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Abstract:  I suggest that the difficulties inherent in discovering the
hidden regularities in realistic (type-2) problems can often be solved by
learning algorithms employing simple constraints (such as symmetry and
the importance of local information) that are natural from an evolutionary
point of view.  Neither “heavy-duty nativism” nor “representational
recoding” appear to offer totally appropriate descriptions of such natural
learning processes.

I agree with the main conclusion drawn by Clark & Thornton that successful generalization
in the case of realistic mappings often requires something more than the simplest statistical
analysis.  However, I would like to suggest that the case for representational recoding may be
somewhat overstated, and that simple constraints on the solution space are often sufficient on
their own to lead to good generalization.

Let us consider again the four bit parity problem cited by Clark & Thornton.  One can
explore the solution space in this case without making unnecessary assumptions concerning
the properties of particular learning algorithms by performing a Monte Carlo search for
solutions in weight space.  The minimal network to solve this problem requires four hidden
units (and hence 25 degrees of freedom) so we use that architecture.  We choose sets of
network weights at random (in the range -16 to +16) and check to see if they solve the four
bit parity problem for 15 of the 16 training patterns in the sense that each output unit
activation is to the correct side of 0.5.  To find 20 solutions took 11.8 billion attempts.  Each
solution generalized incorrectly to the missing training pattern, which is what we would
expect given that random hyper-planes in input space are likely to cut off the missing pattern
with its closest neighbours which all produce the opposite output.

We have to ask why we consider one particular generalization to be better than the others.  In
the sense of Occam’s razor, such as embodied in Bayesian model comparison (e.g. MacKay
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1992), the best (or “most correct”) generalization is the one provided by the simplest model
(e.g. the one with the least “free” parameters).  In fact, smaller networks are well known to
provide superior generalization (e.g. Baum & Haussler 1989).  In this respect the arguments
of Clark & Thornton would have been more convincing if six or more bit parity were used, so
that the mapping could be carried out with fewer free parameters (i.e. weights) than training
patterns.  Since avoiding local minima in minimal six (or more) bit parity networks is
extremely difficult and since it is unlikely that real brains employ minimal networks we shall
pass over this point.

One natural way to achieve model simplification is by constraining the search space, and one
natural constraint might be the imposition of symmetry, i.e. start learning assuming maximal
symmetry and only relax that assumption as each level of symmetry is found not to exist.
This will automatically reduce the effective number of free parameters.  For example,
imposing a symmetry on the weights is sufficient to give good generalization for the four bit
parity problem.  Here we constrain the weight solutions to lie on the hyper-planes in weight
space corresponding to weights that are symmetric with respect to the input units.  This might
be implemented in a learning network by constraining the weight changes to be the same for
each input unit.  This reduced the problem to 13 degrees of freedom and required only
16.3 million random attempts to find 20 solutions.  The symmetry guarantees that all these
solutions will generalize correctly.  Such “weight sharing” is known to improve
generalization more generally (e.g. Nowlan & Hinton 1992).

Another natural constraint we may impose is to assume that local information is more
important than distant information until such an assumption is proven incorrect.  We may
view this to be at work in Elman’s grammar acquisition network discussed by Clark &
Thornton.  Elman (1993) implemented these constraints by incremental learning schemes.  In
fact this is another poor example, since the network not only fails to generalize but also has
insufficient processing power to even learn the raw training data (Elman 1993, p. 76).  A
more powerful recurrent network, or a network with appropriate input buffers or time delay
lines, should not have this problem, but there is no reason to suppose that this would improve
generalization as well.  In time buffered networks we can constrain solutions to make
maximal use of local information by having a smaller learning rates for weights
corresponding to longer range dependencies.  This approach has also, for examples, been
shown to improve generalization in past tense acquisition models for which the inflection is
usually, but not always, determined by the final phoneme of the stem and in models of
reading aloud for which long range dependencies are relatively rare (Bullinaria 1994).
Similar constraints may be implemented by weight decay and are also known to improve



generalization (e.g. Krogh & Hertz 1992).

Simple constraints on the weight space may not be sufficient to improve generalization for all
type-2 problems, but the examples given above indicate that it does have a range of
applicability.  One might argue that such constraints are just a convenient way to implement
the representational recodings of Clark & Thornton, but if that is the case we would seem to
have a continuous spectrum of constraints and their type-1/type-2 distinction becomes rather
fuzzy.
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