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Abstract:  Modularity in the human brain remains a controversial issue, with

disagreement over the nature of the modules that exist, and why, when and how

they emerge.  It is a natural assumption that modularity offers some form of

computational advantage, and hence evolution by natural selection has translated

those advantages into the kind of modular neural structures familiar to cognitive

scientists.  However, simulations of the evolution of simplified neural systems

have shown that, in many cases, it is actually non-modular architectures that are

most efficient.  In this paper, the relevant issues are discussed and a series of

simulations are presented that reveal crucial dependencies on the details of the

learning algorithms and tasks that are being modelled, and the importance of

taking into account known physical brain constraints, such as the degree of neural

connectivity.  A pattern is established which provides one explanation of why

modularity should emerge reliably across a range of neural processing tasks.
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1.  Introduction

Understanding the structure and information processing mechanisms of the human brain is of

fundamental importance for cognitive scientists.  The aim of the research presented in this paper is to gain

a better understanding of the brain structures that might emerge to deal efficiently with the processing of

multiple tasks within a single neural system.  Given the obvious potential for disruptive interference, it

seems quite reasonable that two independent and qualitatively different tasks could be simultaneously

processed more efficiently if they were carried out separately by two dedicated modules, rather than

together in a homogeneous (fully distributed) system.  Hence, a process of evolution by natural selection

would be likely to cause that advantage to result in the emergence of modularity.  There is certainly

considerable cognitive neuropsychological evidence that human brains do operate in such a modular

manner (e.g., Shallice, 1988).  This evidence involves patterns of impaired behaviour being used to

inform normal cognitive structure (Caramazza, 1986), with task deficits mapped to regions of brain

damage.  In particular, one of the corner-stones of this approach has been the inference from double

dissociation (Teuber, 1955) to modularity, and over recent years double dissociation between many tasks

have been established, with the assumed implication of associated modularity.  However, it is known that

“resource artefacts” are possible, whereby two tasks can depend differently on a particular resource in

such a way that they give rise to certain kinds of double dissociation without modularity (e.g., Shallice,

1988, p. 232).  Moreover, there also exist good arguments why the double dissociation inference may be

unreliable more generally (e.g., Dunn & Kirsner, 1988; Van Orden, Pennington & Stone, 2001).

A few early neural network models did seem to show that fully distributed systems could also show

double dissociation (e.g., Wood, 1978; Sartori, 1988), and this cast some doubt on the inference of

modularity.  However, the potential for double dissociation in connectionist systems with and without

modularity has since been studied extensively (e.g., Plaut, 1995; Bullinaria & Chater, 1995), and those

early connectionist double dissociations are now seen to be merely the result of small scale artifacts.

Several later studies (e.g., Devlin, Gonnerman, Andersen & Seidenberg, 1998; Bullinaria, 2005) have

shown how weak double dissociation can arise as a result of resource artifacts in fully distributed systems,
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but it seems that strong double dissociation does require some form of modularity, though not necessarily

in the strong (hard-wired, innate and informationally encapsulated) sense of Fodor (1983).  Plaut (1995),

for example, has shown that double dissociation can result from damage to different parts of a single

neural network; Plaut (2002) has explored modality-specific specialization; and Shallice (1988, p. 249)

lists a number of systems that could result in double dissociation without modularity in the conventional

sense.  Moreover, fMRI studies (Huettel, Song & McCarthy, 2004) now provide an alternative

fundamental approach for understanding brain organization, and are refining what has been inferred from

brain lesion studies.  For example, they have led to the suggestion that the human language processing

system actually consists of “a large number of relatively small but tightly clustered and interconnected

modules with unique contributions” (Bookheimer, 2002, p. 152), and that many supposed “language

regions” in the brain are not actually specific to language, but involve lower level processes that are used

more widely (Bookheimer, 2002; Marcus, 2004, p. 129).  The whole issue is further complicated by the

existence of many different definitions of “modularity”, and the fact that different definitions may be

appropriate for different applications or different levels of abstraction (e.g., Geary & Huffman, 2002;

Seok, 2006).  Then, even if one accepts a suitably general definition of modularity, there is still plenty of

scope for disagreement over how much of it is innate and how much arises through learning, and what are

the cost-benefit trade-offs which affect that distinction (e.g., O’Leary, 1989; Elman et al., 1996; Jacobs,

1999; Geary & Huffman, 2002).

This paper attempts to make progress on the complex issue of modularity, while avoiding much of the

existing controversy, by looking at it from an orthogonal direction.  It is natural to assume that, if modular

systems have some advantage over non-modular systems, then evolution and/or learning will result in the

emergence of modules.  The important question for cognitive scientists then is: what are those

advantages, and what mechanisms enable those advantages to translate into modular architectures?  If one

starts by simulating appropriately simplified neural systems that have the ability to evolve (or, if they

prefer, not evolve) a well defined form of modularity to process some appropriately simplified tasks, one

then has a solid foundation from which to understand the emergence of modularity in neural systems

more generally, and a starting point for improving the realism so that we have increasing confidence that
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it is telling us useful things about the operation of real brains.  The idea is that the better one understands

the reasons for modularity, and the mechanisms that can result in its emergence, the better one will be

able to understand the structures and functions we observe in the human brain.  This paper begins such an

endeavor by simulating, or modelling, the evolution of some appropriately simplified neural systems

performing simplified cognitive tasks, and studying the structures that emerge.

The next two sections outline the issues underlying the learning of multiple tasks by neural networks,

and review some of the previous computational studies of modularity in neural systems.  This leads to the

identification of a number of shortcomings of the earlier studies.  The following sections then describe

how one can model the evolution of neural network systems, and present a series of new simulations that

clarify many of the relevant issues.  The paper ends with some discussion and conclusions.

