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Abstract how modularity can arise in connectionist systems and

. hence have the potential for exhibiting double
The human brain is undoubtedly modular, and there are dissociation

numerous reasons why it might have evolved to be that
way. Rueckl, Cave & Kosslyn (1989) have shown how a
clear advantage in having a modular architecture can exist

Of particular interest to us here is the discovery that
visual perception involves two distinct cortical pathways
in neural network models of a simplified version of the (Mishkin, Ungerlel_de_r & M_acko, “1983),,_ one running
“what” and “where” vision tasks. In this paper | present a Ve”tfa”y for identifying Objec.ts ( Wh.at ). a.nd another
series of simulations of the evolution of such neural "Unning dorsally for. determining their spatial locations
systems that show how the advantagan cause (‘where”).  Some time ago, Rueckl, Cave Kosslyn
modularity to evolve. However, a careful analysis (1989) considered the interesting question of why “what”
indicates that drawing reliable conclusions from such an and “where” should be processed by separate visual

approach is far from straightforward. systems in this way. By performing explicit simulation
and analysis of a series of simplified neural network
Introduction models they were able to show that modular networks

were able to generate more efficient internal represent-

Intuitively, given the obvious potential for disruptive ations than fully distributed networks, and that they
interference, it seems quite reasonable that twkearned more easily how to perform the two tasks. The
independent tasks will be more efficiently carried ouimplication is that any process of evolution by natural
separately by two dedicated modules, rather than togethsg#lection would result in a modular architecture and
by a homogeneous (fully distributed) system. Certainlyience answer the question of why modularity has arisen.
there is considerable neuropsychological evidence that Now, eleven years later, the power of modern
human brains do operate in such a modular manner (egpmputer technology has finally reached a level whereby
Shallice, 1988). In particular, the inference from doublghe relevant explicit evolutionary simulations are now
dissociation to modularity is one of the corner stones dtasible. AlreadyDi Ferdinando, Calabretta & Parisi
cognitive neuropsychology, and over recent years doub{@2001) have established that modulaggn evolve. In
dissociation between many tasks have been establishedis paper, | present the results of further simulations and
with the implication of associated modularity. conclude that, whilst modularity may arise, the situation

Some early neural network models seemed to indicate not quite as straight-forward as the origisamput-
that fully distributed systems could also result in doublational investigation of Rueckl et al. (1989) suggested.
dissociation (e.g. Wood, 1978) and hergast some
doubt on the inference of modularity. Since then, the Learning Multiple Tasks
potential for double dissociation in connectionist systems
with and without modularity has been well studied (e.gNowadays, the basic structure of simple feed-forward
Plaut, 1995; Bullinaria & Chater, 1995; Bullinaria, 1999),neural network models is well known. We typically use
and the early connectionist double dissociations hawe three layer network of simplified neurons. The input
been seen to be merely the result of small scale artefad@yer activations represent the system’s input (e.g. a
Several later studies (e.g. Devli@pnnerman, Andersen simplified retinal image). These activations are passed
& Seidenberg, 1998; Bullinaria, 1999) have shown howia weighted connections to the hidden layer where each
weak double dissociation can arise as a result of resoungeit sums its inputs and passes the result through some
artifacts (e.g. Shallice, 1988, p232) in fully distributedform of squashing function (e.g. a sigmoid) to produce its
systems, but it seems that strong double dissociation doasn activation level. Finally, these activations are
require some form of modularity, though not necessarilpassed by a second layer of weighted connections to the
in the strong (hard-wired, innate and informationallyoutput layer where they are again summed and squashed
encapsulated) sense Bbdor (1983). Plaut (1995), for to produce the output activations (e.g. representations of
example, has shown that double dissociation can resuiwhat* and “where”). The connection weights are
from damage to different parts of a single neural networkypically learnt by some form of gradient descent training
and Shallice (1988, p249) lists a number of systems thatgorithm whereby the weights are iterativatijustedso
could result in double dissociation without modularity inthatthe networkproducesncreasingly accurate outputs
the conventional sense. In this paper, | am not so mudbr each input in a set of training data.
interested in showing how double dissociation can arise In this context, the question of modularity relates to
in connectionist systems without modularity, but ratherthe connectivity between the network’s hidden and
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Figure 1: Architecture of the basic neural network model for the “what* and “where” tasks.

