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ABSTRACT
The Vehicle Routing Problem can be seen as a fusion of two
well known combinatorial problems, the Travelling Sales-
man Problem and Bin Packing Problem. It has several vari-
ants, the one with Time Windows being the case of study in
this paper. Its main objective is to find the lowest-distance
set of routes to deliver goods to customers, which have ser-
vice time windows, using a fleet of identical vehicles with
restricted capacity. We consider the simultaneous minimi-
sation of the number of routes along with the total travel
distance. Although previous research has considered evolu-
tionary methods for solving this problem, none of them has
concentrated on the similarity of solutions. We analyse here
two methods to measure similarity, which are incorporated
into an evolutionary algorithm to solve the multi-objective
problem. We have applied this algorithm to a publicly avail-
able set of benchmark instances, and when these similarity
measures are considered, our solutions are seen to be com-
petitive or better than others previously published.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods.

General Terms
Algorithms, performance, experimentation.

Keywords
Multi-objective optimisation, vehicle routing problem, sim-
ilarity measures.

1. INTRODUCTION
Combinatorial optimisation problems can be found in

many real world circumstances. Moreover, many of these
problems have not only one, but several objectives to be
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optimised, which are frequently in conflict. So, instead of
looking for a single permutation which gives the optimal
solution, we search for arrangements to provide a set of so-
lutions that allow trade-offs between such objectives.

There are many theoretical combinatorial problems that
can be directly applied to real-life, such as the Travelling
Salesman Problem, Bin Packing Problem, Job Shop Schedul-
ing Problem, and Vehicle Routing Problem (VRP) [16].
These are of high importance for many industries; in par-
ticular, the VRP can be adopted in transportation logistics
like post, parcel and distribution services.

The main objective of the VRP is to obtain the lowest-
distance set of routes to deliver goods to customers, but we
can also think about reducing the number of vehicles needed
to do the deliveries. This means that we can consider the
VRP as a multi-objective problem [8]. Moreover, the VRP
has several variants of increased difficulty; in particular, the
one with time windows (VRPTW), which has time as well as
capacity constraints, forms the main problem to be studied
in this paper.

Exact methods can be used to find optimal solutions for
small instances of the VRPTW, but the computation time
required increases considerably for larger sizes [5]. This is
why we are interested in solving this problem by means of us-
ing heuristics, in particular, an evolutionary algorithm (EA).

There are many research studies that have used heuristics
to solve the VRPTW as a single-objective problem. The
recent surveys by Bräysy and Gendrau [1, 2] provide an
excellent review of them. Lately, Homberger and Gehring [7]
and LeBouthillier and Crainic [10] proposed hybrid methods,
which combine an evolutionary algorithm and a tabu search
procedure, to solve this problem, optimising, one at a time,
the number of routes and the travel distance.

There have been also some multi-objective approaches,
like that of Tan et al. [15], who used the dominance rank

scheme to assign fitness to individuals. They designed a
problem specific crossover operator called route-exchange

crossover and used a multi-mode mutation which consid-
ered the swapping, splitting and merging of routes. They
also used three local search heuristics which were applied
every 50 generations. Ombuki et al. [12] also proposed the
problem specific genetic operators best cost route crossover

and constrained route reversal mutation, which is an adap-
tation of the widely used inversion method. None of these
studies has considered to measure the similarity of solutions,
even though it is known to be desirable to preserve the di-
versity of solutions in the evolutionary populations [19].



Well known methods like SPEA2 [20] and NSGA-II [4] do
have diversity preservation tools, but their use would not be
appropriate here because they require the definition of niche
spaces, a task that would be problematic since most good
solutions to the VRPTW reside in a very small portion of
the discrete vehicle number dimension [12].

To measure the similarity of solutions, one must take into
account the solution encoding, because different represen-
tations may require different methods. Besides, if we con-
sidered similarity in the objective space, we could be led
to unreliable measures. Sörensen [14] proposed that the
Edit distance could be applied to routing problems using
a permutation-based encoding, and, more recently, Garcia-
Najera and Bullinaria [6] proposed a straightforward method
to measure similarity of solutions to the VRPTW, based on
Jaccard’s similarity coefficient, which is independent of the
representation used.