2.  Learning Multiple Tasks in Neural Networks

A standard structure for simple feed-forward neural network models has now become established, with

three layers of simplified neurons.  The input layer activations represent the system’s input (e.g., a

simplified retinal image).  These activations are passed via weighted connections to the hidden layer

where each unit sums its inputs and passes the result through some form of transfer function (such as a

sigmoid) to produce its own activation level.  Finally, these activations are passed through a second layer

of weighted connections to the output layer where they are again summed and transformed to produce the

output activations (e.g., representing classifications of the input patterns).  It is known that such a

structure with sufficiently many hidden units can approximate any classification decision boundary

arbitrarily well (Bishop, 1995, p. 130).  The connection weights are usually learned by some form of

gradient descent training algorithm (such as back-propagation) whereby the weights are iteratively

adjusted to reduce some appropriate error measure so that the network produces increasingly accurate

outputs for each input in a set of training data (Bishop, 1995, pp. 140-148).  We do not need to concern

ourselves here with how exactly such a learning process might be implemented in real brains, but we do

have to assume that the connection strengths in the brain can somehow be adjusted in a similar manner to

minimize such an error measure.  We shall return to this caveat later.
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In this context, any modularity can be defined in terms of the connectivity patterns between the

network’s hidden and output layers, with the “modules” consisting of disjoint subsets of hidden units that

share a common pattern of connectivity.  During training, a hidden unit that is being used to process

information for two or more output units is likely to receive conflicting weight update contributions for

the connections feeding into it, with a consequent degradation of performance relative to a network that

has a separate set of hidden units for each output unit (Plaut & Hinton, 1987).  Such an extreme version of

modularity, with a set of hidden units (or module) for each output unit, is likely to be rather inefficient in

terms of computational resources, and a competent learning algorithm should be able to deal

appropriately with the conflicting weight update signals anyway.  Nevertheless, splitting the hidden units

up into a small number of disjoint sets, corresponding to distinct output tasks, may be an efficient option.

However, it is also quite possible that placing such restrictions on the neural architecture could degrade

the processing efficiency, particularly if a learning algorithm is employed that can find an even better

pattern of connections itself.  Moreover, it is well known that when one trains a neural network using

standard gradient descent type algorithms, the processing at the hidden layer tends to become fully

distributed – in other words, modules do not emerge spontaneously (e.g., Plaut, 1995; Bullinaria, 1997).

To see whether modularity is advantageous in practice, one needs to run explicit simulations on a

representative set of tasks and neural networks.

Note that, even if advantages of particular forms of modularity are established in this way, the

question still remains as to whether that modularity should be innate or learned (e.g., O’Leary, 1989;

Jacobs, 1999).  The Nature-Nurture debate has progressed a long way in recent years (e.g., Elman et al.,

1996), and old ideas about the interaction of learning and evolution (Baldwin, 1896) can now be

confirmed explicitly through simulation (e.g., Hinton & Nowlan, 1987; Belew & Mitchell, 1996).  For

example, in suitably simplified systems, one can observe the genetic assimilation of learned

characteristics without Lamarckian inheritance, see how appropriate innate values for neural network

parameters and learning rates can evolve, and understand how individual differences across evolved

populations are constrained (Bullinaria, 2003b).  In a similar way, evolutionary simulations can also

explore the trade-offs between having innate versus learned neural structures.  This paper, however, will
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concentrate on exploring why modules should emerge, rather than the considerably more difficult task of

simulating how.  Using simulated evolution is a good way to identify the best neural architectures for

particular tasks, but it does not, of course, imply that evolution (rather than learning within a lifetime) is

necessarily responsible for the corresponding structures in the human brain.  More detailed simulations,

involving neural architectures that can change during an individual’s lifetime, will be required to check

that.  Ebbesson (1984), Quartz (1999) and Jacobs (1999) discuss many of the issues associated with this

that are beyond the scope of this paper.

Finally, it is also worth noting that in larger scale systems and more complete brain models, the

“distinct output tasks” considered in this paper will often correspond to separate components or sub-tasks

of more complex higher level systems, and any associated modules may be re-used by many higher level

tasks.  Indeed, such module re-use is another likely reason for the emergence of modularity (e.g., Marcus,

2004, pp. 133-134; Reisinger, Stanley & Miikkulainen, 2004; Kashtan & Alon, 2005), but exploring that

aspect of modularity is also beyond the scope of this study.

3.  Previous Simulation Studies

The earliest systematic computational study in this area was the Rueckl, Cave & Kosslyn (1989)

investigation into the separation of “what” and “where” processing in the human brain.  This was based

on the belief that visual perception involves two distinct cortical pathways (Mishkin, Ungerleider &

Macko, 1983) – one running ventrally for identifying objects (“what”), and another running dorsally for

determining their spatial locations (“where”).  Alternative accounts of the distinction based on

“perception and action” or “what and how” (e.g., Goodale & Milner, 1992; Milner & Goodale, 1995), or

“planning and control” (e.g., Glover, 2003), or even “semantic and pragmatic” (e.g., Jeannerod, 1997),

rather than “what and where” (Ungerleider & Haxby, 1994), have been suggested, but for present

purposes this is not important.  There is no doubt that the human brain and its functions are much more

complicated than current models, and that various accidents of evolutionary history have influenced its

structure.  What is important here is that there are two simple and well defined tasks based on the same

inputs, and simulations can explore what advantages a modular system has over a fully distributed
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system.  Eventually, of course, one will have to address the complications of real brains, but that is not the

best starting point for this kind of study.  Rather, one should start with the simplest system possible, that

has the minimum number of potential confounding factors.  Rueckl et al. (1989) took a set of 81

simplified “retinal images” (5 × 5 binary arrays) as inputs to a standard feed-forward neural network and

trained it with a standard gradient descent based learning algorithm to classify each image as one of nine

3 × 3 binary patterns (i.e. “what”), in one of nine positions (i.e. “where”).  By analyzing the performance

of the trained networks, they demonstrated that modular networks were able to generate more efficient

internal representations than fully distributed networks, and that they learned more easily how to perform

the two tasks.  The implication was that a process of evolution by natural selection, maybe also involving

some form of lifetime learning, would result in a modular architecture, and hence answer the question of

why modularity had arisen.

