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Abstract—Modularity is known to have benefits for neural
systems and their evolution, and this paper aims to improve the
evolutionary neural network algorithm EPNet to take advantage
of those benefits. Neural networks exist with varying degrees of
modularity ranging from pure modular networks characterized
by disjoint partitions of hidden nodes with no communication
between modules, to pure homogeneous networks with significant
connections throughout. In between are apparently homogeneous
networks that can be seen to have some degree of modularity if
the hidden nodes are reorganized appropriately. In this paper,
a modularity measure is presented and extended that can be
applied to any neuron at any level in the network to provide a fine
analysis of node partitioning. It also allows the rearrangement of
nodes to create modules in homogeneous networks, and that is
used to improve the EPNet algorithm to evolve modular neural
networks. Experimental results on a simple classification task
confirm that the new modular EPNet algorithm does indeed lead
to more modular networks than the classical EPNet algorithm,
without compromising the performance on the given task.

Index Terms—EANNs, Modular Neural Networks, Modularity,
Classification.

I. INTRODUCTION

Modular systems are usually seen as a collection of indepen-
dent components that work together for specific purposes, e.g.
with each component specialized to perform a particular sub-
task that may be used multiple times. This occurs naturally in
neural networks where it is possible to have disjoint partitions
of the neurons (i.e. modules). If there is no communication
between modules (i.e. independent partitions), one has a pure
Modular Neural Network (MNN), whilst if the nodes are
highly interconnected (i.e. with no independent partitions), one
has a homogeneous or non-modular network.

There is considerable evidence that MNNs can provide
numerous advantages over non-modular networks, e.g., leading
to faster learning for some combinations of tasks [1], or
facilitating the evolution of module re-use [2]. Moreover,
evolutionary algorithms have proven to be extremely useful in
the search for appropriate architectures for various tasks [3],
[4]. However, a practical problem for real world applications is
that the advantages of modularity (particularly module re-use)
will only become apparent (and hence result in a tendency for
modularity to emerge through evolution) if sufficiently large
patterns of successful module re-use occur in the evolutionary
simulations. In practice, most simulations are far too small-
scale for such modularity and its advantages for module re-
use to occur. The aim of this paper is to explore how to help

modularity and its advantages emerge, without the need for
such computationally infeasible evolutionary simulations. This
will be done in the context of the evolutionary neural network
algorithm EPNet [3], which is based on Fogel’s Evolutionary
Programming (EP) approach.

First one needs an approach for identifying modules in a
network. Some researchers have focussed on the emergence
of modules within neural networks [1], [5], [6], while others
have considered more general graph based representations [7]–
[10]. To measure the emergence of modules in evolutionary
neural network systems, one needs to develop some kind
of modularity measure that indicates the degree of node
partitioning during evolution [1], [5], [6], [10]. The highest
degree of modularity indicates pure MNNs, the lowest values
indicate pure homogeneous architectures, and intermediate
values correspond to various types of partial partitioning.

Clearly it is the interaction of the modules that results in
their successful behavior. That interaction usually takes the
form of each final module gathering and processing the outputs
of the other modules, but there may also be cross-connections
between contributing modules. One needs to analyze the
communication between modules and the neural substructures
that may emerge during evolution. This paper does that by
attempting to reorganize the neural network hidden nodes into
modules using the dependency of each node to each module
provided by an appropriately chosen modularity measure (see
Sec. II). That is shown to work for any type of neural network,
from pure homogeneous to pure modular. The modularity
measure presented by [5] has proven to be suitable to analyze
modules during evolution for the much studied what–where
task [11], so that will be used here. However, it was developed
for networks that contain more than one output unit, so a
required contribution of this paper is to develop a modification
that also works for tasks with a single output node.

The module creation process, based on node rearrangement
using the improved modularity measure, allows the discovery
of hidden units that contribute to more than one module
and cross-connections between nodes from different modules,
i.e. shared nodes and shared connections respectively. Those
shared components then lead to the second contribution of this
work, which is the improvement of the standard EPNet algo-
rithm [3] into a modular algorithm (M-EPNet) by introducing
two new mutation operators corresponding to shared node and
shared connection deletion.



