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Abstract

We present a new connectionist model of human spelling and
investigate some of its properties. Although based on
Sejnowski & Rosenberg’s (1987) NETtalk model of reading,
it requires no pre-processing of the training data to align the
phonemes and letters. The model achieves 100%
performance on the training data (2837 monosyllabic words
including many irregular words) and has a generalization
performance of about 89%. Under appropriate conditions it
exhibits symptoms similar to developmental surface dyslexia
and acquired surface dysgraphia. However, its inability to
account for phonological dysgraphia and lexical decision
leads us to believe that it is a promising candidate for the rule
based part of a dual route model but not a complete model of
spelling on its own.

Introduction

We know from our ability to spell non-words, and also the
kinds of spelling errors that humans make on real words,
that we must have access to some kind of rule based
phoneme to grapheme system (e.g. Kreiner & Gough,
1990). Our ability to spell exception (i.e. irregular) words
and to deal with homophones (e.g. ‘fare” and ‘fair”) and to
perform lexical decision suggests that there must also exist
some kind of lexical/semantic system. How these two
processes fit together is not at all clear. The explicit
modelling of spelling abilities in humans is thus of
importance in understanding the underlying mechanisms
involved, e.g. do we require a dual route system with
separate semantic and rule-based routes or is a single route
system sufficient. It should also provide insight into the
spelling difficulties of developmental dyslexics and
acquired dysgraphics.

The most realistic connectionist model of spelling to date
(Brown, Loosemore & Watson, 1993) was based on the
Wickelfeature approach to reading of Seidenberg &
McClelland (1989). However, given the intrinsic limitations
of Wickelfeature representations, the unacceptably poor
generalization ability of this approach and the difficulties
involved in interpreting the outputs (Besner et al., 1990), we
will adopt a different strategy.

In Bullinaria (1993b, 1994) it was shown how the
NETtalk model of Sejnowski & Rosenberg (1987) could be
modified to produce a connectionist model of reading aloud
(i.e. text to phoneme conversion) that required no pre-
processing of the training data. It achieved 100%

performance on its training data (2998 monosyllabic words
including many irregular words), 98.8% generalization
performance (on a standard set of 166 non-words),
suggested several possible accounts of developmental
surface dyslexia and on damage showed symptoms similar
to acquired surface dyslexia. It also correlated well with
various naming latency experiments. It failed, however, on
the lexical decision task, did not exhibit the pseudo-
homophone effect (McCann & Besner, 1987), nor provided
any explanation of phonological dyslexia (e.g. Shallice,
1988). It was therefore concluded that the model provided a
promising basis for the phonological route of a dual route
model of reading but could not be considered to be a
complete model of reading on its own.

The task of spelling (i.e. phoneme to text conversion) is
clearly closely related to the task of reading aloud and so
one might think that given a connectionist model of reading
it should be straightforward to construct the analogous
connectionist model of spelling. In practice, there is more
than a simple inverse mapping involved (e.g. Frith, 1980;
Kreiner & Gough, 1990): the rule structures are somewhat
more ambiguous, with a large proportion of homophones,
and it is harder to organise the alignment of the phonemes
and letters in the training data without the need for pre-
processing by hand.

The Model

The basic reading model presented in Bullinaria (1993b)
consists of a standard fully connected feedforward network
with sigmoidal activation functions and one hidden layer set
up in a similar manner to the NETtalk model of Sejnowski
& Rosenberg (1987). The input layer consists of a window
of nchar sets of units, each set consisting of one unit for
each letter occurring in the training data (i.e. 26 for
English). The output layer consists of one unit for each
phoneme occurring in the training data (i.e. about 38 units).
The input words slide through the input window, starting
with the first letter of the word at the central position of the
window and ending with the final letter of the word at the
central position. Each letter activates a single input unit. If
there were a one-to-one correspondence between the letters
and the phonemes, the activated output phoneme would then
correspond to the letter occurring in the centre of the
window. Since there can be a many-to-one correspondence
between the letters and phonemes, some of the outputs must
be blanks (i.e. no phoneme output). The alignment problem,



i.e. the problem of not knowing where to insert these blanks
in order to align the letters and phonemes appropriately, was
“solved” in the original NETtalk by hand prior to training.
For example, the word ‘game’ has four possible output
targets (i.e. alignments), namely /gAm—/, /gA-m/, /g—Am/
and /-gAm/. But only the one that corresponds to a sensible
set of letter to phoneme rules, namely /gAm—/, should be
used for the training target. (We use the phoneme notation
and conventions of Seidenberg & McClelland, 1989,
throughout.)