The obvious next step was to simulate evolutionary processes for the Rueckl et al. (1989) style

networks and watch the modularity emerge.  Although such simulations (of the form described in the

following sections) did show that modularity could evolve if the learning and performance were based on

the same Sum-Squared Error (SSE) measure as used by Rueckl et al. (1989), they also showed that even

better non-modular systems could emerge if they were based on the Cross Entropy (CE) error measure

(Hinton, 1989), thus throwing this whole approach into doubt (Bullinaria, 2001).  Other evolutionary

neural network simulations involving the same what-where tasks (Di Ferdinando, Calabretta & Parisi,

2001; Calabretta, Di Ferinando, Wagner & Parisi, 2003) confirmed the increasingly widespread belief that

for complex tasks it is most efficient to have the neural architectures largely innate and the connection

weights largely learned (e.g., Elman et al., 1996).  These simulations also elucidated further the

emergence of modularity in the SSE case, but they did not consider CE based learning.

In another series of evolutionary neural network simulations, Hüsken, Igel & Toussaint (2002)

introduced finer grained measures of modularity and again found that the requirement for fast learning

increased the selective pressure for modularity in the SSE case, but could not reproduce those results for

the CE case.  Most recently, Bowers & Bullinaria (2005) took a computational embryogeny approach to

model the evolution of modularity at an even lower level of description, involving neural stem cells and
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connections growing along simulated chemical gradients.  In these simulations, no sign of modularity

emerged until limits were placed on the connection lengths and the output neurons corresponding to the

two tasks were physically separated by sufficient distances.  This was consistent with the consequences of

the bias towards short range neural connectivity discussed by Jacobs & Jordan (1992).  However, a major

problem with incorporating such physical constraints into the models, is that it is not always clear whether

the physical structures have emerged as an efficient way to implement the best possible architectures, or

whether the emergent architectures are simply the best that can be achieved with the available physical

structures that have been constrained by other factors.

In a non-evolutionary study, again using the same simplified what-where task, Jacobs, Jordan & Barto

(1991) explored task decomposition and modularity through learning in gated mixtures of experts

networks.  These systems are comprised of a set of separate “expert” networks/modules whose outputs are

combined according to the outputs of a “gating network” that controls how the “experts” are used.  This

arrangement was argued to provide advantages in terms of learning speed, minimization of cross-talk (i.e.

spatial interference), minimization of forgetting (i.e. temporal interference), and generalization.

However, it is difficult to set up these systems in such a way that there is no inherent bias towards

modularity.  Moreover, it seems that if one does remove the bias towards modularity, and evolves all the

learning and architecture parameters, the same SSE versus CE differences emerge as in the standard

networks (Bullinaria, 2002).  By restricting the neural architecture in this study to be the simplified feed-

forward structure shown in Figure 1, one can be sure of avoiding any biases.  If necessary, the issue of

how any associated gating mechanisms might operate and be implemented in brains can be returned to

once any advantage of modularity has been established.

The above brief review has identified three specific factors that clearly need further study:

1. The dependence on the learning algorithm.  In particular, the cause of the observed differences in

structures emerging for the SSE and CE based error measures, and how to choose which is the

most appropriate to use.

2. The effect of physical constraints.  In particular, the factors that affect neural connectivity other

than computational efficiency.
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3. The dependence on the task.  In particular, to what extent do the results for the simplified what-

where task used in all the earlier studies extend to more realistic tasks.

The remainder of this paper will address each of these issues.

4.  Evolving Modular Neural Networks

The aim here is to use simulated evolution to establish the best neural architectures for particular

applications.  The general procedures for evolving neural networks are now well established (e.g., Yao,

1999; Cantû-Paz & Kamath, 2005).  One takes a whole population of individual neural networks and

allows them to learn, procreate and die in a manner approximating these processes in real biological

systems.  Each individual is “born” with a genotype, representing all the appropriate innate parameters,

that is derived from the genotypes of its two parents.  Then, throughout its “life”, it learns from its

environment how best to adjust its connection weights to perform most effectively.  The fittest individuals

will tend to live longest and produce the most children.  Repeated natural selection of this form allows

useful innate characteristics to proliferate in the population, and fitness levels improve towards some

(possibly local) optimum.

There are two broad types of evolutionary simulation one might use: generational approaches in

which the populations are updated one generation at a time (e.g., Yao, 1999), and more biologically

inspired approaches with populations of competing learning individuals of all ages, each with the

potential for dying or procreation at each stage.  Previously, it seemed natural to use the biologically

inspired approach for simulating brain evolution (Bullinaria, 2001).  However, a detailed comparison of

the two approaches for evolving good neural network learners revealed that, unlike the generational

approach, the biologically inspired approach frequently converges to far from optimal configurations if

poor choices of the various evolutionary parameter values are made, and that when one manages to avoid

that problem, the resultant networks are very similar to those produced by the generational approach

(Bullinaria, 2004).  For this reason, a generational approach is used in this study.  This also allows

comparisons with the Bullinaria (2001) results to confirm the robustness of the results with respect to the

evolutionary details.
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The simulated genotype should represent all the parameters necessary to specify the neural network

details, such as the architecture, the learning algorithm, the learning rates, the initial connection weights,

and so on.  In real biological evolution, all these parameters will be free to evolve.  In simulations that are

designed to explore particular issues, it makes more sense to fix some of these parameters, and thus avoid

the complication of unforeseen interactions, and also speed up the simulations.  For example, in a study

designed to investigate the Baldwin effect (i.e. the interaction of learning and evolution and genetic

assimilation) in control systems (Bullinaria, 2003b), it made sense to keep the architecture fixed and

allow the learning rates and innate initial connection weights to evolve.  Here it is more appropriate to

allow the architecture to evolve, and have each individual start with random initial connection weights

drawn from innately specified distributions.  Then, since the optimal learning parameters are likely to

depend on the architecture, these should be allowed to evolve along with the architecture.