output layers. During training, a hidden unit that is beingimplified systems, we have been able to observe the
used to process information for two or more output unitgenetic assimilation of learnt characteristics without
is likely to receive conflicting weight update Lamarckian inheritance, see how appropriate innate
contributions for the weights feeding into it, with avalues for network parameters and learning rates can
consequent degradation of performance relative to evolve, understand how individual differences across
network that has a separate set of hidden units for eaekiolved populations are constrained, and so on (e.g.
output unit (Plaut & Hinton, 1987). However, such arBullinaria, 2001). In the remainder of this paper | shall
extreme version of modularity with a set of hidden unitgonsider the evolution of modularity in neural network
(or module) for each output unit is likely to be rathemodels of the “what” and “where” tasks previously
inefficient in terms of computational resources, and astudied by Rueckl et al. (1989). The lessons we learn
efficient learning algorithm should be able to deahere will be applicable to the learning and evolution of
appropriately with the conflicting weight update signalsmodularity more generally.
anyway. Nevertheless, splitting the hidden units up into
disjoint sets corresponding to distinct output tasks, may The “What” and “Where” Model
be an efficient option. Indeed, it is hard to imagine how
it could be optimal to expect a single set of hidden unit§o avoid the need to repeat the extensive analyses of the
to form more than one distinct internal representation.  learnt internal representations carried out by Rueckl et al.
It is well known that, when one trains a neural(1989), | shall study exactly the same simplified neural
network using standard gradient descent type learnimgetwork model that they used, and explore whether the
algorithms, the processing at the hidden layer tends tmlvantages of modularity they observed are sufficient to
become fully distributed — in other words, there is ndalrive the evolution of modularity. | shall also follow
spontaneous emergence of modularity (e.g. Plaut, 199Bueckl et al. (1989) and Jacobs et al. (1991) in
Bullinaria, 1997). However, the human brain is someemphasizing that the tasks we are simulating are vast
what more sophisticated than a simple feed-forwardver-simplifications of what real biological visual
network learning by gradient descent, and Jacobs, Jordaystems have to cope with. It makes sense to use them,
& Barto (1991) have shown explicitly how it is possiblehowever, despite their obvious unrealistic features, since
to set up gated mixtures of expert networks that can leathey allow us to illustrate the relevant factors with
to process two tasks in a modular fashion. Such systersgnulations we can perform on current computational
appear to have advantages in terms of learning spedrdware in a reasonable amount of time.
minimizing cross-talk (i.e. spatial interference), The task consists of mapping a simplified retinal
minimizing forgetting (i.e. temporal interference), andimage (a 5x 5 binary matrix) to a simplified
generalization. In a further computational study, Jacobrepresentation of “what” (a 9 bit binary vector with one
& Jordan (1992) have shown how a simple bias towardst ‘on’) and a simplified representation of “where”
short range neural connectivity can also lead to th@nother 9 bit binary vector with one bit ‘on’). | use the
learning of modular architectures. same 9 input patterns and 9 positions as in the previous
In this paper, | am more interested in @elution of  studies, giving the same 81 retinal inputs for training on.
modularity than thdearning of modularity. The old Each of the 9 patterns consist of a different set of 5 cells
Nature-Nurture debate has come a long way in recetan’ within a 3 x 3 sub-retina array, and the 9 positions
years (e.g. Elman et al., 1996), but it is still important t@orrespond to the possible centers of>xa3array within
understand which characteristics are innate and whidhe full 5% 5 array.
need to be learnt during ones lifetime. Moreover, as Figure 1 shows the basic network that was originally
computer technology becomes more powerful, we ar@vestigated by Rueckl et al. (1989). We have 25 input
able to explore these issues by increasingly realistignits, 18 output units and 81 training examples. The
simulations. Old ideas about the interaction of learningrrowed lines represent full connectivity, aMthidl,
and evolution (e.g. Baldwin, 1896) can now be confirmedhid12, Nhid2 specify how many hidden units in each
explicitly (e.g. Hinton & Nowlan, 1987). In suitably block. Rueckl et al. (1989) studied in detail the fully



