns not reserved for the final testing phase)

new training and validation sets as specified above, or the same sets could be used for each

generation.  Having different training data for each generation proved to result in better general

purpose learners, so that approach was adopted.

To determine the best levels of performance that could reasonably be expected from the evolved

incremental learners, other networks were first evolved to generalize as well as possible from non-

incremental versions of the same training data.  Two separate cases were considered, both using

exactly the same evolutionary regime as for the incremental learners, except that there was only one

training data batch instead of six.  The first case used one standard batch of 200 patterns, and the

second used 1200 patterns, equivalent to having all six standard training data batches at once.  The

best 10% of the evolved individuals on the final validation sets were re-initialized and trained on the

relevant unseen training data batch and evaluated on the unseen testing data.  The 200 training

pattern networks achieved an average test set performance of 91.55 ± 0.03%, while the 1200

training pattern networks achieved 96.21 ± 0.02%.

The emergent incremental learning networks from the full evolutionary simulations were fairly

consistent across runs starting from different random initial configurations.  The population average

results with means and variances across ten runs are shown in Figure 9.  The top-left graph shows

that the connectivity here rises to near the maximum possible.  The next three graphs show how the

learning rates and initial weight distributions evolve.  The precise values are not very informative, but

note again the large variation in learning rates that emerge for the different components, that would

be very difficult to get right “by hand”.  The bottom-left graph shows how the training output

tolerance t and stopping early parameter s evolve to appropriate values.  Finally, the bottom-right

graph shows how the generalization performance improves little after the first 500 generations,

despite some of the other parameters continuing to drift.  The persistent variance in performance
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reflects the random nature of the training data sets and initial weight distributions.  The variance for

each parameter reflects how crucial that parameter is to the fitness.  Not shown (due to lack of

space) are the number of hidden units that quickly rises to near the maximum allowed, the sigmoid

prime offset that quickly falls to negligible values (showing that it is of no help here), and the weight

decay parameter that settles down to around 0.0000005.

Table 3 shows the performance averages on the unseen data over 100 runs of each of the best

10% of the evolved networks from each of the 10 evolutionary simulations.  As expected, all aspects

show an improvement over the baseline network results of Table 1.  More importantly, improvement

is also seen over the Learn++ and SNCL results of Table 2.  The performance levels on the earlier

training batches still fall slightly as later batches are processed, but those performance levels remain

well above those for Learn++ and SNCL.  The generalization (test set) performance is also better at

each stage, with a gradual improvement as more data batches are used, indicating good incremental

learning.  The final test set performance of 94.66% appears a modest improvement over the 92.7%

of Learn++, but it more than halves the gap between that incremental learning performance and the

96.21% obtainable by training on all the data at once.  Moreover, the performance on just the first

batch of training data of 91.47% is now very close to the 91.55% obtained by networks evolved

specifically to perform well on a single batch of training data.  By comparison, Learn++ only

achieves 82% after the first data-batch, which is likely to be problematic for many practical

applications where good performance generally needs to be established as soon as possible.  SNCL

is also better than Learn++, but still not as good as the evolved networks.  

For memory tasks it was found that introducing a second set of “fast weights” leads to

significant performance improvements due to the ability to incorporate appropriate weight changes

for new data patterns into the existing weights with minimal disruption.  Introducing the same

system of dual weights into the generalization task networks led to the modest improvements in

performance seen in Table 4, though the difference in final generalization performance is highly

statistically significant (t-test p < 10-8).  These small potential improvements are sufficient to drive

the fast weight parameters to quite consistent values across the ten independent runs (scale = 18±2,

decay = 0.0012±0.0002), again indicating the importance of this factor.

Within this framework, there still remains scope for further improvement.  The evolution tends

to slow the learning to make full use of the maximum number of epochs allowed, and also makes

full use of the maximum number of hidden units allowed.  Both these factors form part of the

evolved regularization process, and further performance improvements may be possible simply by
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increasing those maximum values.  However, the improvements achievable by doing this prove to be

rather limited in relation to the enormous increase in the associated computational costs.  Indeed, the

computational cost of the general evolutionary process proposed in this paper is also high, but even

small improvements are often extremely valuable, so it will generally remain a complex problem

dependent decision whether the potential improvements are worth the extra effort.

A less computationally intensive road to potential improvement follows the same ensemble

approach that proved successful for the memory tasks.  Again, one can take a number (or ensemble)

of individual neural networks from an evolved population to be modules of a larger network,

combining the modules’ binary outputs by a simple voting procedure to give a single overall binary

output.  In this way, small numbers of uncorrelated errors by individual modules are likely to be

out-voted, leading to better overall performance.  Table 5 summarizes the generalization (test set)

results for the various cases.  For the standard evolved network case, the individual overall

generalization performance of 94.66 ± 0.02 (from Table 3) increases to 94.78 ± 0.02 for ensembles

of three, and 94.88 ± 0.02 for ensembles of nine.  These improvements are rather small, but they are

both statistically significant (paired t-test p < 10-3).  For the dual-weight case, the individual overall

generalization performance of 95.09 ± 0.03 (from Table 4) increases to 95.18 ± 0.04 for ensembles

of three, and 95.24 ± 0.05 for ensembles of nine.  These improvements are even smaller than the no

fast-weights case, but both are still statistically significant (paired t-test p < 10-3).  It seems likely that

the evolved networks are already operating too consistently and too close to the performance ceiling

for the ensembles to provide much improvement here.