Thus, at the beginning of each simulated generation, all the individual neural networks are “born”

with random weights drawn from their own innately specified initial weight distributions, and each then

learns from its own experience with the environment (i.e. training/testing data sets for the specified tasks).

For biological populations, the ability of an individual to survive or reproduce will rely on a number of

factors which will usually depend in a complicated manner on their performance over a range of related

tasks (feeding, fighting, fleeing, and so on).  For the purposes of the simplified models studied here, it is

more appropriate to assume a simple relation between the main task performance measure and the

procreation fitness.  For each new generation, the children are produced from the fittest individuals using

appropriate forms of cross-over and mutation.

The simplest starting point for studying modularity is to have one set of inputs and two tasks

processed by the standard feed-forward neural network shown in Figure 1, where the arrows represent full

connectivity between blocks of processing units, and architecture parameters Nhid1, Nhid12 and Nhid2

specify how many hidden units connect to each set of output units.  The idea is that simulated evolution

will find the values for these parameters that result in the best network performance.  If Nhid12 tends to

zero, the architecture is totally modular, with modules consisting of a separate set of hidden units

dedicated to each of the two tasks.  If Nhid1 and Nhid2 both tend to zero, the architecture is totally non-
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modular, with the processing of both tasks distributed across all the hidden units.  For reasons that will

become clear later, the total number of hidden units Nhid is kept fixed, leaving two free architecture

parameters Nhid1 + Nhid12 and Nhid2 + Nhid12 corresponding to the total number of hidden units

connecting to each output block.  Then, since the best values for all the learning parameters are likely to

depend on the architecture, and vice-versa, we also need to evolve the random initial weight distributions

[-lL, +uL] and gradient descent learning rates ηL for the four network components L (input to hidden

weights IH, hidden unit biases HB, hidden to output weights HO, and output biases OB).  The genotypes

thus represent a total of 14 evolvable numerical parameters, each directly encoded as positive real

numbers, with rounding applied to produce the integer hidden unit numbers.  Ultimately, the simulations

might also benefit from more biologically realistic encodings of the parameters, concepts such as

recessive and dominant genes, learning and procreation costs, better inheritance and mutation details,

different survival and procreation criteria, more restrictive mate selection regimes, offspring protection,

more sophisticated learning algorithms and fitness functions, and so on, but for the purposes of this paper,

the above simplified approach should be adequate.

5.  Baseline Simulation Results

To avoid having to repeat the extensive internal representation analyses carried out by Rueckl et al.

(1989), this study will begin with the same simplified “what-where” tasks that they used (with nine 3×3

patterns that may appear in nine positions in a 5×5 input space), and explore whether the advantages of

modularity they observed will be sufficient to drive the evolution of modularity.  Fitness here corresponds

to the number of training epochs required to correctly classify all 81 input patterns.  The simulation

results are found to be extremely robust with respect to the details of the evolutionary processes, which

are chosen here to produce clear results with the minimum drain on computational resources.  All the

results presented are for populations of 100 individuals, which was a trade-off between maintaining

genetic diversity and running the simulations reasonably quickly.  Each new generation is populated by

children of the fittest half of the previous generation.  There are many ways this can be done, but as long

as population diversity is maintained, the details generally only affect the speed of evolution, rather than
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what eventually emerges.  Comparison of the baseline results obtained here with those from the

biologically inspired evolution of Bullinaria (2001) provides explicit confirmation of the robustness with

respect to the evolutionary details.  Here, to speed the evolution, a fairly strong form of elitism was used,

with half the children generated from just one parent (copying their parent’s innate parameters), and the

other half generated more conventionally from two parents (with each parameter value chosen randomly

from the range spanned by their two parents, plus random Gaussian mutations that allow parameters

outside that range).  No learned information is carried between generations – at each generation, each

individual starts with new random initial weights drawn from its own innate distribution.

Earlier studies (e.g., Bullinaria, 2003b) have shown empirically that the evolution can depend

strongly on the initial conditions, i.e. the distribution of innate parameters across the initial population,

and that the populations settle into near optimal states more quickly and reliably if they begin with a fairly

wide distribution of initial parameters, rather than expecting mutations to carry the system from a

relatively uniform state in which there is very little learning at all.  Consequently, the initial populations

were started with all the innate learning and initial weight parameters chosen randomly from ranges that

spanned those values generally used in hand-crafted networks, namely [0, 4].  This ensured a good chance

of starting from a range of reasonably competent individuals.  The evolutionary process then continued

until all the evolving parameters had clearly settled down.

For ease of comparison against earlier and later results, it is appropriate to begin the current study by

establishing some baseline results for 32 hidden units, presenting averages and variances over ten

independent evolutionary runs.  Figure 2 shows how the learning rates and architecture evolve for the

Rueckl et al. (1989) learning process, which uses the SSE gradient descent error function with the binary

output targets offset to 0.1 and 0.9.  As found previously, a purely modular architecture emerges, with a

much higher proportion of the hidden units used for the harder “what” task.  In Figure 3, the

corresponding results for the CE cost function with binary output targets show that somewhat different

learning rates are appropriate there, and that now a purely non-modular architecture emerges.  The

difference in evolved learning rates confirms the need to evolve good parameter values for each cost

function, rather than attempting to perform comparisons using equal values for each case.  The evolution
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of the initial weight distributions do not tell us much, apart from the fact that, like the learning rates, they

differ somewhat between network components, and from the values traditionally employed in hand-

crafted networks.  On the left of Figure 4 is shown the corresponding learning performances of the

evolved individuals, with averages and variances over 32 learning runs for each individual from the 10

evolved populations after 6000 generations.  The non-modular CE individuals are seen to perform

significantly better than the modular SSE individuals.