distributed networkNhidl = Nhid2 = 0) and the purely dominant genes, learning and procreation costs, different
modular networkNhid12 = 0). Our characterization will inheritance and mutation details, different survival and
allow us to explore the full continuum between thes@rocreation criteria, more restrictive mate selection
extremes. If the maximum number of hidden ubhitéd regimes, protection for young offspring, different
= Nhidl + Nhid12 + Nhid2 is fixed, then we need define learning algorithms and fitness functions, and so on, but
only two innate architecture paramet@anl = Nhidl + for the purposes of this paper, the simplified approach
Nhid12 andCon2 = Nhid2 + Nhid12 corresponding to the outlined above seems adequate. A similar regime has
number of hidden units connecting to each output block. already been employed successfully elsewhere
(Bullinaria, 2001) to study the Baldwin effect in the
Simulating Evolution evolution of adaptable control systems.
The simulated genotypes naturally include all the
To simulate an evolutionary process for the modelfnate parameters needed to specify the network details,
discussed above, we take a whole population afamely the architecture, the learning algorithm, the
individual instantiations of each model and allow them tdearning rates, the initial connection weights, and so on.
learn, procreate and die in a manner approximating thege real biological evolution, all these parameters will be
processes in real (living) systems. The genotype of eagfee to evolve. In simulations that are designed to
individual will depend on the genotypes of its twoexplore particular issues, it makes sense to fix some of
parents, and contain all the appropriate innate parametetisese parameters to avoid the complication of un-
Then, throughout its life, the individual will learn from foreseen interactions (and also to speed up the
its environment how best to adjust its weights to perforrgimulations). In my earlier study of genetic assimilation
most effectively. Each individual will eventually die, and the Baldwin effect (Bullinaria, 2001), for example, it
perhaps after producing a number of children. made sense to keep the architecture fixed and to allow the
In more realistic situations, the ability of aninitial innate connection weights and learning rates to
individual to survive or reproduce will rely on a numberevolve. Here it is more appropriate to have each
of factors which can depend in a complicated manner dndividual start with random initial connection weights
that individual’'s performance over a range of relateénd allow the architecture to evolve. Then, since the
tasks (food gathering, fighting, running, and so on). Fosptimal learning rates will vary with the architecture, we
the purposes of our simplified model, however, we shakust allow these to evolve along with the architecture.
consider it to be a sufficiently good approximation to It is clearly important to fix the evolutionary
assume a simple relation between our single task fitneparameters appropriately according to the details of the
function and the survival or procreation fithess. Whilsproblem and the speed and coarseness of the simulations.
any monotonic relation should result in similarFor example, if all individuals learn the task perfectly by
evolutionary trends, we often find that, in simplifiedthe end of their first year, and we only test their
simulations, the details can have a big effect on whajerformance once per year, then the advantage of those
evolves and what gets lost in the noise. that learn in two months over those that take ten is lost
I shall follow a more natural approach to procreationand our simulated evolution will not be very realistic.
mutation and survival than many evolutionarySince the networks were allowed to evolve their own
simulations have done in the past (e.g.Belew & learning rates, this had to be controlled by restricting the
Mitchell, 1996). Rather than training each member of thaumber of training data presentations per year to 10 for
whole population for a fixed time and then picking theeach individual. Choosing a fixed population size of 200
fittest to breed and form the next generation, thevas a trade-off between maintaining genetic diversity
populations will contain competing learning individualsand running the simulations reasonably quickly. The
of all ages, each with the potential for dying ordeath rates were set in order to produce reasonable age
procreation at each stage. During each simulated yealistributions. This meant about 5 deaths per year due to
each individual will learn from their own experience withcompetition, and another 5 individuals over the age of 30
the environment (i.e. set of training/testing data) and haw$ying each year due to old age. The mutation parameters
their fitness determined. A biased random subset of theere chosen to speed the evolution as much as possible
least fit individuals, together with a flat random subset oy maintaining genetic diversity without introducing too
the oldest individuals, will then die. These are replaceghuch noise into the process. These parameter choices
by children, each having one parent chosen randomlgd to coarser simulations than one would like, but
from the fittest members of the population, whootherwise the simulations would still be running.
randomly chooses a mate from the rest of the whole
population. Each child inherits characteristics from both Experiment 1 — The Basic Model
parents such that each innate free parameter is chosen at
random somewhere between the values of its parenisbegan by simulating the evolution of the system as
with sufficient noise (or mutation) that there is astated above. For comparison purposes, this involved
reasonable possibility of the parameter falling outside thiixing the learning algorithm to be that used by Rueckl et
range spanned by the parents. Ultimately, thal. (1989), namely online gradient descent with
simulations might benefit from more realistic encodingsnomentum on the Sum Squared Error cost funcEon
of the parameters, concepts such as recessive aHinton, 1989). As before, the target outputs were taken
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Figure 2: Evolution of the model in Figure 1 with Sum-Squared Error cost function and Log Cost fitness functic
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Figure 3: Evolution of the model in Figure 1 with Cross Entropy cost function and Log Error Count fitness.