In Bullinaria (1993b) it was shown that, using a multi-
target approach to learning from ambiguous training data
(Bullinaria, 1993a), it was possible for the network to learn
for itself which was the most appropriate alignment and that
this alignment was not always necessarily the obvious one
that we might choose by hand. The procedure essentially
works by considering all possible alignments and for each
word allowing the network to train only on the target that
already has the lowest error score. This corresponds to the
human tendency to look at new learning instances from the
point of view that best fits in with our existing knowledge.
The word ‘game’ would be presented four times, once with
each of the four letters in the centre of the window. For
each presentation there are different possible target
phonemes corresponding to the different alignments (e.g.
the four possible targets for the ‘m” are /m/, /~/, /A/ and /A/
respectively). Summing the output activation error scores
over the presentations gives the total error scores for each
alignment. The alignment with the lowest total error is then
used to train the network in the usual manner. Assuming we
keep the learning rate sufficiently low, the fact that the
regular letter to phoneme correspondences will naturally
tend to dominate the weight changes allows the system to
settle into an optimal set of alignments even if we start from
random initial weights.

It became clear quite early on that, because certain letters
(e.g. ‘’x” and “u”) sometimes corresponded to more than one
phoneme (e.g. /ks/ in “box” and /yU/ in “cube’), the standard
NETtalk single phoneme output was not allowing optimal
alignment. Things are even worse for spelling because (in
English) one phoneme (e.g. /O/ and /A/) can correspond to
up to four letters (e.g. “‘ough’ in “though” and ‘eigh’ in
‘eight’). The obvious solution is to allow more than one
phoneme or letter to be output per word presentation,
though the number of targets per input can then grow rather

large. For example, with just two output phonemes the
number of targets for the word ‘cube’ rises from one (i.e.
/kyUb/) to 105 (e.g. ’k— yU —-b —/). If we allow four output
characters per presentation, the number of targets generated
becomes prohibitive. One way to restrict the number of
targets without making any assumptions about the nature of
the training data is for each presentation (corresponding to
one input character) to have the set of output characters left
justified, i.e. to allow blank outputs only to the right of any
phonemes/letters. For the word ‘cube’” we are thus left with
only nineteen targets (e.g. /k— yU b— ——/ is allowable
whereas /k= yU —b —/ is not). Proceeding similarly, even
the four output spelling model becomes feasible. We thus
end up with the network architecture shown in Figure 1.
The window size nchar is determined by the long range
dependencies in the training data and 13 characters was
found to be sufficient for our purposes.

There are 427 homophones in our training data, including
numerous homophone triples, and it is well known that such
ambiguities can cause serious problems with neural network
learning and generalization (e.g. Bullinaria, 1993b). In
humans we make use of context information to resolve these
ambiguities. For the reading model it was shown that a
single extra (context) marker appended to one of each of the
thirteen pairs of homographs was sufficient. In humans, we
obviously use much richer context information than a single
marker, yet more markers mean a larger network. For our
initial study, we compromised by introducing seven context
markers (i.e. characters) and assigned them on a semi-
regular basis to the training data to resolve the homophone
ambiguities. The final network thus had 13 sets of 38 + 7
input units (for the phonemes plus context markers) and 4
sets of 26 + 1 output units (for the letters plus blank)
organised in the same way as the reading model.