6.  Varying the Learning Algorithm

The baseline simulation results presented in the previous section constitute a confirmation of the main

findings of Bullinaria (2001), and provide a check of their robustness with respect to the details of the

evolutionary processes employed.  A potential difficulty, however, lies in the use of non-binary output

targets for the SSE approach, which is now known to be a less than optimal way to proceed (Bullinaria,

2003a).  There are two common variations on the SSE theme that also need to be investigated: first using

Pure SSE with the same binary targets as in the CE case, and second adding a so-called Sigmoid Prime

Offset (SPO) of 0.1 into the output sigmoid derivative term in the weight update equations instead of

offsetting the binary targets (Fahlman, 1988; Bullinaria, 2003a).  Repeating all the evolutionary

simulations using these two alternative approaches results in the evolved learning performances shown on

the right of Figure 4.  The Pure SSE case has much worse performance than SSE with offset targets, and

again purely modular architectures emerges.  For the SSE+SPO case, the performance is much better than

for SSE with offset targets, but not as quite as good as the CE case.  In this case, purely non-modular

architectures emerge, as for the CE simulations before.

The importance of having the right neural network architecture can be confirmed by repeating all the

evolutionary runs with the architecture fixed to be opposite (in the sense of purely modular versus purely

non-modular) to that which emerged when it was free to evolve.  The mean learning times and variances

across 10,000 individual runs of each of the four learning algorithms, for evolved and opposite

architectures, are shown on the left of Figure 5.  The differences between learning algorithms are all

statistically significant, and for each learning algorithm, the performance is significantly worse if the
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wrong architecture is used.  On the right of Figure 5 is shown a contour plot of how the performance

degrades for the CE case away from the architecture optimum at the apex of the triangle.

The neural network simulations so far have shown that modularity is advantageous for the simplified

what-where problem if the SSE with target offset cost function is used for learning, as in the Rueckl et al.

(1989) study, or if a pure SSE learning algorithm is used.  However, if the CE cost function is used, or

SSE with an SPO, the performance is best with a purely non-modular architecture, and it remains better

than the other learning algorithms even if a modular architecture is used.  For each case there is a trade-

off between employing modularity to reduce the cross-task interference, and the additional flexibility and

free parameters arising from the full connectivity of non-modular architectures.  The obvious question is:

why does the trade-off favor modularity in some cases but not others?

There is actually a well known problem with using the SSE cost function in neural networks with

sigmoidal outputs and binary targets, which is why the SSE learning algorithm variations exist.  During

learning, the gradient descent weight updates are proportional to the output sigmoid derivatives, which

become close to zero near totally incorrect outputs, as well as for correct outputs.  This means that if the

weight updates from distinct training patterns interfere with each other in such a way as to cause incorrect

outputs, as will tend to happen when learning multiple tasks in non-modular networks, correcting them

later will be relatively difficult (Anand, Mehrotra, Mohan & Ranka, 1995).  Attempts to evolve solutions

to this problem for general single task binary mappings consistently resulted in the SSE learning

algorithm evolving into the CE learning algorithm (Bullinaria, 2003a).  For the CE cost function, the

problematic sigmoid derivatives cancel out of the weight update equations, and there are also good

theoretical reasons why CE is more appropriate for classification tasks anyway (Hinton, 1989; Bishop,

1995).  It is understandable then, why the evolutionary simulations find that the interference prone SSE

case favors modularity, while the superior CE algorithm is sufficiently interference free that it is able to

make good use of the extra flexibility of non-modularity.  Offsetting the output targets is aimed at keeping

the network outputs away from the zero derivative regions, but it is only partially successful (Bullinaria,

2003a), so modularity is still preferred in that case.  Adding a small SPO to the sigmoid derivatives is a

more direct approach for preventing them from going to zero, and this is successful at preventing enough
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of the interference problems to render useable the advantages of non-modularity, and comes close to

reaching the performance levels of CE.  The remainder of this paper will present a further series of

evolutionary simulations to explore whether non-modularity is always the preferred option when the most

efficient learning algorithms are employed.

7.  Evolving the Learning Algorithm

In all the above simulations, the learning algorithm was fixed to be standard gradient descent learning

using either the CE cost function or some variation of SSE.  Now, to make sure that the best possible

learning algorithm is used in all the subsequent simulations, the learning algorithm itself will also be

evolved.  This can be done by using a cost function that is an evolvable linear combination of SSE and

CE, which (because the coefficients must remain non-negative and an overall scale factor can be absorbed

into the evolvable learning rates) can always be written without loss of generality as

E = (1− µ)ESSE + µECE

with the parameter µ bounded to lie in the range [0, 1].  This parameterization is deliberately different to

that of Bullinaria (2003a), to provide another check of the robustness of the results with respect to the

implementational details.  Although the SSE and CE cost functions have rather different mathematical

forms, the gradient descent weight updates are proportional to their derivatives which differ only by the

problematic output sigmoid derivative term (1–oj)oj , so the combined weight wij update equation for the

connection between hidden unit i and output unit j can be written

Δwij = −η
∂E
∂wij

= −ηhi(t j − oj ) (1− µ)(1− oj )oj  +  µ[ ]

where tj is the target output, oj is the actual output, hi is the hidden unit activation, and η is the learning

rate.  The evolvable parameter µ has extreme values of 0 and 1 corresponding to the pure SSE and CE

learning algorithms, and an intermediate value of around 0.1 corresponds to the traditional Sigmoid Prime

Offset approach for avoiding the SSE learning problem (Fahlman, 1988; Bullinaria, 2003a).  If we

continue to keep the total number of hidden units fixed, that gives a total of two architecture and thirteen
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learning parameters to evolve.  We now simply have to repeat the above evolutionary simulations, using

the same Rueckl et al. (1989) what-where training data, with the new cost function E and associated

evolvable innate parameter µ.

Figure 6 shows the new simulation results for neural networks with 36 hidden units, with mean values

and standard deviations over ten runs.  The parameter µ takes on values very close to one, corresponding

to a purely CE learning algorithm, and the evolved architecture parameters again correspond to purely

non-modular networks.  All the final evolved learning rates and initial weight distributions are

indistinguishable from those found in the CE runs before.  Together, the evolved parameters result in the

training data being learned in around 18 epochs, and provide a solid confirmation of the earlier results that

the requirement for faster learning on this what-where task leads reliably to the emergence of non-

modular neural architectures.