to be 0.1 and 0.9, rather than 0 and 1, and appropriatgan expecting the mutations to carry the system from a
outputs beyond these targets were deemed errorlessate in which there is little learning at all. Thus, in all
Experience indicates that the networks learn better if thehe following experiments, the initial population learning
have different learning rates for each of the differentates were chosen randomly from the range [0.0. 2.0] and
connection layers, and each of the different bias sets. 3beg momentum parameters randomly from the range
to ensure that the architecture comparisons were fair [0.0, 1.0]. Following Rueckl et al. (1989), the initial
the sense that they were all learning at their full potentialyeights were chosen randomly within the range [0.0,0.3].
each network had five learning parameters: the learning Figure 2 shows how the innate parameters evolved
raten,y for the input to hidden layen,g for the hidden when there were 18 hidden units in total (which is how
layer biasesp,o for the hidden to output layer, amgg  many Rueckl et al., 1989, used). We see that the learning
for the output biases, and the momentum paranweter parameters soon settle down and, after a non-modular
These appear in the standard weight update equation  start, the population quickly evolves to take on a modular
JE architecture witiNhid12 near zero. This is exactly what
Aw; (n) = -n, — +abw; (n-1). we would expect from the Rueckl et al. (1989) study,
o right down the to optimal values fbthidl andNhid2.
Each genotype thus contained two parameters to control
the network architecture, and five to control its learning Experiment 2 — Different Costs
rates. The Sum Squared Error cost distribution turns out
to be rather skewed across the population, so thEhe results of Experiment 1 make the evolution of
individual evolutionaryfitnesses were defined to be modularity look almost inevitable. However, it would be
—log(Cost). misleading not to report on the countless simulations in
I have found in my earlier studies (Bullinaria, 2001)which modularity did not evolve, and which could
that the evolution can depend on the initial conditionsequally well correspond to human evolution, with the
i.e. on the distribution of the innate parameters across timplication that modularity in the human brain must
initial population, and that the population settles into ariginate in some other manner. Figure 3 shows what
near optimal state more quickly and reliably if it startcan happen with one particularly reasonable alternative
with a wide distribution of initial learning rates, ratherchoice for the gradient descent cost function and
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Figure 4. Comparison of evolved populations with Sum Squared Error (left) and Cross Entropy (right) cost fun
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Figure 5: Mean learning times with Sum Squared Error (left) and Cross Entropy (right) cost functions.