Both algorithms (EPNet and M-EPNet) were tested on
an artificial data set that involves performing two distinct
classification tasks on the same set of real valued input data.
Previous studies on that task [1] have shown that, although
it can be performed by either pure modular or pure homoge-
neous networks, it is learned more easily by modular neural
networks, and that tends to drive the evolution of modular
neural architectures for it.

That earlier study [1] used Multi-Layer Perceptron (MLP)
architectures with a generational algorithm to evolve networks
aimed at learning the tasks as quickly as possible. Here, the
EPNet algorithms is a ‘steady state’ approach based on the
generalized MLP (GMLP) [12, pp. 272-273] which allows
a larger range of connectivity patterns among nodes and
therefore adds complexity to the search for pure MNNs. A
crucial difference is that generational algorithms test several
combination per generation, while ‘steady state’ algorithms
only test a few. That could render it difficult for the EPNet
algorithm to evolve pure MNNs, so an important further aim of
this work is to explore the extent to which modularity evolves
in both the EPNet and M-EPNet algorithms. That will lead
to a more promising approach for investigating module re-use
within this kind of algorithm, although the results from that
must remain a topic for future papers.

In Section II the module and modularity concepts are
explained, along with the chosen modularity measure and
the extension of it that works for networks with a single
output unit. This leads, in Section III, to a presentation of the
improved EPNet algorithm that enhances modularity, followed
by the experimental set-up and results in Sections IV and V.
The paper ends with some conclusions in Section VI.

II. MODULES AND MODULARITY

Modularity has been much studied in recent years, and a
range of definitions for modules [1], [5], [13], [14] and mod-
ularity [5], [6], [10] have emerged. For example, modularity
can be defined as a property of neural networks where the
connectivity patterns are organized in such a way that modules
consist of disjointed subsets of hidden units [1], [5]. Some
definitions consider modules to be non-interacting subsystems
[1], [5], while others allow them to interact [13]. In this study,
communication between modules is allowed and the shared
neural components among partitions are analyzed.

A suitable modularity measure applied to neural architec-
tures can indicate the degree of modularity, i.e. how close the
network is to being pure modular. The modularity measure
for networks with more than one output unit is presented
next, with the method used to discover shared nodes and
connections. Then the extension to the single output unit case
is is outlined.

This study is based on the method presented in [5] to
measure the degree of modularity of the networks during
evolution, and further details can be found there. There were
two main reasons for choosing that measure: A) it provides
a way to calculate the dependency of nodes against modules,
and therefore to rearrange the nodes into modules and allow

the identification of shared nodes and connections, i.e. neural
components shared by two or more modules; B) it is less
computationally expensive than other modularity measures [6],
[7]. For example, [7] is based on the modularity measure of
[8], [9] that uses Simulated Annealing to find the modules
inside the network. Nevertheless, the choice of measure is not
crucial. Any modularity measure could be used for the same
purpose (identifying shared neural components in different
modules) after the required modifications.

The chosen modularity measure is based on the assumption
that the neural networks have to deal with completely sepa-
rable problems (non-interacting subsystems) to determine the
dependency of nodes against each module. Here, it is assumed
that it is known a priori how to partition the given data set
into modular tasks, i.e. how many modules are appropriate
and which input or output units belong to each module. The
algorithm was implemented in this way (as it was developed)
to keep the approach as simple as possible. For the purpose of
this work, this modularity definition is sufficient to explore
the interaction between modules during evolution. Further
improvements may automatically determine the data partition
during evolution.

The algorithm is based on the idea of data partition driven
by the network’s input and output nodes. The data set used
in this study involves two distinct classification tasks, so there
are two modules defined by the output partition. Since there
are two possible partition types (either from inputs or outputs),
there are at least two ways to calculate the modularity, i.e. in a
“top-down” fashion (from outputs to inputs units) if the output
partition is known, or in a “bottom-up” fashion (from inputs
to outputs nodes) in the other case. The following explanation
is focused on the top-down version, but its counterpart differs
little (refer to [5] for the ‘bottom-up’ version).