The work presented here is concerned with the solution
of the VRPTW as a multi-objective problem, using an EA
which incorporates a similarity measure applied in the geno-
type space. We compare and analyse the results obtained
when the measure used is the Edit distance [14] and Jac-
card similarity [6]. We have tested this algorithm on pub-
licly available benchmark instances, and when our results
are compared with those from recent publications, our algo-
rithm appears very competitive.

The remainder of this paper is organised as follows. First,
in Section 2, we provide a brief description of what multi-
objective optimisation problems are, and explain a couple of
key performance metrics. Next, in Section 3, we introduce
the VRPTW and the objective functions we aim to optimise.
In Section 4 we review the similarity measures we use in this
work. Our proposed EA for solving the VRPTW as a multi-
objective problem is described in Section 5. In Section 6 we
present the results from our work, as well as a comparison
with some others already published. Finally, we give our
conclusions in Section 7.

2. MULTI-OBJECTIVE OPTIMISATION
Any multi-objective optimisation problem can, without

loss of generality, be defined as a minimisation problem of
the form:

minimise f(x) = (f1(x), f2(x), ..., fk(x)) (1)

subject to constraints:

gi(x) ≤ 0, ∀ i = 1, 2, ..., m (2)

hj(x) = 0, ∀ j = 1, 2, ..., p (3)

where x = (x1, x2, ..., xn) ∈ X is the vector of decision vari-
ables, X is the parameter space, and fi : R

n → R, for
i = 1, ..., k, are the objective functions. The constraint func-
tions gi, hj : R

n → R in (2) and (3) restrict x so that only
feasible solutions are considered.

A decision vector x ∈ X is said to dominate a decision
vector y ∈ X (written as x ≺ y) if and only if fi(x) ≤
fi(y) ∀ i = 1, 2, ..., k and ∃ j ∈ {1, 2, ..., k} : fj(x) < fj(y).
Similarly, we say that a decision vector x ∈ X is non-

dominated if there is no decision vector y ∈ X such that
y ≺ x. A decision vector x ∈ X is said to be Pareto optimal

if it is non-dominated. The Pareto optimal set is defined as
Ps = {x ∈ X | x is Pareto optimal}. Finally, the Pareto

front is defined as Pf = {f(x) ∈ R
n | x ∈ Ps}.

The comparison of the performance between multi-
objective optimisers is not easy, as their outcome, which
is commonly called the Pareto approximation, is a set of so-
lutions, in contrast with the single-objective case, where we
can compare straightforwardly the best solution, or the av-
erage of them, from the methods studied. For this reason,
the use of appropriate performance metrics is crucial. This
field of research has been widely studied and remains a sub-
ject of investigation [18, 3, 21, 9]. We, in this work, will
focus on only two of these metrics. The first is the one pro-
posed by Zitzler et al. [18], that shows to what extent one
set of solutions is covered by another, and which we will call
coverage. The second is that from Deb and Jain [3], which
evaluates the convergence of one set towards another, and
we will call convergence. The following provides formal def-
initions of these metrics. For each of them, R is a reference
set of solutions, and A a Pareto approximation.

2.1 Coverage
This performance metric measures the coverage of the ref-

erence set R by the approximation set A. The function M1

maps the ordered pair (A,R) to the interval [0,1] [18]:

M1(A,R) =
|{r ∈ R : ∃ a ∈ A, a � r}|

|R|
(4)

The value M1 = 1 means that all solutions in R are covered
by or equal to solutions in A, while M1 = 0 indicates the
opposite situation, i.e. in which none of the solutions in R
are covered by A.

2.2 Convergence
This metric measures the convergence of the approxima-

tion set A towards the reference set R. To define this metric,
we need first to calculate the smallest normalised Euclidean
distance di from each point i ∈ A to the reference set R as
follows [3]:

di = min
j∈R

√

√

√

√

M
∑

k=1

(

fk(i) − fk(j)

fmax

k − fmin

k

)

2

(5)

where fmax

k and fmin

k are the maximum and minimum func-
tion values of the k-th objective function in R. Then we
define the convergence M2, for the pair (A,R), as

M2(A,R) =
1

|A|

∑

i∈A

di (6)

i.e. the average normalised distance for all points in A.