evolutionary fitness function, namely the standard Cros$arely enough hidden units to solve the task at hand, it
Entropy cost function (Hinton, 1989), and fitness definethehaves differently to when it has plenty of spare
by counting the total number of output units with errorsesources (e.g. Bullinaria & Chater, 1995; Bullinaria,
above some small fixed value (0.2 say). This results ih997). Since 18 hidden units is near minimal for our
the evolution of a completely non-modular architecturetask, all of the above simulations were repeated with 36
A systematic study reveals that changing the fitnedsidden units. This had little effect on the Cross Entropy
between —Cost, —log(Cost), 1/CostrrorCount, and simulations, but the results were rather variable with Sum
—log(1+ErrorCount) and has little effect on the resultsSquared Error costs. Sometimes modularity evolved,
However, the choice of cost function is crucial. Figure $4ometimes it didn’t, and often mixed populations arose.
compares the learning in the evolved populations for th&pparently minor variations in the implementational
Sum Squared Error and Cross Entropy cost functiordetails, or even just different random number seeds,
with —log(1+ErrorCount) fitness. The non-modularcould change the results completely.
Cross-Entropy population shows a clear superiority. Figure 6 shows the mean learning times here for
Although we should not rely on the mean learningcomparison with those for the smaller networks in Figure
rates to predict what will evolve (since the standar®. We see the Cross-Entropy plot has the same non-
deviations, the worst and best cases, and so on, are atsodular optimum as before, but the Sum-Squared Error
important), the plots in Figure 5 of the mean learningase is now much noisier, with further, roughly
times as a function of the architecture do show quitequivalent, minima appearing in the non-modular regime.
clearly where the different optimal configurations (showriThis is presumably why the evolutionary simulation
darkest) are situated. results were so variable.

Experiment 3 — Larger Networks Conclusions

A final worry was that our simulations were sufferingl have shown how it is possible to simulate the evolution
from small scale artefacts. Often when a network hasf modularity in simple neural network models.



a5 : : : : — 35F
30} ] 30t
25} ] 25}
ﬁ. 20t ﬂ 20+
b b
< L
Z 15} ] Z 15}
10t . 10}
5 5
0 : 0
-30 -20 ~-10 0 10 20 30 -30 -20 -10 0 10 20 30
Nhid2 - Nhid1 Nhid2 - Nhidl

Figure 6: Large network learning times with Sum Squared Error (left) and Cross Entropy (right) cost function

However, drawing conclusions from them about the Seidenberg, M.S. (1998). Category-Specific Semantic
modularity in human brains is not so straightforward. If Deficits in Focal and Widespread Brain Damage: A
the results (i.e. modularity versus non-modularity) Computational Account.Journal of Cognitive
depend so crucially on such non-biologically plausible = Neuroscience, 10, 77-94. o

details as the learning algorithm, then it is clearly going! Férdinando, A.Calabretta, R, & Parisi, D. (2001).
to be rather difficult to extrapolate from them to Evolving Modular Architectures for Neural Networks. In

. . . R.F. French & J.P. Sougn&ds),Connectionist Models
biological systems. On one hand, we might expect that of Learning, Development and Evolution. Springer.

the human brain has evolved particularly efficientElrnan J.L., Bates, E.A., Johnson, M.Karmiloff-Smith
learning algorithms, in which case we could argue thal o " parisi D. & Plunkett. K. (.1996).Rethinking’

the more efficient non-modular cross-entropy populations |ppateness: A Connectionist Perspective on

are the more realistic. On the other hand, real tasks are pevelopment. Cambridge, MA: MIT Press.

considerably harder than those used in our simulationsodor, J.A. (1983)The Modularity of the Mind. Cambridge,
and so the modular populations might be deemed a more MA: MIT Press.

reliable representation of the actual relation between thdinton, G.E. (1989). Connectionist Learning Procedures.
human learning algorithm power and task complexity. Artificial Intelligence, 40, 185-234.

The general simulation approach | have presentedinton, G.E. & Nowlan, S.J. (1987). How Learning Can
appears promising, but future simulations in this area wil] Guide EvolutionComplex Systems, 1, 495-502.

clearly have to be much more realistic if we are to draw@coPs, R.A. & Jordan, M.|. (1992). Computational
reliable conclusions from them. Consequences of a Bias Toward Short Connections.

Journal of Cognitive Neuroscience, 4, 323-336.
Jacobs, R.A., Jordaryl.l. & Barto, A.G. (1991). Task
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