6.3 Accommodating New Classes

The above simulations have established how well the evolved neural networks satisfy the first three

properties of good incremental learning described in Section 2, but property four remains to be

explored, namely the ability to accommodate any new classes that may be introduced in the new

data.  The same optical digits training data was used to test this, but instead of six batches containing

equal proportions of all 10 classes, the data was reorganised into four data-batches with each new

batch introducing some new classes or removing some previously seen classes.  To enable fair

comparison, the distribution of classes, as shown in Table 6, was the same as that studied by Polikar

et al. (2002).  The batches were selected randomly for each run from the full set of training data,

leaving 1270 items equally distributed across the ten classes as a validation set, and the same test set

of 1797 items as used before.  The incremental learning results achieved by traditional non-evolved
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neural networks and Learn++ are shown in Tables 7 and 8.

The evolutionary simulations proceeded in the same way as before.  Table 9 shows the

performance achieved by evolved networks without fast weights.  There is clear improvement over

the non-evolved networks of Table 7 and a slight improvement over the Learn++ results of Table 8.

Dealing with new classes is obviously difficult, and the final generalization performance is much

lower than the uniform data case of Table 3, even though there are more examples overall of each

class in the training data.  The situation now has features analogous to the memory tasks considered

earlier, in that there are different classes of patterns in the different training batches, and networks

need to avoid catastrophic forgetting of previous classes that are not represented in the current batch.

The smooth interleaving achievable by incorporating a second set of fast weights might be expected

to provide more benefit here than it did for the uniform case of Table 4.  This is confirmed in Table

10 which shows the performance of evolved networks with dual weights, with a large statistically

significant improvement in the final generalization performance (t-test p < 10-8).  Further statistically

significant improvements are achievable using the ensemble approach, as seen in Table 11, though

these are small compared to those achieved by the incorporation of fast-weights.

6.4 Applicability to Other Data Sets

To check the generality of the above findings, and to explore the issue of accommodating new

classes more carefully, the simulations were repeated with a rather different form of generalization

task, namely the “concentric circles” data-set studied by Polikar et al. (2001).  This has a circular

two dimensional input space of radius 5, with concentric circular decision boundaries of radius 1, 2,

3 and 4 giving five classes to be learned from random samples in the input space.  The incremental

learning takes place over six training batches, with batches B1 and B2 having 50 instances from each

of classes 1, 2 and 3; batches B3 and B4 having 50 instances from each of classes 1, 2, 3 and 4; and

batches B5 and B6 having 50 instances from each of all five classes.  The validation and test sets both

contain 100 previously unseen instances from each class.

The learning performance of traditional networks is shown in Table 12, and the corresponding

Learn++ results of Polikar et al. (2001) are shown in Table 13.  Evolving the neural networks

without fast weights leads to improved incremental learning performance over both of these, as seen

in Table 14.  The final generalization performance of 94.22 ± 0.06% is still some way below the

97.20 ± 0.02% that is achieved by neural networks evolved to learn the whole set of training data at

once.  Since the incremental learning here involves the accommodation of new data classes, one
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might expect further improvements to arise from incorporating fast weights.  However,  evolving

dual weights here actually resulted in low fast weight scale parameters and high decay rates that

rendered the fast weights ineffective in all ten runs, and the resulting incremental learning

performances were not significantly different to the no fast-weights results of Table 14.

One fundamental difference between this case and the varying classes optical digits data-set is

that all the classes remain present to the end of training here, so careful interleaving of information

by fast weights may not be required because training data exists throughout to preserve the early

class information.  This hypothesis can be tested by using a new “varying classes” variant of the

concentric circles data-set with batches B1 and B2 having 50 instances from each of classes 1, 2 and

3; batches B3 and B4 having 50 instances from classes 2, 3 and 4; and batches B5 and B6 having 50

instances from classes 3, 4 and 5.  The validation and test sets each contain 100 previously unseen

instances from each class as before.  Now one can expect fast weights to help preserve classes 1 and

2 during the later stages of training.  Table 15 gives the baseline traditional neural network results,

and Table 16 shows that evolving networks without fast weights vastly improves the performance,

but not to the levels achieved when the earlier classes remained in the training data till the end (as

shown in Table 14).  Table 17 shows that employing dual weights here does help preserve the class

information learned previously and consequently also significantly improves the generalization

(t-test p < 10-7), but still not to the level seen in Table 14.  Also shown in Table 17 are the significant

levels of improvement achieved in this case by ensemble based modular networks.