3. THE VEHICLE ROUTING PROBLEM
WITH TIME WINDOWS

The VRP is a combinatorial problem which can be seen
as a fusion of the well known Travelling Salesman Problem
and the Bin Packing Problem. The general VRP has several
variants of increased difficulty; in particular, the one with
time windows (VRPTW) has both capacity and time con-
straints. The VRPTW can be formally defined as follows.
Given:

• a set V = {v1, . . . , vn} of vertices, called customers, with
known demands di > 0, ∀ i ∈ {1, . . . , n},

• a special node v0, called depot, with d0 = 0,
• a symmetric distance cij between any pair of vertices,

∀ i, j ∈ {0, . . . , n}, i < j,



• a time window [bi, ei] associated with each customer
vi ∈ V during which the customer has to be supplied,

• an unload time si associated with each customer vi ∈ V,
and

• a fleet of identical vehicles with limited capacity Q ≥
max {di : i ∈ {1, . . . , n}},
we have to design a minimum-distance set of routes, so that
each route begins and ends at the depot and each customer
is serviced by exactly one vehicle.

Since every customer has a service time window, a solu-
tion becomes infeasible if customer vi is supplied after ei.
Moreover, if a vehicle arrives at customer vi before bi, a
waiting time has to be added to the travel time. A solution
also becomes infeasible if the total load on any vehicle is
greater than Q.

Let us denote as rk = 〈uk
1 , . . . , uk

nk
〉 the k-th route that

supplies nk customers, with uk
i the i-th customer to visit in

the route. Then we can define the travel distance

Ck = c
0uk

1
+

nk−1
∑

i=1

cuk

i
uk

i+1
+ cuk

n
k
0

(7)

associated with route rk.
Now that we have defined the problem, we can identify the

two objective functions that we concentrate on minimising
in this study. Let R = {r1, . . . , rm} be the set of designed
routes. The first objective function is then

f1(R) = |R| (8)

i.e. the number of routes, and the second is

f2(R) =

|R|
∑

k=1

Ck (9)

i.e. the total travel distance.

4. SIMILARITY MEASURES
This study will consider two different route similarity mea-

sures. The first is based on the Edit distance [14], which is
defined as the minimal number of edit operations required
to transform one string into another. The second is based
on the Jaccard’s similarity coefficient [6], which essentially
measures the ratio between the common elements in two sets
and the total number of elements.

4.1 Edit distance
The edit distance is based on Levenshtein distance [11],

which was first introduced in the field of error correcting
codes for dealing with binary strings. The edit distance
between two binary strings is the minimal number of edit
operations required to transform one of the strings into the
other. These edit operations are defined as follows [14]:

Reversal: 0 → 1 or 1 → 0
Deletion: 0 → Λ or 1 → Λ
Insertion: Λ → 0 or Λ → 1

where Λ is the null-character, specifying the absence of a
character, i.e. |Λ| = 0.

Wagner and Fischer [17] extended the work of Leven-
shtein, first, by considering that strings are composed of
any finite alphabet, and second, by widening the reversal
operation, which became substitution when one character is
converted into another. They also provided a dynamic pro-
gramming algorithm to calculate the edit distance, which

is O(n2), n being the length of the strings, and is publicly
available from a number of world wide web sites.

4.2 Jaccard similarity coefficient
The Jaccard’s similarity coefficient compares two sets A

and B, dividing the cardinality of the intersection of the sets

by the cardinality of their union, i.e. J(A, B) = |A∩B|
|A∪B|

. It

is easy to observe that if sets A and B do not share any
element at all, |A ∩ B| = 0, so J(A, B) = 0. On the other
hand, if A and B contain the same elements, that is A = B,
|A ∩ B| = |A ∪ B|, so J(A, B) = 1.

Now we can define the similarity between two solutions
to the VRPTW, according to the Jaccard’s similarity coef-
ficient, simply as the ratio of the number of shared arcs to
the total number of arcs used in both solutions [6].

Defining yijk = 1 if the arc (i, j) from vertex i to vertex
j is used in any route in solution k, and 0 otherwise, the
similarity ςpq between solutions p and q can be written as

ςpq =

∑n

i=0

∑n

j=0
yijp · yijq

∑n

i=0

∑n

j=0
sign (yijp + yijq)

(10)

where yijp · yijq will only equal 1 if the arc (i, j) is used in
both solutions, while sign (yijp + yijq) will equal 1 if it is
used in any of them. If solutions p and q are two completely
different solutions with no arc in common, the numerator
will equal 0, and therefore ςpq = 0. On the contrary, if they
are the same solutions, the sum in the numerator will equal
the sum in the denominator, and hence ςpq = 1.