Since a separable problem is assumed, the set of output
nodes (y1, ..., yn) can be partitioned into m disjoint subsets
(S1, ..., Sm). Nodes that are connected directly or indirectly to
one subset of outputs Sj are called pure nodes as they only
contribute to one module (output partition). The modularity
measure M is defined as the average degree of pureness of
the hidden and input nodes given a m-tuple (di(1), ..., di(m))
for each node i. This tuple indicates the degree of dependency
of each node i on the m different partition or modules (Sj).
The m-tuple for outputs is the first to be assigned:

di(j) =

{

1 yi ∈ Sj

0 yi /∈ Sj
(1)

After the di(j) are calculated for the output nodes, the m-tuple
is calculated for the hidden and input nodes recursively:

d′i(j) =
∑

k

|wik|dk(j) (2)

di(j) =
d′i(j)

∑m

j′=1 d′i(j
′)

(3)

where wik is the connection weight from node k to node i,
and d′i(j) is a partial processing value concerning wik with



the tuple of node k at every position j. The pureness of each
node i is calculated by the variance expression:

σ2
i =

1

m

m
∑

j=1

(

di(j) −
1

m

)2

(4)

where higher σ2
i indicates higher pureness of node i. The max-

imum value of pureness possible is m−1
m2 which corresponds

to pure nodes. Finally, the modularity measure is given by the
average variance of all N hidden and input nodes:

M (weight) =
m2

m − 1

1

N

∑

i

σ2
i (5)

where M (weight) falls in the interval [0,1], with 1 indicating
a completely separable network, and 0 a completely homoge-
neous network. If the weights were not included in equation 2,
it would lead instead to a measure M (arch.) of the modularity
only in term of the structure of the network. Therefore it can
be seen that calculating M (weight) produces a finer measure
of the dependency of each node against all output partitions,
since the weights are involved in the calculation.

At the beginning of the evolution, lower modularity values
are expected because of strong interaction among modules.
Then as the generations advance, the interactions are expected
to decrease, producing an increase in the modularity if the
given task finds modular architectures beneficial, or if the evo-
lutionary algorithm is biased towards producing modularity.

Thus far, it has been assumed that the output partition is
known, which implies the existence of two or more outputs.
Thus the above M (weight) and M (arch.) can only be applied
to networks with more than one output. Modifications are
required for applications with a single output (see Sec. II-C).

A. Shared nodes

Shared nodes and shared connections are neural components
that contribute to more than one module or output partition.

Figure 1 shows a neural network with two output nodes
in its normal representation (Fig. 1a) and with the nodes
rearranged into modules (Fig. 1b). Input nodes are represented
at the bottom, hidden nodes in the middle, and output nodes at
the top. Using equations 3 and 4 one can determine the extent
to which a given node is only connected with a single output
partition. In this case, each node will be bound (associated)
with the module for which it presents the biggest dependency,
i.e. the hidden nodes are sorted into modules.

Thus, from equation 3 and 4, nodes 1, 5, 6, 7 and 9 in
Fig. 1a are pure nodes in the top-down fashion as they are
only connected directly or indirectly to one output partition
(module). The rest of the input and hidden nodes are shared
to a certain degree. Note that in this case, only M (arch.) has
been used to determine the purity of nodes, but M (weight)

might give a finer grained measure.

B. Shared Connections

If certain weights are assigned to the connections in the
network presented in Fig. 1a, equation 3 can be used to sort
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Fig. 1. Typical neural network with two output nodes, shown as normal (Fig.
1a) and modular (Fig. 1b) representations

the nodes into modules as presented in Fig. 1b. The input and
output nodes are not included in the graphical representation
of the modules here (i.e. nodes grouped by dashed lines), but
they may be included if desired.

After the nodes have been organized into modules and
shared nodes detected, it is straightforward to discover the
cross-connections between modules, as illustrated in Fig. 1b
where connections c8,10 and c10,11 are shared by two modules.
Note that if the weights take different values, such shared
nodes may be assigned to different modules, e.g. node 8 could
be moved into the module formed with node 12.