6.5 Understanding the Enhanced Performance

It is well known that choosing good neural network parameter values is extremely problem

dependent, and that general “rules of thumb” are notoriously unreliable (e.g., Bishop, 1995).  It is

certainly true that the evolved parameter values vary considerably over the problems studied in this

paper, and often differ widely from those traditionally used in hand-crafted networks.  While this

implies that it will not be possible to identify evolved parameter values that will work well in general,

there are several noteworthy patterns that do emerge.  As with the memory tasks, the evolved

networks for generalization tasks tend to have relatively stable hidden representations, with

considerably lower learning rates for the input to hidden weights than for the hidden to output

weights, but the details vary widely.  Again, using as many hidden units as possible, while

employing other forms of regularization, consistently emerges as a good evolved strategy.  It has

been known theoretically for some time that the size of the weights is more important for good
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generalization than the size of the network (e.g., Bartlett, 1998), and evolution is clearly leading to

more appropriate (small) weight sizes than traditional learning parameter values.  Unlike for the

memory tasks, where relatively low input to hidden unit connectively and/or predominately negative

input to hidden layer weights led to sparse hidden unit representations that minimize interference,

for all the generalization tasks studied close to full connectivity and fully distributed representations

emerged that are known to facilitate generalization (e.g., Bishop, 1995; O’Reilly & Rudy, 2000).

The effectiveness of allowing dual weights was found to depend on the problem being studied.

For pure generalization tasks which involve the same classes throughout the incremental learning, or

only change the classes by introducing new classes, dual weights do not help very much.  However,

when some classes are dropped from the training data during incremental learning, an element of

memory is required, and using dual weights helps preserve the earlier class information and allow

continued good generalization for items from those classes.  This is directly analogous to the

smooth interleaving of new information and avoidance of catastrophic forgetting in the pure memory

tasks.  The error correcting abilities of ensemble based modular networks also prove most effective

in these harder cases that are prone to catastrophic forgetting.

7. Conclusions and Discussion

This paper began by reviewing the problems (such as catastrophic forgetting) that traditional

artificial neural networks have in dealing with incremental learning tasks in which the training data

arrives in batches, and the principal earlier approaches for overcoming those problems.  It then went

on to explore, through a series of computational experiments, whether more sophisticated neural

architectures and learning algorithms were really needed to solve those problems, because simple

ideas from evolution by natural selection could be used to optimize standard feed-forward networks

with gradient descent learning to the extent that they performed equally well.  Those simulations

demonstrated that such emergent networks could indeed perform very well, and now they need to be

put into the context of models of known brain structures and their evolution.

It was first shown that simply evolving the parameters (such as the numbers of hidden units,

degrees of connectivity, initial weight distributions, learning rates, and regularization parameters) for

standard neural networks could provide massive incremental learning performance improvements

over equivalent networks trained with traditional parameter values.  A simple extension of those

standard networks to dual-weight architectures (with one standard set of weights, plus a second set

that learn and decay much faster) was already known to potentially lead to further learning
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improvements, but setting the associated parameters to effective values “by hand” proves extremely

difficult (Hinton & Plaut, 1987).  However, including such dual weights in the evolutionary

approach was found to render them useable and highly effective for avoiding catastrophic forgetting.

Finally, in all cases, further improvements were achieved by simple modular architectures based on

ensembles of the evolved standard networks.  

It is clear (even from the small number of data-sets studied in this paper) that the neural

learning and architecture parameter values emerging from evolutionary optimization are rather

problem dependent, so any idea of evolving a single set of parameter values that is optimal for all

incremental learning tasks is never going to work, but it does seem feasible to use past data-sets to

evolve networks that will work reasonably well on a range of similar data sets in the future, in much

the same way that humans have evolved to cope well on the range of tasks they are likely to

encounter.  It is encouraging in this respect that the networks evolved to work on a range of memory

tasks in Section 5.4 performed only slightly worse on each particular task than those evolved

specifically to work on that task.  More generally, the emergence of distinct optimal structures for

different problem types is consistent with existing explanations of why multiple memory systems

have evolved in humans and other animals (e.g., Sherry & Schacter, 1987).

The incremental learning tasks studied were chosen to span the full spectrum from the pure

memory tasks of Section 5, for which dual weights bestow massive improvements by allowing

smooth interleaving of new data items into the weights, to pure generalization tasks, such as the

concentric circles classification task of Section 6.4, for which dual weights were no help at all.  In

between were the “varying classes” generalization tasks of Section 6, which are prone to suffering

catastrophic forgetting like the memory tasks, and are also improved by allowing dual weights.

Overall, the study confirmed the ability of the evolutionary approach to achieve performance levels

far better than traditional neural networks and simple hand-crafted incremental learning systems

such as Learn++ (Polikar, et al., 2001; Polikar et al., 2002), but it remains a topic of future work to

explore exactly how much further this approach can be taken, and whether simple evolved networks

with dual weights can be made to perform as well as more complex hand-crafted neural systems

(such as those of  Grossberg, 1987; Ans, et al., 2002).