The complexity of the algorithm designed by Garcia-
Najera and Bullinaria [6] for computing the Jaccard’s simi-
larity measure is O(n), where n is the number of customers
in the instance.

5. EVOLUTIONARY ALGORITHM FOR
SOLVING THE VRPTW

We present in this section our proposed EA for solving
the VRPTW as a multi-objective problem. We give details
about the encoding, the stages of processing, and how we
incorporate the similarity measures described above.

5.1 Encoding of solutions
We are using a binary tree representation. In this encod-

ing, a right child points to the following route in the solu-
tion, while the left represents the next customer to visit in a
route. A solution for an example instance and its represen-
tation are shown in Figure 1. In this case, the assignment of
customers to routes, and the sequence in which they will be
visited within each route, is as follows: customers 1, 2 and 3
to the first route, customers 4 and 5 to the second, 6, 7 and
8 to the third, and 9 and 10 to the fourth.

5.2 Initial population
Our algorithm starts by building a set of feasible random

solutions. Each of these solutions contains a set of randomly
generated routes. Such routes are constructed in the follow-
ing way: First, a customer is selected and placed as the first
to be visited on that route. Then, a second customer is cho-
sen and, if the capacity and time constraints are met, it is
placed after the previous one. If any of the constraints are
not met, a new route is created and this customer will be the
first to be visited in the new route. This process is repeated
until all customers are assigned.



(a) Solution (b) Encoding

Figure 1: The solution and its encoding for an ex-

ample instance of the VRPTW.

5.3 Fitness assignment
When solving a single-objective problem using an EA, fit-

ness is assigned to an individual according to its objective
function evaluation. In the multi-objective case, this assign-
ment cannot be done straightforwardly, due to there being
not only one, but at least two objective functions. We have
used in this work the non-dominance sort criteria [4] to as-
sign fitness to solutions, where the population is divided into
several non-dominated fronts and the depth specifies the fit-
ness of the individuals belonging to them.

5.4 Selection of parents
The evolutionary process starts with the selection of two

parents that are going to be submitted to the crossover pro-
cess. We have used a binary tournament selection method
for selecting individuals, but under two different criteria.
The first parent will always be selected according to the fit-
ness. For selecting the second parent, we will be comparing
nine different methods, each of which could plausibly be the
best way to proceed. The first of them is to select the second
parent, like the first, according to the fitness. This method
will be identified by the letter F. The other methods per-
form selection based on one of the two similarity measures,
denoted J for Jaccard and E for Edit distance, which can
each be used in four different ways: The value of the simi-
larity measure can be computed to be the average similarity
of each individual with respect to the entire population, or
the similarity of each individual with regard to the first par-
ent. For both of these, we can choose whether the more
or the less similar individual is selected. We will use the
labels -A, +A, -P and +P, for the less similar on average,
the more similar on average, the less similar to the first par-
ent, and the more similar to the first parent, respectively.
This nomenclature will be used when presenting the results
in Section 6, e.g. J-A refers to the algorithm that uses Jac-
card’s similarity and selects the second parent to be the less
similar on average.

5.5 Crossover
The evolution proceeds with the crossover of the two se-

lected parents. The crossover of two example parents is
shown in Figure 2. Here, the algorithm aims at preserving
routes from both parents. First, a random number of routes
are chosen from the first parent and copied into the off-
spring. Next, all those routes from the second parent which
are not in conflict with the customers already copied from
the first, are replicated into the offspring. In our example,
both routes on the left from the first parent were selected
to be copied into the offspring, and we can only copy from

Figure 2: The crossover process.

(a) Original (b) Insertion (c) Swap

(d) Inversion (e) Shift (f) Split

Figure 3: The mutation operators.

the second parent the route on the right, as the other two
contain customers already present in the offspring. If there
remain unassigned customers, these are allocated, in the or-
der they appear in the second parent, to the route where the
lowest travel distance is achieved, like in the example given
in Figure 3(a). If a solution would become infeasible after
inserting such a customer, a new route is created.