Simulation Results

The networks were trained using the back-propagation
gradient descent learning algorithm (Rumelhart, Hinton &
Williams, 1986) with a training corpus of 2837
monosyllabic words consisting of the original Seidenberg &
McClelland (1989) set plus 101 other words missing from
that set minus 161 words that had more than 184 targets.
(These restrictions were due to the limited memory and
speed of the computer and the way the algorithm was coded:

output - letters \_Tl LTJ \_T_l 7_1 (4 * nletters)

hidden layer

input - phonemes

(nhidden)

(nchar ® nphonemes)

Figure 1: The network architecture for the spelling model.
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Figure 2: Typical learning curves for the standard spelling model with 300 hidden units.

smaller runs demonstrated that larger numbers of targets,
multi-syllabic words and longer range dependencies did not
prevent the algorithm from working.) In addition to
learning the correct spellings we also expect the model to
exhibit various word frequency effects found in humans.
Presenting the training data using real word frequencies was
not feasible due to the long training times that would be
required to learn all the low frequency exception words.
About 25% of the training data was therefore presented in
each epoch in random order with the same logarithmically
compressed frequency distribution as used by Seidenberg &
McClelland (1989).

Figure 2 shows the learning curve for one run with 300
hidden units, learning rate of 0.05, momentum 0.9 and
sigmoid prime offset 0.1 (Fahlman, 1988). Training was
stopped after 700 epochs, by which time the network was
achieving 100% performance on the training data. Also
plotted on this graph are separate curves for regular, unique
and exception words. For ease of comparison with other
models we used as closely as possible the matched word
sets of Brown et al. (1993). Four of their words were
removed because they were absent from the training data
(“shrinks’, ‘breadth’, ‘owes’, “dozed’), one was removed
because it was mis-classified in the dialect of the training
data ("huge’) and two exception words (‘monk’, ‘sweat’)
were added to give 18 words in each group. (In terms of
rimes we have: Regular = Many friends, no enemies;
Unique = No friends, no enemies; Exception = No friends,
many enemies.)

The generalization performance was tested on the same
set of 166 non-words traditionally used to test reading
models: the regular non-words and exception non-words of
Glushko (1979, Experiment 1) and the control non-words of
McCann & Besner (1987, Experiment 1). The

pronunciations were derived from those of the base words in
the original experiments. Some of the Glushko non-words
(e.g. /fEl/ — “feal’) were homophonic with words in the
training data (i.e. ‘feel”) and these had their first letter
changed (i.e. giving /gEl/ —’geal’) so that no non-word
pronunciations had been used for training. The acceptable
spellings were derived by matching common word segments
in the training data. This generally led to several allowable
spellings for each input pronunciation, e.g. /hEf/ — “heef” as
in ‘beef” and ‘heaf” as in ‘leaf’

The final generalization performance of 88.6% is quite
poor compared to the corresponding reading model (which
achieved up to 98.8%). However, considering the ad hoc
procedure used to deal with the homophones and the limited
amount of training data, it is encouragingly high. It is also
somewhat more than we could expect to obtain with
Wickelfeature based models which only achieve about 60%
on the simpler reading case (Besner et al., 1990). The
phoneme-letter alignments were checked and found to be
very good (e.g. /drWt/ — ‘d——— r——— ough t——-") and
consistent, but not always as one might expect (e.g. /dok/ —
‘d—- oc— k—-"). As with many models of this sort, the
errors can reveal more about the underlying mechanisms
than the correct responses. Of the 19 errors (shown in Table
1), none were totally wrong and 11 had close output rivals
which were acceptable spellings. Others, such as ‘praine’,
‘doade’ and “vox’, may be considered acceptable under more
generous scoring criteria. It is also interesting to note that 8
of the erroneous outputs corresponded to actual words in the
training data. Given the nature of these generalization
errors, we see that the network actually does somewhat
better than the 88.6% correct figure suggests.