Extrapolating reliably from the simple models studied in this paper up to the kinds of tasks that

humans regularly perform well and brain-like numbers of hidden units is non-trivial, of course, but

it does seem that the problem of incremental learning in neural networks might not be quite as

problematic as previously thought (e.g., French, 1999).  The issue of how simplified neural network
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simulations relate to real brain processes is always difficult for cognitive scientists, particularly since

the physical structures in brains and their learning algorithms are usually far removed from the

simplified models.  One might argue that, if extremely simple evolved neural networks can perform

incremental learning well, then it is reasonable to expect that more realistic evolved models will be

able to do so too.  However, if complex artificial neural network architectures and algorithms are

required, it may be more difficult to relate them to real brains and more realistic models of them.

This was one of the main motivations for exploring what the simplest possible neural networks were

actually capable of achieving if optimized appropriately.  It is tempting to apply Occam’s razor here,

but that can be misleading in this context.  One has to consider the question of brain evolvability,

and how particular brain structures and processes have evolved.  It is clear that the kind of brain that

has emerged for humans has depended heavily on the details of our evolutionary history and factors

related to the need for the structures to be grown at each stage using biological material (e.g., Jacob,

1977; Alon, 2003), so it is dangerous to assume that the most simple or computationally efficient

models are the ones most likely to corresponds to how they operate.  It seems reasonable to assume

that a simple sequence of evolutionary steps is more likely to have actually occurred than a complex

sequence, and simple solutions are more likely to have emerged from them than complex solutions,

but often it will be simpler for evolution to re-use existing structures than to create new ones, and

that may lead to unnecessarily complex solutions in real brains (e.g., Anderson, 2010).

Many of the relevant issues concerning brain evolution have already been discussed elsewhere

(e.g., Ohno, 1970; Jacob, 1977; Sherry & Schacter, 1987; Calabretta, Nolfi, Parisi & Wagner, 1998;

Alon, 2003; Striedter, 2005; Anderson, 2010).  Given the known biological basis and complexity of

the constituent neural components, it seems likely that the associated basic neural learning parameter

values could be adjusted relatively easily by biological evolution, with the kinds of associated

performance improvements found in the simulations in this paper.  Similarly, the improvements

arising from simple ensemble style modular architectures can be expected to emerge easily through

simple duplication type mutations.  It also seems likely that Hinton & Plaut (1987) style dual-

weight systems could evolve easily via a relatively simple “duplicate and adjust” mechanism,

though that still requires a mechanism whereby new training patterns are stored while the training

process slowly shifts the information from the fast weights into the standard weights.  Indeed, the

question of how the training patterns are preserved to enable gradient descent learning still exists

even if only the standard weights are present.  Fortunately, the literature already contains plausible

suggestions about how that could operate.  Sherry & Schacter (1987) argued why distinct memory
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systems should evolve for episodic remembering and generalizable skill learning, and there is

increasing evidence of their existence and interactions (e.g., Poldrack & Packard, 2003).  The details

remain debatable, but the general idea is that information is acquired rapidly by the Hippocampus

and then gets consolidated relatively slowly into the neocortex (Alvarez & Squire, 1994; Nadel, &

Moscovitch, 1997; Frankland & Bontempi, 2005), with much of the transfer taking place during

sleep (Robins, 1996; Stickgold & Walker, 2007; Peyrache et al., 2009; Diekelmann & Born, 2010).

One likely mechanism, with growing supporting evidence, has a largely rapid Hebbian learning

based Hippocampus and a largely slow gradient descent based neocortex (McClelland,

McNaughton & O’Reilly, 1995; O’Reilly & Rudy, 2000).  In that context, the models and

simulation presented in this paper show how the consolidation phase can come about in an efficient

and successful manner, with performance levels far superior to traditional non-evolved networks.  

What adaptations and exaptations might lead such set-ups to evolve in biological systems

remain unclear, but given that complex structures like eyes have evolved multiple times (Lamb,

Collin & Pugh, 2007), it seems likely that evolvability will not be a major issue here, as long as

fitness enhancements for a sequence of plausible evolutionary steps can be identified.  As

demonstrated by the simulations of this paper, a simple separation of fast and slow weights leads

automatically to transfer of information between them and significant performance advantages, and

different optimal structures and parameter values emerge readily for different tasks (such as pure

memory, pure generalization, or something in between), so there would appear to be relatively easy

routes for brain evolution from simple associations to the kind of brain structures found in the

human brain today.  Whether the second set of fast-weights found to be so effective in the simple

networks studied in this paper would still emerge alongside the main weights if access to an existing

separate dual network of fast-weights could be employed for that purpose instead (or vice versa) is

one of those questions that depend critically on neural re-use issues (Anderson, 2010), and will only

be determined by more detailed simulations of more complex networks.