5.6 Mutation
We have designed a composite mutation process with five

possible operators, which can be categorised as inter- and
intra-route. In the former, the algorithm will perform
changes between two routes, thus modifying the assignment
of customers to routes, and in the latter, the changes will be
done within a route, hence affecting the travel sequence.

In the first category, we can identify two viable processes
which are: (i) removing a sequence of customers from a
route and inserting it into another, and (ii) swapping two
sequences of customers from different routes. In the case
of intra-route, we use three operations: (i) the inversion of
the sequence of a sub-route, (ii) the shift of one customer,
and (iii) splitting a route. Examples of these operations
are shown graphically in Figure 3. The dotted lines in each
figure represent the changes in the sequences. In Figure 3(b),
customer 10 was removed from the route on the left and has
been inserted in the route on the right. Figure 3(c) shows
the swap of customer 4 with customers 2 and 3. In Figure
3(d) we have the inversion of the sequence of customers 7, 8
and 9. Figure 3(e) shows how customer 9 has been shifted
between customers 6 and 7. Finally, in Figure 3(f), the route
on the right has been split between customers 7 and 8.

Not all of the mutation operators are applied each time an
offspring is mutated. First, the split operator is performed
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Figure 4: Results from the coverage metric. The bars represent the extent to which the composite reference

set is covered by the overall Pareto approximation for each method.

with a probability equal to the inverse of the number of
routes in the solution. Then, the solution is submitted to
one of the inter-route operators. The decision of which to
apply is random. Finally, one of the intra-route operators is
applied to the solution.

5.7 Elitism
After the selection, crossover and mutation processes, the

algorithm evaluates the objective functions for each solution
in the offspring population, and combines both parent and
offspring populations to assign fitness. Those solutions be-
longing to the best fitness fronts are taken to form the next
generation. For the final such front, if that introduces con-
flict with the population size, similarity is computed for the
solutions in it, and the least similar are taken.

6. EXPERIMENTS AND RESULTS
Our experimental set-up has two purposes. First, we are

going to compare, by means of using the two performance
metrics previously described, the results from our set of nine
algorithms introduced in Section 5. Then we are going to
compare the lowest distances found by our algorithms with
those presented in recent publications, in order to see how
well they perform compared with existing approaches.

To do this, we used the standard benchmark set1 due to
Solomon [13] that includes 56 instances of size n = 100.
These instances are categorised as Clustered (C1, C2), Ran-
dom (R1, R2), and mixed (RC1, RC2), and have been pre-
viously studied in detail. A recent analysis by Tan et al.
[15] suggests that categories C1 and C2 have positively cor-
relating objectives, which means that the travel distance of
a solution increases with the number of routes. However,
the majority of the instances in categories R1, R2, RC1 and
RC2 have conflicting objectives.

We ran each of our algorithms 30 times for every instance
and recorded the solutions in the Pareto approximation each
time. Finally, we built an overall Pareto approximation for
each instance and algorithm from the 30 approximation sets,

1http://w.cba.neu.edu/~msolomon/home.htm

in line with what has become the common practice for mea-
suring performance [18, 3].

The parameters of our algorithm were set to values that
have proved to work well in previous studies, namely: popu-
lation size = 100, number of generations = 500, tournament
size = 10, crossover rate = 0.9, and mutation rate = 0.1.

To compute the edit distance between two solutions, we
first calculated the distance between each route in one of the
solutions and all routes in the other. We then summed the
smallest distance for every route in one of the solutions, and
finally averaged it by the number of routes

6.1 Application of performance metrics
To evaluate the results using the two performance metrics,

we constructed for each instance a composite reference set of
solutions from the overall Pareto approximations, and took
that to be R in equations (4) and (6). Then each overall
Pareto approximation played the role of A.

Results from the two performance metrics are shown in
Figures 4 and 5. Each of these figures consists of six rows,
which represent the six instance set categories, and nine
columns, one for each combination of similarity measure and
selection technique. For the box in a given row and column,
we present a plot of bars, which correspond to the instances
in that category. The height of the box is unitary. There is
also a line across the bars located on the average value for
that instance set category.

Figure 4 shows the the coverage metric results. This met-
ric computes the extent to which the composite reference
set is covered by the overall Pareto approximation, so the
higher the bar, the larger the coverage of the reference set.
On the contrary, if a given instance shows a small bar, it
means that the coverage of the reference set is small.

