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Connectionist techniques are increasingly being used to model cognitive function with a view

to providing extensions, elaborations or replacements of earlier “box and arrow” models.
Networks of simplified processing units loosely based on real neurons are set up with
architectures based on known physiology, trained to perform appropriately simplified
versions of real tasks, and iteratively refined by checking their performance against humans.
Such systems can still be linked together as in the old box and arrow models, with all the old
explanations of patient data carrying through, but now we can examine the details of the
degradation of the various components, and removing neurons or connections constitute
natural analogues of real brain damage.  We can also question the validity of the old
assumptions of neuropsychological inference, and explore the possibility that processing is
actually more distributed and interactive than the older models implied (Bullinaria, 2002).
Here I shall outline what I consider to be the essential ideas.

Connectionist models learn to perform by iteratively updating their weights (e.g. by gradient
descent) to minimise the output errors for appropriate training sets of input-output pairs.
Adding up the network weight change contributions due to individual training patterns
explains why:

1. High frequency items are learned more quickly, because the appropriate weight changes
get applied more often.

2. Regular items are learned more quickly, because consistent weight changes combine
while inconsistent weight changes cancel.

3. Ceiling effects arise when items are mastered.

These effects are easily demonstrated in a standard feed-forward network with 10 inputs, 100
hidden units and 10 outputs.  Training on two sets of 100 regular items and two sets of 10
irregular items, with one regular set and one irregular set presented 20 times more frequently
than the other, results in the learning curves of Figure 1 (Bullinaria, 1999).

Simulating brain lesions in connectionist systems was discussed by Small (1991).  Bullinaria
and Chater (1995) found that very similar patterns of deficits arose by randomly removing
hidden units, randomly removing connections, globally scaling the weights, or adding random
noise to the weights.  If small scale artefacts were avoided, and all other factors controlled for,
only single dissociations were found.  Each damage type results in the activation feeding into



each output unit either drifting at random or falling to zero.  Items that are learned first during

training tend to end up furthest past the correct response thresholds when the training is
stopped.  Consequently they tend to be the last to cross over again and result in output errors
during increasing degrees of damage.  We see this in Figure 1: clear dissociations with the
regulars more robust than frequency matched irregulars, and high frequency items more
robust than regularity matched low frequency items.  These basic effects extend easily to
more realistic cases, such as surface dyslexia in the reading model of Bullinaria (1997) where
not only are the relative error proportions for the various word categories simulated, but also
the types of error produced.

There are clearly many factors, in addition to regularity and frequency, that can cause
differing learning rates and corresponding deficits on damage.  Consistency and

Neighbourhood Density are commonly found in models of language tasks such as reading and
spelling (e.g. Bullinaria, 1997).  Representation Sparseness or Pattern Strength are often used
to distinguish between concrete and abstract semantics, as in models of deep dyslexia (e.g.
Plaut and Shallice, 1993).  Correlation, Redundancy and Dimensionality have been used to
distinguish the semantics of natural things versus artefacts, as in models of category specific
semantic deficits (e.g. Devlin et al., 1998).  These factors act in a similar manner to frequency
and regularity, and their effects can easily be confounded.  To make claims about neuro-
psychological deficits involving one of them, we must be careful to control for the others.

We can see in Figure 1 the performance on high frequency irregulars crossing the low
frequency regulars.  With increasing damage there is first dissociation with better

performance on the irregulars, and later the reversed dissociation.  Devlin et al. (1998) find a
similar pair of dissociations in their connectionist account of category specific semantic
deficits.  Such “double dissociations” are resource artefacts well known not to imply
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Figure 1:  Frequency and regularity effects during training and lesioning of a simple neural
network model (HF: High frequency; LF: Low frequency; Reg: Regular; Irreg: Irregular).



underlying modularity (Shallice, 1988, p234), so there is no conflict with conventional
neuropsychological inference.  However, the finer grain of detail connectionist modelling
affords here allows accounts of human deficits difficult to accommodate in older “box and
arrow” models.

Modelling massively parallel brain processes by simulating neural networks on serial
computers is only rendered feasible by abstracting the essential details and scaling down the
size of the networks.  The damage curves of Figure 1 are relatively smooth because the
network has many more hidden units and connections than required to perform the task, and
individual connections or hidden units make only small contributions to the network’s
outputs.  For smaller networks, individual damage contributions can be large enough produce

wildly fluctuating performance on individual items, and this can result in dissociations in
arbitrary directions.  Such small scale artefacts are often sufficient to produce convincing
looking double dissociations (Shallice, 1988, p254).  Bullinaria and Chater (1995) showed
that as we scale up to more realistically sized networks, the processing becomes more
distributed and these apparent double dissociations dissolve into single dissociations.
Many successful models of human performance and their associated neuropsychological
deficits have been based on attractor networks rather than simple feed-forward networks, but
still, the resilience to damage follows the story outlined above.  Probably the most successful
models of this type are the Plaut and Shallice (1993) models of deep dyslexia.  Lesions at two
different locations in their trained networks produce double dissociation between concrete and
abstract word reading (Plaut, 1995).  Although the two damage locations do not constitute

modules in the conventional sense, it is not difficult to understand how they contribute to the
processing of the two word types to different degrees, and give opposite dissociations when
damaged.  The robustness of each location in the network is fully consistent with the general
discussion above.
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