8.  Physical Constraints on Neural Connectivity

When building cognitive models, it is naturally important to take into account the physical properties of

the brain, in addition to the computations it is performing.  However, in understanding the reasons for

particular brain structures, it is also important to distinguish between the physical properties that really do

constrain those structures and the computations they perform, and those physical properties that could

potentially be different if the associated computational advantages were sufficient to cause them to

evolve.  This is why one needs to explore the models both with and without the constraints applied.

Perhaps the most obvious physical brain property is its finite size, and so an important factor to

consider is the dependence on the computational power of the neural network compared with the

complexity of the task being learned.  It has certainly been found elsewhere in neuropsychological

modelling that neural networks can behave rather differently when they have barely enough hidden units

to carry out the given tasks, compared to when they have plenty of spare resources (e.g., Bullinaria &

Chater, 1995; Bullinaria, 2005).  Moreover, Ballard (1986) has argued that limitations on the number of

available neurons can lead to advantages for modularity for representing complex high dimensional

spaces.  It is reasonably straightforward to check this by repeating the above simulations with different
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total numbers of hidden units.  Figure 7 shows how the evolved network architecture and performance

vary with the computational power.  On the left we see that the evolved architectures remain non-modular

from the minimal network required to perform the given task (9 hidden units) right up to over a hundred

times that size (1000 units).  On the right we see how the required number of epochs of training decreases

as more computational power is made available.  This is why the total number of hidden units has been

fixed in all the evolutionary simulations – otherwise the evolution of faster learning would just keep on

increasing it, and the evolutionary process would slow down (in real time on a non-parallel processor) due

to the increased computations required, rather than settling down because an optimal configuration had

emerged.  Real brains, of course, are parallel processors and their sizes are constrained by various

physical factors, such as growth costs, energy/oxygen consumption, heat dissipation, and such like.  Kaas

(2000) considers the design problems that are faced as brains get bigger or smaller, and discusses why

brain sizes should vary so much, and have appropriate sizes that depend on the type and size of animal

and its particular environment.  It makes good sense, therefore, for the number of hidden units to be fixed

in all the models at some appropriate value.  The fact that the optimality of non-modular architectures for

the what-where task is so robust with respect to network complexity, means that there is no need to be too

concerned about fixing that simulated brain size here with uncertain accuracy.

A related physical constraint of importance here derives from the fact that the significant volume

occupied by neural connections (i.e. axons and dendrites) precludes full neural connectivity (e.g.,

Chklovskii et al., 2002; Sporns et al., 2004).  The relevant biological factors and their consequences for

brain structure have been discussed by Stevens (1989), Kaas (2000), Changizi (2001) and Karbowski

(2003), and Ringo (1991) has presented an explicit model which shows why the degree of neural

connectivity should decrease as brain size is increased.  Perhaps the most obvious approach to minimize

the volume of connections would be to keep them as short as possible.  Jacobs & Jordan (1992) and

Bowers & Bullinaria (2005) have already looked at the emergence of restricted connectivity resulting

from a bias towards short connections in neural network models where the neurons have positions

specified in a three dimensional space.  However, it is difficult to model the evolution of such details

without introducing an inherent bias towards modularity, so instead we shall here explore whether
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modularity will emerge simply from restrictions on the proportion of connections, without regard to the

neuron positions and connection lengths.  With a given optimal pattern of connectivity, evolution will

surely arrange the neurons and connections to minimize the various costs of the connections (Chklovskii,

2004), but restrictions on the connectivity proportions alone could be sufficient to drive the evolution of

modularity.

The above simulations can easily be extended to test these ideas – one simply has to repeat them with

the degree of connectivity between layers restricted to be no more than some fraction f of full

connectivity.  The easiest way this might be implemented is to allow only a random subset of the possible

connections between each block of units, and let the learning algorithm determine how to use those

connections most effectively.  For the architecture we have been evolving, shown in Figure 1, the total

connectivity fraction for the hidden to output layer is

f =
Nhid1+Nhid12( ).Nout1+ Nhid2 + Nhid12( ).Nout2[ ]. fHO

Nhid. Nout1+ Nout2( )

Assuming each hidden unit is connected to at least one output unit, and the total number of hidden units

Nhid = Nhid1 + Nhid12 + Nhid2 is fixed, this can be reduced either by reducing the connectivity

proportion fHO between the blocks of units, or by reducing Nhid12 which corresponds to increasing the

degree of modularity.  The choice is effectively between randomly removing connections from anywhere,

or systematically removing connections from hidden units that contribute to both output tasks.  If a hidden

unit can usefully contribute to both tasks, it is likely to be efficient to keep the corresponding connections,

but if the two tasks are sufficiently different that they cause interference in the learning process for the

common hidden units, it will be more efficient to remove connections so that each hidden unit only

contributes to a single task.  The architectures that we can expect to emerge from evolution will thus

depend on the details of the tasks involved, but it seems likely that modularity will emerge for

qualitatively different tasks, such as the simplified what-where tasks we have been studying.

Figure 8 shows the architectures that emerge when the above simplified what-where network is

evolved with Nhid = 72 hidden units in total.  As f is reduced, the number of hidden units shared by both
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output tasks, Nhid12, falls almost linearly until f reaches one half, and then it stays close to zero for all

lower levels of connectivity.  Since the connectivity proportion in real brains is known to be considerably

less than one half (Chklovskii et al., 2002), this means that a modular architecture will make the most

efficient use of the available connections if they are limited to the extent that is found in brains.  As one

would predict, Figure 8 also shows that the number of epochs of training required rises sharply as the

connectivity proportion reaches a level close to the minimum number of connections necessary to perform

the given tasks.  Increasing the total number of hidden units allows efficient processing at lower

connectivity levels, but modularity remains the preferred architecture for connectivity proportions below

one half.  Throughout, Nhid2, corresponding to the easier “where” task, is lower than Nhid1, as was found

in the modular SSE simulations (Bullinaria, 2001) and the original Rueckl et al. (1989) study, but the

relative size of the two modules varies slightly with the connectivity proportion.