This allows the classification of two types of connection:
a) strong connections are the outbound connections from a
given node to other units in the same module, which resulted in
the node belonging to that module; b) weak connections are
the cross-connections between units from different modules
(i.e. shared connections between modules).

Note that equation 3, leading to M (weight), allows a unique
rearrangement of nodes into modules, and shared nodes and
connections can be found in the same modularity calculation.
However, that is not possible using equation 3 without the
weights, leading to M (arch.), because it only measures the
architecture modularity. For example, there is no way to know
if node 10 contributes more to the output partition formed
by node 11 or the partition composed by node 12 without
considering both weights w10,11 and w10,12 in Fig. 1a.

C. Improved Modularity Measure

It is not straightforward to apply the above modularity
measure to networks with only a single output unit. In that
case, the network presented in Fig. 1a would have M (arch.) =
M (weight) = 0 in the “top down” approach, as there is only
one output node and thus only one partition. However, it is
possible to treat the such networks as being comprised of
a number of sub-networks (or an ensemble of sub-networks
[15]–[18]) and base the partitioning on the combined set of
outputs of the constituent networks.

To adapt the above modularity measure to networks with a
single output unit, one needs to look for the internal connectiv-
ity patterns inside the network to discover similar structures
as in modular architectures without taking into account the
output node. Thus the improved modularity measure will not
consider the single output unit in the calculation of M (arch.)
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Fig. 2. Neural network with one output unit, normal (Fig. 2a) and modular
(Fig. 2b) representation

or M (weight), but this node and its inbound connections will
still be used elsewhere.

Figure 2 illustrates the use of the improved modularity
measure for networks with a single output node. Note that this
network is the same network as in Fig. 1a, except for the new
output node 13 which relegates the former output nodes 11 and
12 to the position of hidden nodes. This simple relation will
prove helpful in illustrating the improved modularity measure.
Since the output node 13 will not now be considered in the
modularity evaluation, it and its connections c11,13 and c12,13

will be referred to as virtual nodes and virtual connections
for the purpose of this section, because they exist in the real
network, and are used to identify modules, but do not take
part in the modularity evaluation.

In such networks, all the inbound connections into the final
output neuron come from the outputs of each module, i.e.
one output per module is connected to the final output unit
(virtual node 13 in Fig. 2a). After the final output neuron has
been omitted, one can identify all the inbound connections to it
and take the corresponding nodes to be potential new outputs
that will lead to the structure of a multiple-output modular
neural network. However, not all of these potential new outputs
should be considered as actual new outputs of the network (i.e.
module outputs of the full network). For example, suppose the
nodes are ordered in an incremental way over a connectivity
matrix C, and nodes i and j are connected to the output unit
k (i.e. there exist connections ci,k and cj,k). If there exists
another connection ci,j where i < j < k, the connection ci,k

should not be considered to be the output of a possible module
because one of the outputs of node i is connected to another
hidden node (node j, because ci,j exists). In a hierarchical
representation, node i is then an internal unit of a possible
module formed by node j because node j needs to process the
output of node i to produce its output, regardless of whether
node i is directly connected to node k.

For that reason, the following two restrictions need to be
imposed to determine which hidden nodes will be considered
as the new outputs of the network, i.e. nodes that have a virtual
connection. If H and O are the sets of hidden and output nodes
respectively, then:

1) Node i is considered an internal unit inside the module
formed by node j if ∃ci,j , ∀i, j ∈ H where i < j.

2) The output of node j (cj,k, k ∈ O) is considered the
output of module k until ∃cj,l, ∀j, l ∈ H where j < l.

This means that a node i will be considered as the output of a
new module k if and only if node i has a virtual connection and
there is no other outbound connection to a subsequent node.
In Fig. 2a, nodes 11 and 12 are the only nodes that have a
virtual connection to node 13. If other hidden nodes had a
connection to node 13, they could not be considered as a new
module’s output because they have connections to subsequent
nodes that in turn are connected to the original output node.
Finally, applying equations 1 to 5 to the new partitioning leads
to the improved modularity measure.