Another important issue here is the fact that brain evolution has depended on numerous

interacting factors (e.g., Striedter, 2005), and if these are not accommodated as constraints into the

cognitive models, it will remain unclear how reliable those models are.  For example, using a similar

evolutionary computation approach to this paper has shown that even fundamental concepts like the

emergence of modularity depends crucially on basic neurobiological constraints that are usually

absent in cognitive models, such as the volume of “wiring” required to connect up different neural

architectures in the brain (Bullinaria, 2007b).  Ultimately it is hoped that direct empirical evidence
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will be sufficient to constrain all brain models, but in the absence of that, it may be that evolution can

provide additional clues as to which of competing models of equal competence are most likely to

correspond to real brains (e.g., Manns & Eichenbaum, 2006), though there are certainly known

difficulties in applying evolutionary ideas to cognitive abilities (e.g., Bolhuis & Wynne, 2009).  Of

course, understanding how brains have evolved is also of interest in its own right (e.g., Klein et al.,

2009; Nairne & Pandeirada, 2010), and that may also help in understanding the continuing presence

of common harmful heritable mental dysfunction (e.g., Keller & Miller, 2006).  The simulated

evolution approach presented in this paper, and extensions of it to more realistic modeling

frameworks, should provide a solid basis for exploring such issues.

Perhaps the most obvious way to take the approach of this paper further, then, is to enable the

evolutionary simulations to represent more complex and more brain-like structures.  As noted above,

this has already been done to explore the emergence of modular structures (Bullinaria, 2007b), so

incorporating the possibility of evolving dual-network architectures (such as those of French, 1997;

Ans & Rousset, 1997, 2000; Ans, et al., 2002) and related architectures and parameters should be

feasible.  Ultimately, the aim will be to start with models of the simplest of nervous systems and

simulate their evolution into structures that resemble the human brain, and see if and how the dual-

weight models explored in this paper fit into that evolutionary sequence.  It will be instructive to see

whether the existing hand-crafted models emerge from such simulated evolution, or if even better

versions of those models can be obtained, and whether such simulations can cast any light on the

remaining controversy over the operation of learning in the hippocampus and neocortex.  The only

limiting factor now is the increasing computational resources that are required by the improvements

in biological/ecological plausibility and growing model complexities.
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Tables

Baseline T1 T2 T3 T4 T5 T6

B1
100.00

(0.00)

95.51

(0.05)

93.88

(0.06)

92.85

(0.06)

91.59

(0.09)

89.98

(0.11)

B2
-- 100.00

(0.00)

94.66

(0.06)

93.08

(0.07)

91.78

(0.08)

90.01

(0.11)

B3
-- -- 100.00

(0.00)

93.87

(0.07)

91.87

(0.08)

90.08

(0.12)

B4
-- -- -- 100.00

(0.00)

92.69

(0.09)

90.44

(0.12)

B5
-- -- -- -- 99.94

(0.04)

91.08

(0.12)

B6
-- -- -- -- -- 99.59

(0.08)

Test
88.09

(0.04)

89.56

(0.03)

89.43

(0.04)

88.97

(0.04)

87.95

(0.07)

86.39

(0.10)

Table 1:  Incremental learning performance on the optical digits data-set for standard neural

networks trained using traditional back-propagation parameters.  The percentages of correct

classification on the training data batches Bj!i and generalization test set are given after each

stage of training Ti.  Averages over 1000 runs are shown, with standard errors in brackets.
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Learn++ T1 T2 T3 T4 T5 T6

B1 94 94 94 93 93 93

B2 -- 93.5 94 94 94 93

B3 -- -- 95 94 94 94

B4 -- -- -- 93.5 94 94

B5 -- -- -- -- 95 95

B6 -- -- -- -- -- 95

Test 82.0 84.7 89.7 91.7 92.2 92.7

SNCL T1 T2 T3 T4 T5 T6

B1 98.35 94.70 95.30 95.15 94.20 94.75

B2 -- 99.45 97.65 95.97 96.70 92.35

B3 -- -- 99.25 98.87 98.22 98.25

B4 -- -- -- 99.58 98.53 99.05

B5 -- -- -- -- 99.08 96.10

B6 -- -- -- -- -- 99.47

Test 89.02 91.54 93.39 94.00 94.00 93.49

Table 2:  Incremental learning performances on the optical digits data-set achieved by the

Learn++ algorithm of Polikar et al. (2001) and the SNCL algorithm of Lin, Tang & Yao

(2008).
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NFW T1 T2 T3 T4 T5 T6

B1
100.00

(0.00)

98.92

(0.02)

98.49

(0.03)

98.34

(0.03)

98.27

(0.02)

98.27

(0.03)

B2
-- 100.00

(0.00)

99.01

(0.02)

98.49

(0.03)

98.31

(0.03)

98.21

(0.03)

B3
-- -- 100.00

(0.00)

99.06

(0.03)

98.57

(0.03)

98.34

(0.03)

B4
-- -- -- 100.00

(0.00)

99.15

(0.03)

98.61

(0.02)

B5
-- -- -- -- 100.00

(0.00)

99.15

(0.02)

B6
-- -- -- -- -- 100.00

(0.00)

Test
91.47

(0.03)

92.97

(0.02)

93.64

(0.01)

94.10

(0.02)

94.43

(0.02)

94.66

(0.02)

Table 3:  Incremental learning performance on the optical digits data-set for evolved neural

networks without fast weights.