9.  More Realistic Learning Tasks

Having established that modularity will only be an advantage for learning the what-where task when there

are constraints upon the proportion of neural connectivity, there remains the obvious question of whether

that will be true for all tasks.  A particular concern is that learning a small set of input-output mappings

for the simplified what-where task is very different to most realistic human cognitive tasks in which we

are typically required to generalize from, and respond to, an unpredictable stream of inputs drawn from

continuous data distributions.  Moreover, it has been suggested elsewhere that modularity is crucial to

obtain good generalization for some complex tasks, such as in the connectionist sentence production

model of Chang (2002).

A typical type of task humans have to cope with is the classification in various ways of novel input

data drawn from some continuous distribution, by learning to generalize from different examples they

have experienced before.  To keep things simple for simulation purposes, suppose we have just two

continuous valued inputs that have been normalized to lie in the range [0, 1], and we need to perform two

distinct classifications based on those input values.  For example, the inputs might correspond to two

crucial measurable characteristics of animals, and the two output tasks could be to classify them as being



20

good food (or not) and dangerous (or not).  The neural networks are required to learn the classification

boundaries in the two dimensional input space for each output task, from a continuous stream of

examples.  Obviously, even for this simplified set-up, there are still an infinite number of possible tasks

corresponding to the different possible classification boundaries.  What we need to establish is whether a

separate module for each output task consistently works better or worse than a fully distributed network,

rather than the advantage of modularity being problem dependent.  One can attempt to answer that

question by repeating all the above simulations with everything else the same except for the training data

and the fitness measure.  Here the fitness is the ability to learn quickly to generalize, i.e. to produce the

right output for each new item before training on it, rather than producing the right output for each item

after many epochs of training on it.  In practice, it was convenient to present the infinite sequence of

possible input patterns in blocks (or epochs) of 400 training items, and measure the fitness as the number

of blocks required before a full block of items was classified correctly before training on each item.  The

precise details of this regime are not crucial; for example, increasing or decreasing the block size by a

factor of two does not produce qualitatively different results.

It did not require many evolutionary simulations to determine that the advantage of modularity is

problem dependent, and that the advantage depends on many factors, in particular, the overlap of the two

classification tasks, the relative difficulties of the two tasks, the complexity of the decision boundaries,

and the number of classes.  The two simple cases shown in Figure 9 are representative of the two patterns

of results that emerge for networks with 200 hidden units.  The case on the left involves one two class

task and one three class task.  For full neural connectivity, the optimal architecture that emerges is non-

modular, and as the degree of neural connectivity is reduced, the degree of modularity increases, as we

found for the what-where case earlier.  The case on the right consists of two two class tasks.  Here, a

modular architecture is found to evolve for any degree of neural connectivity.  As one would expect from

the earlier results, for both cases the average amount of training data required to reach a block of perfect

performance decreases as the connectivity, and hence the computational power, is increased.  Since the

evolved architectures for both cases are consistently modular below a connectivity proportion of one half,

and the proportions in real brains are considerably lower than that (overall, at least), it seems that the
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evolutionary simulations do provide a consistent understanding of why modularity should emerge.

A final complication is the need to check again that the evolutionary simulations are not converging

on architectures that actually perform worse than the other possibilities.  To do this, a representative

subset of the simulations were repeated with the architecture constrained to be modular, and again with it

constrained to be non-modular.  These runs confirmed that the evolved architectures did indeed produce

the best performance for each task.

10.  Discussion and Conclusions

This paper began by reviewing the previous attempts to understand the advantages of modularity in neural

systems, which evolution, or evolution plus lifetime learning, might be expected to translate into the brain

structures familiar to cognitive scientists.  There was a clear need for further exploration into the effects

of: the choice of learning algorithm, the type of task, and the incorporation of physical constraints.  An

approach was described for simulating the evolution of artificial neural networks in which modularity

could be defined as “specialized sub-sets of hidden units” in standard feed-forward networks, and this was

used to confirm the main results of the previous studies.  Those simulations were then extended by

allowing the neural learning algorithms to evolve alongside the architectures, and by investigating more

realistic learning tasks.  It was found that for many tasks there is no learning advantage for modularity

because the reduction in cross-task interference that modularity provides is out-weighed by the extra

computational power allowed by full connectivity.  For other tasks, the problem of interference is more

important than the computational power, and modularity does evolve.  For artificial systems then, the

usefulness of modularity is application dependent, and it seems difficult to formulate general purpose

heuristics that tell us when modularity is likely to be an advantage.

Cognitive scientists more interested in understanding biological brains, than building artificial

systems, will need to have their models further constrained by various physical properties.  Two particular

aspects were investigated: limits on the total number of neurons, and limits on the degree of neural

connectivity.  The earlier results were found to be robust with respect to the number of neurons, but for

connectivity proportions less than one half, modular architectures were found to have a clear advantage in
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terms of learning efficiency, and simulated evolution led to the emergence of modular structures for all

the pairs of simplified tasks considered.  Since the degree of neural connectivity in real brains is

considerably less than one half, this implies a clear reason why modular architectures should exist in the

brain, and ties in with existing suggestions in the literature that increasing modularity is a practical

solution to the difficulties of building larger brains (e.g., Kaas, 2000).  Of course, the computations

carried out by real brains are far removed from the simplified pairs of tasks simulated in this paper, and

the patterns of connectivity will inevitably need to be correspondingly more complex, quite possibly with

small world network structure (Watts & Strogatz, 1998; Sporns et al., 2004).  It will certainly be

instructive in the future to extend the simulations of this paper to investigate exactly what types of neural

configurations emerge to deal with more complex information processing tasks.