Clearly, there will always be at least one hidden node in the
original network that satisfies the requirements for becoming
a new output node, i.e. the last hidden node in the network
which was originally connected to the virtual node. If there
is only one such new output node, that would again lead
to M (weight) = M (arch.) = 0, as there were no modular
structures identified inside the network. However, one can then
repeat the above process to identify modules that feed into
that output node. This definition of modularity for “top-down”
networks with a single output unit fits with the conventional
definition of ensembles and MNNs. Each module has one
output node, and all the module outputs are fed into the final
node of the complete network, even if there exist other nodes
that have a direct connection to the final output node.

An important aspect of this process for identifying modules
is that it is not restricted to looking for modules that feed
into the final output of a network, but it can equally well
be applied to any node (for any sub-network) in the network
to produce a fine-grained measure of modularity at a local
level. For example, if a detailed analysis of a single node j
is required, it is possible to apply the improved modularity
measure to the sub-network feeding into it. That will allow the
discovery of smaller partitions of nodes in the sub-structure
of the network. This is a similar process to that of Newman
[8] where the nodes are divided into communities to create
a “dendrogram” (a tree representing the connectivity clusters
among nodes). However, that approach needs to search for the
best partition of nodes that increases a modularity measure Q.
In the process defined above, there is no need for an extra
optimization stage to determine the modularity, and that makes
it much more efficient for using repeatedly in an extended
evolutionary process.

If the nodes of the network in Fig. 2a are rearranged accord-
ing to the above process (using the same connection weights as
for Fig. 1b up to node 12), the modular representation shown
in Fig. 2b is obtained. Comparing Figs. 1b and 2b shows that
the process has, as required, formed the same modules with
the same nodes. In the examples presented here, a graphical
representation of the shared modules has not been shown, i.e.
modules formed by shared nodes. If that had been done, the
networks presented in Figs. 1b and 2b would have an extra
module containing the nodes 8 and 10.

The process presented here allows the analysis of neural
networks to create modules using a modularity measure,



identifies modules using a shared module (discovering shared
nodes), and enables the analysis of cross-connection between
modules over networks with one or multiple output units.
Although such an automated process for identifying modules
and measuring modularity can clearly be used as a very general
tool for analyzing neural network structures, in this paper it
will simply be used within an evolutionary neural network
algorithm to facilitate the evolution of neural architectures with
increased modularity.

III. EPNET AND MODULAR EPNET

The EPNet algorithm [3] is a steady state algorithm that
uses Lamarckian inheritance to evolve populations of neural
networks for particular tasks. It is based on Fogel’s Evolution-
ary Programming approach, which means that mutations are
applied to individuals in the population, but crossover is not
used as an operator. Every time an individual is mutated, it
is partially trained, its fitness determined, and the probability
of replacing another individual in the population computed.
The mutation operators are applied in a hierarchical fashion
with the aim of finding the smallest architectures that do not
compromise performance. Thus, deletion mutations (of nodes
and connections) are applied before addition mutations.

The whole approach is based on a Generalized Multi-
Layered Perceptron (GMLP) which allows feed-forward con-
nections between any pairs of nodes, unlike a standard MLP
which only allows connections between adjacent layers of a
layered network. A GMPL may therefore have as many layers
as hidden nodes, e.g. in the situation that each non-output node
i is connected to node i +1. For a more complete description
of the algorithm, see [3], [16]–[18].

A. Connectivity Matrix

To represent the GMLP connectivity, the EPNet algorithm
uses a network connectivity matrix C as shown in Fig. 3.
As feed-forward networks are used here, the connectivity
matrix for this approach consists of five sub-matrices (IH,
IO, HH, HO and OO) in the upper-right part of it, where the
rows represent source nodes and columns represent destination
nodes. Thus, the GMLP allows connections from inputs to
hidden nodes (IH), inputs to outputs (IO) and so on until
connections from output to output nodes (OO sub-matrix) are
reached. This can be used to highlight the differences between
MLPs and GMLPs for general NNs and MNNs.

If GMLPs are compared with MLPs, it can be seen that
MLPs use IH, HH and HO when there is more than one hidden
layer. For the simplest case of one hidden layer, MLPs only
require the submatrices IH and HO. In general, IH and HH
are more restricted in MLPs as not all possible connections
are allowed in those sub-matrices.