FW T1 T2 T3 T4 T5 T6

B1
99.99

(0.00)

99.15

(0.04)

98.92

(0.05)

98.86

(0.04)

98.83

(0.04)

98.84

(0.04)

B2
-- 99.99

(0.00)

99.32

(0.03)

99.01

(0.02)

98.89

(0.03)

98.83

(0.02)

B3
-- -- 99.93

(0.01)

99.31

(0.02)

99.02

(0.02)

98.91

(0.02)

B4
-- -- -- 99.83

(0.02)

99.29

(0.01)

99.01

(0.01)

B5
-- -- -- -- 99.72

(0.03)

99.24

(0.02)

B6
-- -- -- -- -- 99.61

(0.04)

Test
91.61

(0.08)

93.45

(0.03)

94.19

(0.02)

94.60

(0.02)

94.88

(0.03)

95.09

(0.03)

Table 4:  Incremental learning performance on the optical digits data-set for evolved neural

networks with fast weights.
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T1 T2 T3 T4 T5 T6

NFW

1

91.47

(0.03)

92.97

(0.02)

93.64

(0.01)

94.10

(0.02)

94.43

(0.02)

94.66

(0.02)

NFW

3

91.54

(0.05)

93.06

(0.03)

93.75

(0.03)

94.17

(0.03)

94.52

(0.02)

94.78

(0.02)

NFW

9

91.52

(0.03)

93.12

(0.04)

93.83

(0.02)

94.26

(0.03)

94.62

(0.02)

94.88

(0.02)

FW

1

91.61

(0.08)

93.45

(0.03)

94.19

(0.02)

94.60

(0.02)

94.88

(0.03)

95.09

(0.03)

FW

3

91.87

(0.04)

93.62

(0.03)

94.32

(0.03)

94.72

(0.03)

94.99

(0.04)

95.18

(0.04)

FW

9

91.98

(0.03)

93.71

(0.03)

94.39

(0.05)

94.78

(0.05)

95.04

(0.05)

95.24

(0.05)

Table 5:  Incremental learning test set performances on the optical digits data-set for voting

ensembles of 1, 3 and 9 evolved neural networks, with no fast weights (NFW) and with fast

weights (FW).



43

Class B1 B2 B3 B4

0 100 50 50 25

1 0 150 50 0

2 100 50 50 25

3 0 150 50 25

4 100 50 50 0

5 0 150 50 25

6 100 50 0 100

7 0 0 150 50

8 100 0 0 150

9 0 50 100 50

Table 6:  The distribution of optical digits classes across the four varying classes training

batches, as previously used by Polikar et al. (2002).
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Baseline T1 T2 T3 T4

B1
100.00

(0.00)

77.16

(0.02)

68.93

(0.14)

85.16

(0.12)

B2
-- 100.00

(0.00)

90.19

(0.06)

67.94

(0.06)

B3
-- -- 100.00

(0.00)

80.87

(0.07)

B4
-- -- -- 100.00

(0.00)

Test 48.47

(0.01)

75.49

(0.02)

79.87

(0.07)

77.07

(0.07)

Table 7:  Incremental learning performance on the varying classes optical digits data-set for

neural networks trained using traditional back-propagation parameters.

Learn++ T1 T2 T3 T4

B1 96.6 89.8 86.0 94.8

B2 -- 87.1 89.4 87.9

B3 -- -- 92.0 92.2

B4 -- -- -- 87.3

Test 46.6 68.9 82.0 87.0

Table 8:  The Learn++ incremental learning performance of Polikar et al. (2002) for the

varying classes optical digits data-set.
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NFW T1 T2 T3 T4

B1
99.92

(0.05)

79.11

(0.10)

75.81

(0.94)

95.89

(0.09)

B2
-- 99.81

(0.13)

96.18

(0.41)

82.02

(0.11)

B3
-- -- 99.93

(0.04)

91.00

(0.28)

B4
-- -- -- 99.87

(0.08)

Test 48.55

(0.05)

76.46

(0.10)

85.00

(0.38)

87.06

(0.23)

Table 9:  Incremental learning performance on the varying classes optical digits data-set for

evolved neural networks without fast weights.

FW T1 T2 T3 T4

B1
94.91

(1.59)

88.45

(1.01)

80.81

(0.29)

97.39

(0.07)

B2
-- 98.84

(0.18)

99.38

(0.07)

97.34

(0.16)

B3
-- -- 97.34

(0.20)

98.24

(0.04)

B4
-- -- -- 94.85

(0.19)

Test 46.48

(0.73)

80.20

(0.24)

87.23

(0.08)

93.83

(0.02)

Table 10: Incremental learning performance on the varying classes optical digits data-set for

evolved neural networks with fast weights.