It has been suggested (Seidenberg & McClelland, 1989)
that the network output activation error scores should be



100

No SPO
1—°— Reaular
—a——  Exception
80 o ----- o-- Non-words
------- O-----0
s 15 HU o 0 -Siiiii
o —— Regur /T /7T & e T T *-iq
o | — = Exception o
o 607 ... &---  Non-words ‘
[
(=)
©
T 40 -
(]
et
[
o
20
0 e - —— ——

10

Figure 3: Two sets of learning curve

monotonically related to human response times and this has
indeed been found to be the case for the reading model (see
Bullinaria, 1994, for a more detailed discussion). For the
error scores of our fully trained spelling model we find a
significant type effect between the regular and exception
words (F(1,32) = 21.6, p < 0.0001) and between the unique
and exception words (F(1,32) = 29.1, p < 0.0001) but no
significant effect between the regular and unique words
(F(1,32) = 0.1, p = 0.74) nor any frequency nor interaction

INPUT OUTPUT CLOSE RIVALS
prAn praine

woS wash

sAf sugf suff, sugh
grul growl gruwl

pOm pom pome

sud soold sood

hAv have

bIld build bild, biled

wuS wosh woosh

tul toll tool

dut dot dut, doot
nent kent knent, nent

pId pid pide, pied

gof golf

10ks lox

kEr ceer

v*ks VOX

dod doade

tUd tuod teod, tood

Table 1. Non-word spelling errors

100 1000

Epoch

s reminiscent of developmental dyslexia.

effects (p > 0.1 in all cases). The lack of frequency effects
is almost certainly due to our logarithmic compression of
the word frequencies (which was necessary for the
simulations to finish in a reasonable time). Results from the
corresponding reading model (Bullinaria, 1994) indicate that
frequency effects should, in principle, arise in this kind of
model. The problem of modelling frequency effects is
clearly something that must be addressed more carefully in
future work in this field.

Brown et al. (1993) found a significant difference at all
stages of learning between the regular and unique words
both in terms of error scores and number of errors.
However, Brown et al.’s model splits each word into triples
of characters and so the regularity and frequency of word
endings are important in the learning process. Our model
works with only one phoneme at a time and so learning only
tends to be slowed by lack of word ending friends when one
of the phonemes (usually a vowel) is irregular. The unique
words used here are in fact very regular and hence the lack
of difference. It is interesting to note, however, that we do
get significant type differences when the network resources
are limited. For a network with only 40 hidden units (which
is only just enough to get perfect performance on the
training data) we found significant (p < 0.003) differences
for all three type pairs. This might explain any differences
found in humans (Brown et al., 1993), but they could just as
easily be due to something other than the use of simple
phoneme to grapheme rules: for example, humans may
acquire a lexicon of common sub-words that can be spelt
directly, common sub-words may be recognised more
quickly, etc.

Finally, we note that although there is a significant
increase in output error scores for non-words compared with
words in the training data, there is considerable overlap in
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Figure 4: Performance after damage by weight scaling of the standard spelling model.

scores between the two groups, so this cannot be used as a
basis for lexical decision.

Developmental Dyslexia

Any realistic model of spelling should be able to account for
the dissociation between the learning of regular and
irregular words found in many developmentally dyslexic
children (e.g. Frith, 1985). It is clear that if the
computational resources are lowered enough (e.g. by
reducing the number of hidden units or connections and
hence the effective number of free parameters) then the
system will fail to learn properly. Figure 3 shows that using
only 15 hidden units we do get a clear dissociation between
the learning of the different word types (averaged over two
runs). We can expect similar patterns of performance with
other forms of resource restrictions. A second possible
cause of dissociation is related to our use of a sigmoid prime
offset (SPO) in the learning algorithm to prevent the output
activations getting stuck hard wrong (where the error
propagated back is zero). The learning curves for the 40
hidden unit case with no SPO are also shown in Figure 3.
With an SPO we achieve 100% performance for all word
types by epoch 700. We are not suggesting that real brains
employ an SPO, but simply that spelling difficulties could
equally well occur from particular learning problems within
our model as from general limitations on the computational
resources.