For example, for categories C1 and C2, all the algorithms
found the optimal solutions for almost all the instances, ex-
cept E-A which found all of them. We can also observe that
boxes for all the other categories in the E+A column do not
show any bars, which means that solutions found with this
method do not cover any solutions in the reference set. If we
look at the boxes for categories R1 and RC1, we can see that
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Figure 5: Results from the convergence metric. The bars represent the average normalised distance from all

points in the Pareto approximation for each method to the composite reference set.
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Figure 6: Pareto approximations for four instances in categories R and RC. Markers ‘◦’, ‘+’, ‘×’, and ‘�’
represent solutions found by techniques J-A, J-P, E-A and E-P respectively.

those in columns J-A, J-P, E-A and E-P are the only ones
showing bars, which means that these are the only methods
that are contributing solutions to the composite reference
set. Additionally, we can see that for instances in categories
R2 and RC2, solutions from all methods, except for those
from E+A, cover to some extent the solutions in the refer-
ence set. Based on this visual analysis, we can say that the
Pareto approximations from J-A, J-P, E-A and E-P have,
on average, a better coverage of the reference sets than the
other five combinations.

Figure 5 shows the convergence metric results. This met-
ric measures the average distance from all points in the
Pareto approximation to the reference set. This means that
when solutions in the Pareto approximation are closer to the
reference set, the bars are smaller. We have normalised the
values so that we can make visible comparisons.

We can observe that solutions for instances in categories
C1, C2, R1 and RC1, found by techniques J-A, J-P, E-A
and E-P, are clearly, on average, closest to the reference set,
while those from J+A, J+P, E+A and E+P are the most
distant. This is consistent with the results obtained with
the coverage metric, as these methods were the only ones
contributing solutions to the composite reference set. We
can also see that, for instances in category RC2, solutions
in columns J+A and E+A are, on average, the most distant
to the reference set. In the case of the category R2, there

is no clear visible difference. Taking these observations into
account, we can state that, on average, solutions found by
J-A, J-P, E-A and E-P, are the closest to the reference set.

From Figures 4 and 5 together we can argue that meth-
ods J-A, J-P, E-A and E-P performed better that the others.
Given these results, we now present in Figure 6 the Pareto
approximations from these four methods for one typical in-
stance in categories R1, R2, RC1 and RC2. This figure
shows four boxes corresponding to instances R105, R205,
RC105 and RC205, in which are displayed the solutions in
the Pareto approximation found with the techniques speci-
fied. The horizontal axis correspond to the number of routes
and the vertical axis to the travel distance.

Consider, for example, the plot for instance R105. In this
we can observe that the solutions with the lowest distance
were found by J-A (◦) and E-A (×), for 14 and 15 routes
respectively. This means that solutions in these approxima-
tion sets dominate the solutions found by J-P (+) and E-P
(�). We can see that solutions from the same techniques also
dominate for instances R205 and RC205. In the case of in-
stance RC105, the dominating solutions are those from J-P
and E-A. These four methods had the same performance for
the 17 instances in categories C1 and C2.

Unfortunately, due to space limitations, we cannot present
the analysis for the remaining instances in categories R1, R2,
RC1 and RC2, but solutions found by techniques J-A and
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Figure 7: Normalised average execution times for runs of 500 generations.

E-A together dominate the others in 20 out of 39 of them.
Based on these results, we can say that techniques J-A and
E-A performed, on average, better than J-P and E-P.

Finally, it is relevant to present here the execution times
for all our tested algorithms. Figure 7 shows the average ex-
ecution time, for a run of 500 generations, for all instances
and combinations of similarity measure and selection tech-
nique. It is divided in six rows, one for each instance set
category, and nine columns, one for each selection method.
For each box in a given row and column, there is a plot
of bars representing the average execution time for each in-
stance in that set. The execution time is normalised to the
maximum execution time in all techniques.

It is evident that techniques E, using the edit distance, oc-
cupy, on average, more processing time, while the technique
F, with no similarity measure, is the quickest. We can also
see that techniques J-A and J+A executed faster than J-P
and J+P. These behaviours are what would be expected, as
we explained earlier that the complexity of the edit distance
algorithm is quadratic, in contrast with the linear execution
time of the Jaccard similarity measure.