Interestingly, the existing simulation results (e.g., Figures 8 and 9) show that the learning

performance increases with the degree of connectivity, and so if this were free to evolve too, we should

expect it to increase towards full connectivity if that were physically possible.  Chklovskii et al. (2002)

have considered some of the ways evolution might have optimized neural circuits (to minimize

conduction delays, signal attenuation, and connection lengths) and concluded that approximately 60% of

the space should be taken up by wiring (i.e. axons and dendrites), which is close to the proportion actually

found.  This in turn will place hard constraints on the connectivity proportions, and it is not clear if any

amount of evolutionary pressure would be able to overcome them (Chklovskii, 2004), except perhaps in

the simplest possible brain structures.  In fact, further simulations indicate that, as the number of hidden

units increases, the performance versus connectivity relation becomes increasingly flat, so for structures

with human brain-like numbers of neurons, the evolutionary pressure towards increased connectivity may

be relatively low anyway, at least for connectivity levels in the range where non-modular architectures

might be advantageous.

It is important to remember that the simplified gradient descent learning algorithms employed in this

study are unlikely to bear much resemblance to the learning mechanisms of real brains.  Past comparisons

of the resultant neural representations (e.g., Plaut & Shallice, 1993) have indicated that the results

obtained from such simplified algorithms do give a good indication of what can be expected to emerge
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from more biologically plausible learning mechanisms.  However, it is not clear that such comparisons

can be relied upon when factors such as learning speed are so important.  Indeed, two aspects of the

results presented in this paper show how crucial the choice of learning algorithm is; namely the

dependence of the evolved architecture on learning algorithm seen in Sections 5 and 6, and the learning

time histograms in Figure 5 indicating that the choice of learning algorithm is more important than having

the right architecture.  This learning algorithm dependence would have been problematic if the study had

stopped there.  The obvious argument then would have been that evolution will surely drive the brain

towards the most efficient learning algorithm possible (as we saw in Section  7), and that would not have

problems with cross task interference, and hence there would be no computational advantage for

modularity, and no understanding of why it should exist in the brain.  Going on and finding (as in

Section 9) that modularity is advantageous for some, but not all, more realistic complex tasks, even with

the most efficient artificial learning algorithm, then raises the question of what properties of real tasks

will require modularity for real learning algorithms.  Then, given the simplifications involved with the

current models, we would have ended up with no useful answers at all.  Fortunately, the issue of neural

connectivity proportions has brought us to the conclusion that modularity evolves for all the tasks and

learning algorithms studied, thus rendering the lack of biological plausibility less problematic.

The overall conclusion then seems to be that, despite the doubts raised by Bullinaria (2001), the

reasons for the emergence of modularity in brains can be understood simply in terms of learning

advantages in neural systems, if the appropriate physical constraints are taken into account.

Understanding exactly how these modules actually come about through evolution and/or lifetime learning

in real brains is something that still requires more detailed simulations.  Moreover, having one good

reason for why modularity should emerge does not preclude there being other reasons for some, or all,

aspects of modularity in the brain.  Indeed, there are numerous other reasons why modularity might be

advantageous, for both artificial systems and biological brains, such as to facilitate problem

decomposition and the re-use of common processing sub-systems across multiple tasks (e.g., Reisinger,

Stanley & Miikkulainen, 2004; Kashtan & Alon, 2005), to allow improved generalization in complex

multi-component tasks (e.g., Chang, 2002), to improve robustness and evolvability (e.g., Wagner, 1996),
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and to cope better with changing environments (e.g., Lipson, Pollack & Suh, 2002; Kashtan & Alon,

2005).  Nevertheless, the simulations presented in this paper have demonstrated how modularity can also

be an advantage in much simpler systems, and it is likely that the evolutionary neural network framework

presented here can also provide a sound foundation for investigating the emergence of modularity in more

complex systems too.  Those future models will inevitably have to include more realistic neural

structures, connectivity patterns, growth mechanisms, and learning algorithms, as well as the

incorporation of the relevant known stages in human brain evolution.  They will clearly also need to

involve classification tasks much more complex than those considered here, as well as all the other forms

of information processing known to be carried out by brains.  Finally, they will need to establish when

modularity is not an advantage, and how all the “modules” should interact.  It is hoped that progress in

these directions will be reported in the near future.
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Figure 1:  The simplified neural network architecture used to study the evolution of modularity.  Arrows

represent full connectivity between blocks of processing units.
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Figure 2:  Evolution of the learning rates (left) and architecture parameters (right) when using the Sum-

Squared Error cost function with offset targets (SSE).  A pure modular architecture emerges.
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Figure 3:  Evolution of the learning rates (left) and architecture parameters (right) when using the Cross

Entropy cost function (CE).  A fully distributed architecture emerges.
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Figure 4:  Learning performance of the evolved populations: baseline SSE and CE systems (left) and two

variations of the SSE learning algorithm (right).  Modularity emerges for the SSE and Pure SSE cases,

while non-modular architectures evolve for the better performing CE and SSE+SPO cases.
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Figure 5:  Learning times for the various learning algorithms with evolved and opposite architectures

(left), and the variation of learning times with architecture for the CE learning algorithm (right).



36

Figure 6:  Evolution of the standard what-where neural network with 36 hidden units and an evolvable

learning algorithm: the learning rates (top left), the CE versus SSE parameter µ  (top right), the

architecture parameters (bottom left), and the epochs of training required (bottom right).  A pure CE

learning algorithm and non-modular architecture emerge.
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Figure 7:  Dependence of the evolved what-where neural network results on the total number of hidden

units.  The architecture parameters as a proportion of the total number of hidden units (left), and the

number of epochs of training required (right).  Non-modularity emerges for any number of hidden units.
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Figure 8:  Dependence of the evolved what-where neural network results on the degree of connectivity

between the network layers.  The architecture parameters as proportions (left), and the number of epochs

of training required (right).  Modularity emerges for degrees of connectivity below one half.
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Figure 9:  Evolved neural network results for two online generalization problems.  The two pairs of

classification boundaries (top), the architecture parameters as functions of connectivity proportion

(middle), and the number of epochs of training required (bottom).  For full connectivity, the evolved

architecture is task dependent, but modularity emerges consistently when the degree of connectivity is

below one half.