46

T1 T2 T3 T4

NFW

1

48.55

(0.05)

76.46

(0.10)

85.00

(0.38)

87.06

(0.23)

NFW

3

48.64

(0.04)

76.57

(0.06)

85.28

(0.41)

88.06

(0.14)

NFW

9

48.69

(0.04)

76.74

(0.05)

85.54

(0.44)

88.41

(0.12)

FW

1

46.48

(0.73)

80.20

(0.24)

87.23

(0.08)

93.83

(0.02)

FW

3

46.98

(0.46)

80.39

(0.27)

87.09

(0.07)

94.21

(0.04)

FW

9

47.04

(0.45)

80.65

(0.30)

87.19

(0.08)

94.46

(0.06)

Table 11:  Incremental learning test set performances on the varying classes optical digits

data-set for voting ensembles of 1, 3 and 9 evolved neural networks, with no fast weights

(NFW) and with fast weights (FW).
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Baseline T1 T2 T3 T4 T5 T6

B1
99.99

(0.00)

94.82

(0.06)

90.55

(0.09)

91.85

(0.09)

90.17

(0.09)

91.38

(0.08)

B2
-- 100.00

(0.00)

90.45

(0.09)

91.85

(0.09)

90.23

(0.09)

91.20

(0.08)

B3
-- -- 99.96

(0.00)

92.24

(0.07)

86.38

(0.09)

87.64

(0.08)

B4
-- -- -- 99.98

(0.00)

86.74

(0.09)

87.81

(0.09)

B5
-- -- -- -- 99.94

(0.00)

88.59

(0.08)

B6
-- -- -- -- -- 99.96

(0.00)

Test
56.36

(0.04)

56.63

(0.03)

71.55

(0.06)

72.93

(0.05)

85.11

(0.07)

87.26

(0.06)

Table 12:  Incremental learning performance on the concentric circles data-set for neural

networks trained using traditional back-propagation parameters.

Learn++ T1 T2 T3 T4 T5 T6

B1 98.7 96.7 91.4 91.4 95.3 95.3

B2 -- 96.1 87.1 85.8 92.2 91.6

B3 -- -- 98.3 98.3 72.0 90.8

B4 -- -- -- 93.6 77.0 88.4

B5 -- -- -- -- 88.0 95.2

B6 -- -- -- -- -- 96.4

Test 55.6 56.8 73.2 74.4 85.8 89.6

Table 13:  The Learn++ incremental learning performances of Polikar et al. (2001) for the

concentric circles data-set.
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NFW T1 T2 T3 T4 T5 T6

B1
98.06

(0.11)

96.27

(0.08)

94.43

(0.07)

95.24

(0.05)

94.44

(0.07)

95.06

(0.04)

B2
-- 98.77

(0.08)

94.50

(0.07)

95.30

(0.06)

94.46

(0.07)

95.15

(0.10)

B3
-- -- 98.76

(0.08)

95.78

(0.05)

93.45

(0.06)

94.40

(0.06)

B4
-- -- -- 98.92

(0.05)

93.38

(0.03)

94.30

(0.05)

B5
-- -- -- -- 98.84

(0.06)

94.99

(0.05)

B6
-- -- -- -- -- 99.05

(0.06)

Test
56.87

(0.06)

57.53

(0.04)

75.44

(0.03)

76.16

(0.04)

93.16

(0.05)

94.22

(0.06)

Table 14:  Incremental learning performance on the concentric circles data-set for evolved

neural networks without fast weights.
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Baseline T1 T2 T3 T4 T5 T6

B1
99.99

(0.00)

94.84

(0.07)

73.96

(0.16)

72.55

(0.15)

55.03

(0.20)

50.90

(0.20)

B2
-- 99.99

(0.00)

73.97

(0.16)

72.97

(0.15)

54.58

(0.20)

50.70

(0.21)

B3
-- -- 99.96

(0.00)

91.17

(0.09)

64.07

(0.16)

61.71

(0.15)

B4
-- -- -- 99.96

(0.00)

64.65

(0.17)

62.30

(0.14)

B5
-- -- -- -- 99.90

(0.010)

85.14

(0.11)

B6
-- -- -- -- -- 99.92

(0.01)

Test
56.24

(0.04)

56.71

(0.04)

61.74

(0.09)

61.78

(0.10)

63.32

(0.12)

62.99

(0.12)

Table 15:  Incremental learning performance on the varying classes concentric circles data-

set for neural networks trained using traditional back-propagation parameters.