Note that the final proportions correct for the regular and
exception words are similar to those found at earlier stages
in normal development. This is predictable from the nature
of the learning algorithm: the rules are learnt first and (if
sufficient resources remain and the learning algorithm is
still capable of learning) the exceptions later. Our model

thus provides equally good “deviant” and “delayed”
accounts of developmental dyslexia (e.g. Frith, 1985).
There is some evidence of more than proportional reduction
of performance on non-words in dyslexics (e.g. Frith, 1980)
and unique words in our reduced resources models, but we
consider it premature to say anything definite about this here
(cf. Brown et al., 1993).

Acquired Dysgraphia

An important constraint on cognitive models is provided by
the performance of the model after various forms of damage
(e.g. Shallice, 1988). In fact, one of the main reasons for
believing in the dual route model of spelling (and reading) is
provided by the performance of patients after certain forms
of brain damage: Surface dysgraphics have difficulty with
spelling irregular words compared with regular words while
phonological dysgraphics can spell both regular and
irregular words but lose the ability to spell non-words.

These two forms of dysgraphia are usually explained by a
dual (rule plus lexical/semantic) route model by losing one
of the two routes but not the other. Given that our model
has no way to learn a lexicon or semantics and is unable to
perform lexical decision, we cannot really expect it to
exhibit phonological dysgraphia. However, even if some
form of separate lexical/semantic route exists in addition to
the rule-based route modelled here, our model must still be
able to exhibit surface dysgraphia when damaged: Since our
model can spell both regular and irregular words, it cannot
simply be a matter of losing the lexical/semantic route
alone.

A range of forms of damage that may be inflicted on
models such as ours were discussed in Bullinaria (1994).
The five main types are the global reduction of all weights



by constant amounts, the global scaling of all weights by
constant factors, the addition of Gaussian random noise to
all weights, the random removal of connections and the
random removal of hidden units. For networks with large
numbers of hidden units, globally reducing all the weights
by successive factors of 0.95 is a convenient deterministic
procedure that has a very similar effect to adding random
noise or removing appropriate fractions of the hidden units
and/or connections at random. Figure 4 shows that the
effect of doing this does give the required dissociation.
Moreover, many of the errors are regularisations (e.g. /sed/
— ‘sed’ not “said” and /giv/ — “giv’ not ‘give’) as is found in
human surface dysgraphics. Similar patterns of errors are
obtained by explicit application of the other four forms of
damage.

If our model constituted just one route of a dual route
model, it is possible that the lexical/semantic route alone
could learn to deal with all the exception words before our
rule-based route had time to finish mastering them. Overall
efficiency might then mean that learning in the rule based
route need not proceed beyond a certain stage (e.g.
somewhere between epoch 30 when the generalization
performance begins to level off and epoch 120 when the
exception performance becomes significant). If this
happens, our rule based route already has a ready made
dissociation for when the lexical route is lost and we may
explain surface dyslexia in that way. This, of course, is how
things are usually explained in the traditional dual route
model.

Discussion

We have presented a simple connectionist model of spelling
that accounts for several effects found in humans.
Moreover, unlike other models, it can handle multi-syllabic
words and long range dependencies yet requires no pre-
processing of the training data. Future simulations, with
more hidden units, more hidden layers, larger training data
sets (including many multi-syllabic words) and stress
markers (as in Sejnowski & Rosenberg, 1987), should show
even better performance.

However, certain fundamental features of the model
remain unsatisfactory. Primarily, we know from its inability
to account for phonological dysgraphia and lexical decision
that the model is lacking a lexical or semantic route which is
also necessary to tie in with semantic processing, etc.
Progressing from here to include such a sub-system will also
allow us to employ a more principled mechanism to deal
with homophones, which in turn should further improve the
generalization performance. Another area in need of
improvement is in the use of the moving window approach,
which is not very biologically nor psychologically realistic
in itself and is likely to prove difficult to coordinate with a
separate lexical/semantic route. In principle, a series of
recurrent connections, such as used by Jordan (1986), could
replace the moving window as a method of dealing with the
context information. Work is currently in progress to re-
implement the model in terms of a network with recurrent
connections and a rudimentary lexical/semantic route.
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