6.2 Comparison with recent publications
Recently published research on the VRPTW has not pre-

sented Pareto approximations, even though it was consid-
ered as a multi-objective problem. Thus, we cannot compare
our results with them using proper multi-objective methods.
Instead, we have averaged the lowest distance in all itera-
tions over the instances in each category, as in the litera-
ture this is the common way to present and compare results
for this specific problem. Table 1 shows the results from
our techniques J-A and E-A, and the results from four re-
cent publications that minimise both objectives, number of
routes and total distance, either one after another [7, 10] or
simultaneously [15, 12]. We show for each algorithm and
instance set the average number of routes (upper) and the
average total distance (lower). The last column presents
the total accumulated sum, indicating the total number of
routes and the total distance for all 56 instances.

Analysing this table, we can observe that our methods J-
A and E-A obtained the lowest distances for categories R1

Table 1: Comparison of the best results, averaged

for each category, with others previously published.

Alg. R1 R2 RC1 RC2 Accum.

[10] 12.08 2.73 11.50 3.25 407.00
1209.19 960.95 1386.38 1133.30 57412.37

[7] 11.91 2.73 11.50 3.25 405.00
1212.73 955.03 1386.44 1108.52 57192.00

[15] 12.92 3.55 12.38 4.25 441.00
1187.35 951.74 1355.37 1068.26 56290.48

[12] 13.17 4.55 13.00 5.63 471.00
1204.48 893.03 1384.95 1025.31 55740.33

J-A 12.92 3.91 12.50 4.63 449.00
1185.61 919.74 1343.89 1061.55 55766.89

E-A 12.75 4.18 12.50 5.13 454.00
1186.70 915.16 1347.59 1054.22 55695.90

and RC1, in spite of using a larger number of routes than
the others. For categories R2 and RC2, they are the second
best, and use fewer routes than the algorithm which found
the lowest distances. In the case of the accumulated total
distance, E-A found the lowest, while J-A found the third
best, though they are using a larger number of routes than
the most expensive solutions.

7. CONCLUSIONS
We have analysed the performance of our EA for solv-

ing the multi-objective VRPTW, which employs a similar-
ity measure for controlling population diversity. We have
tested in this algorithm nine different techniques for select-
ing the second parent for the crossover operation, any of
which might reasonably be expected to work best. The first
simply uses fitness (F), as for the first parent. The oth-
ers base selection on one of two recently proposed methods
to measure similarity of solutions for this problem: Jaccard
similarity (J) and Edit distance (E). For each we can select
the second parent to be the least (-A) or the most (+A) sim-
ilar on average, or the least (-P) or the most (+P) similar
to the first parent.



This comparison analysis was carried out using two stan-
dard multi-objective performance metrics available in the
literature, which are coverage and convergence with respect
to a composite reference set. The first of them indicates to
what extent a set of solutions cover those in the reference
set. The second metric measures the average distance be-
tween a set of solutions and the reference set. The results
obtained using these metrics suggests that techniques J-A,
J-P, E-A and E-P performed better than the others, as the
solutions found by them have, on average, a better coverage
and are closer to the reference set.

We have also explicitly examined the Pareto approxima-
tions from these techniques for 39 VRPTW problem in-
stances, and found that solutions obtained by techniques
J-A and E-A together dominated the others in more than a
half of the instances, and in more if they are combined with
those solutions obtained by techniques J-P and E-P.

The execution time of our algorithm was also reviewed.
We found that the technique F, with no similarity measure,
was the quickest, followed by J+A and J-A, and that E-A
and E-P were the slowest.

When the solutions from our algorithm using J-A and E-A
are compared with those from recent publications, although
our results are not the overall best, they are better than
some, and, on average, competitive. Additionally, our algo-
rithms managed to find solutions for which the accumulated
travel distance was lower than others, despite their having
a higher number of routes, illustrating the need to treat the
VRPTW as a multi-objective problem.

Given the promising performance of our algorithm, we
are now looking at the possibility of minimising one objec-
tive more, which could be the waiting time, to see if our
algorithm preserves its good performance. We are also pur-
suing the comparison of our results with other evolutionary
multi-criterion optimisation methods.
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