NFW T1 T2 T3 T4 T5 T6

B1
98.37

(0.84)

95.68

(0.31)

89.17

(0.97)

88.62

(0.72)

90.18

(0.42)

88.61

(0.20)

B2
-- 98.97

(0.46)

89.26

(1.04)

88.60

(0.73)

90.09

(0.45)

88.59

(0.18)

B3
-- -- 98.22

(0.81)

94.31

(0.35)

87.55

(1.03)

86.89

(0.35)

B4
-- -- -- 99.11

(0.40)

88.16

(1.17)

87.31

(0.28)

B5
-- -- -- -- 94.90

(1.94)

91.97

(0.75)

B6
-- -- -- -- -- 98.99

(0.38)

Test
55.99

(0.54)

56.94

(0.22)

70.93

(0.74)

71.23

(0.46)

85.96

(1.33)

88.12

(0.31)

Table 16:  Incremental learning performance on the varying classes concentric circles data-

set for evolved neural networks without fast weights.
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T1 T2 T3 T4 T5 T6

NFW

1

55.99

(0.54)

56.94

(0.22)

70.93

(0.74)

71.23

(0.46)

85.96

(1.33)

88.12

(0.31)

NFW

3

56.64

(0.25)

57.23

(0.18)

71.75

(0.76)

71.85

(0.46)

88.21

(0.98)

89.74

(0.15)

NFW

9

56.92

(0.28)

57.52

(0.15)

72.42

(0.70)

72.28

(0.48)

89.82

(0.81)

90.95

(0.21)

FW

1

55.07

(0.81)

57.12

(0.06)

72.97

(0.21)

74.09

(0.32)

89.78

(0.25)

91.79

(0.24)

FW

3

55.85

(0.72)

57.57

(0.06)

73.83

(0.22)

74.82

(0.29)

91.07

(0.13)

92.97

(0.18)

FW

9

56.16

(0.81)

57.75

(0.10)

74.26

(0.26)

75.04

(0.29)

91.87

(0.22)

93.58

(0.16)

Table 17:  Incremental learning test set performances on the varying classes concentric

circles data-set for voting ensembles of 1, 3 and 9 evolved neural networks, with no fast

weights (NFW) and with fast weights (FW).
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Figure 1:  Baseline remembering performance on 20 old patterns after learning new patterns,

as a function of the number of hidden units, using standard back-propagation networks with

traditional learning parameters and testing tolerance 0.2 (left) and 0.5 (right).  The line labels

indicate the number of new patterns learned.
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Figure 2:  Evolution of basic neural networks with a maximum of 50 hidden units that aim to

remember 20 items after learning four new items.  The connectivity proportions (top-left),

learning rates (top-right), lower and upper ranges of the random initial weight distributions

(middle), training and testing tolerances (bottom-left), and the resultant remembering

performance (bottom-right).  Where no error bars are shown, there is enormous variation that

would obscure the rest of the graph, indicating that the precise values of those parameters

have little effect on performance.
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Figure 3: Evolution of neural networks with dual weights and a maximum of 50 hidden units

that aim to remember 20 items after learning four new items.  The fast weight scale and decay

parameters (top-left), learning rates (top-right), lower and upper ranges of the random initial

weight distributions (middle), training and testing tolerances (bottom-left), and the resultant

remembering performance (bottom-right).
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Figure 4:  Comparison of remembering performances for evolved 50 hidden unit networks

without fast-weights (left) and with fast-weights (right), after various numbers of new patterns

have been learned.  The thin lines result from evolution using the number of new patterns

indicated by the labels.  The thick lines result from evolution using a uniform distribution of

new patterns.
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Figure 5:  Comparison of remembering performances for evolved 10000 hidden unit networks

without fast-weights (left) and with fast-weights (right), after various numbers of new patterns

have been learned.  The thin lines result from evolution using the number of new patterns

indicated by the labels.  The thick lines result from evolution using a uniform distribution of

new patterns.  Note the massive change of performance scale from Figure 4.
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Figure 6:  Remembering performance for networks with 50 hidden units (left) and 10000

hidden units (right).  Traditional networks (Trad) are compared to evolved networks with fast-

weights (FW) and no fast-weights (NFW), either tuned to particular numbers of new patterns

(T) or evolved as general purpose networks (G).  Note the massive difference in performance

scale between the two graphs.
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Figure 7:  The effect of batch learning and ensemble averaging on networks with 50 hidden

units with fast-weights (FW) and no fast-weights (NFW).  Comparison of Batch training (B)

and Online training (O) in the left graph, and comparison of Ensembles of size 3 (Ens) and

individual online networks (O) in the right graph.
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Figure 8:  Remembering performance of ensembles of different sizes indicated by the line

labels, for fast-weight networks with 50 hidden units (left) and 10000 hidden units (right).

Note the massive difference in performance scale between the two graphs.
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Figure 9:  Evolution of networks for the optical digits generalization task with a maximum of

100 hidden units.  The connectivity proportions (top-left), learning rates (top-right), lower and

upper ranges of the random initial weight distributions (middle), training tolerance t and

stopping tolerance s (bottom-left), and the resultant generalization performance measures

(bottom-right).  Where no error bars are shown, there is enormous variation indicating that the

precise values of those parameters have little effect on performance.