If an MLP or a pure MNN is analyzed using the connectivity
matrix, a clear pattern of non overlapping sections will be
evident in each sub-matrix (not shown in Fig. 3). Since the
GMLP is used here as the basis for evolving MNNs with
the EPNet algorithm, it will require considerable effort during
evolution to reach such non-overlapping patterns. However,

Fig. 3. Sub-matrices in the network connectivity matrix

that is the inevitable cost of allowing the evolution of more
general, and potentially more powerful, architectures. This is
why a biasing modification of the standard EPNet algorithm
is required.

B. Modular EPNet Algorithm (M-EPNet)

The aim to implement a modular version of the EPNet
algorithm arises because the normal algorithm is found to
be too slow to delete the appropriate neural components
that increase the average modularity in the population. Thus,
the required modifications of the EPNet algorithm are the
addition of new operators that delete shared nodes and shared
connections and thus allow the increase of the modularity
during evolution.

The idea of shared node deletion has previously been
implemented in a more direct manner [1]. In that case, there
is a simple set of parameters which specify how many hidden
nodes in a single hidden layer MLP connect to each sub-set
of the outputs. If there are only two output units, deleting the
shared nodes then simply corresponds to reducing a single
parameter value. In this way, the evolution of modules is
controlled, and the degree of modularity can be monitored,
directly with that single parameter, and no additional measure
of modularity is required. Clearly, the more complex connec-
tivity patterns of the GMLP networks of interest here require
a more sophisticated approach. Moreover, simply counting the
number of connections does not take into account how many
of the associated connection weights have been reduced to
zero (or near zero) by the learning algorithm. This is where
the above modularity measures are required.

The new M-EPNet algorithm is presented in Fig. 4, with
the overall procedure on the left, and the mutation procedure
on the right. The first modification to the standard EPNet
algorithm is in the training stage, where the usual hybrid
learning involving both Back-Propagation (BP) and Simulated
Annealing (SA) has been simplified to only use the BP
algorithm. This keeps the procedure as simple as possible,
and enables a more direct comparison with earlier studies
(e.g., [1], [5]). The second modification, of direct relevance
to modularity, is in the introduction of two new mutation
operators (shared node and shared connection deletions) as



Fig. 4. The Modular EPNet algorithm

the first architectural mutations. If these are not successful (i.e.
they do not produce a better individual than the least fit one in
the existing population), then the gneral node and connection
deletion mutations are followed as in the original algorithm.
At the end are the standard addition mutations.

If the task at hand does not require a modular network, then
the operators designed to increase the modularity (shared node
and connection deletion) may not be used. However, if the task
can be performed better or equally well by a modular network,
then it may be expected that the shared node and connection
deletion mutations will be used more than the other mutations
in the algorithm.

If a shared node is deleted, it is likely to decrease the
number of shared connections in the network. Similarly, a
shared connection deletion can cause a shared node to become
a pure node. Also, every time the weights are updated (by the
BP training stage), there is the possibility that a node will
switch to another module, i.e. while the learning procedure
does not affect M (arch.), it can change M (weight).

IV. EXPERIMENTAL SET-UP

The data set used to test the algorithms was generated
randomly with two inputs in the range [0,1] and two distinct
classification tasks (with one output each) as shown in Fig. 5,
i.e. the networks have to learn the classification boundaries in

Fig. 5. Data sets formed by random points in a two dimensional input space
and two outputs correponding to distinct classification tasks

the two dimensional input space for each output task. This data
set has been studied previously and shown to result in modular
MLP architectures evolving if the fitness is measured in terms
of the time required to learn optimal generalization [1]. Here,
1000 such patterns were used for training, 100 patterns were
used for validation during evolution (to provide a measure of
fitness), and 100 patterns were used to test the networks after
the evolution is finished.

The algorithms were tested using 5000 generations of evolu-
tion, with 20 individuals in the population, and 10 independent
trials were run to provide reliable statistics. The population
of networks was initialized before the evolution starts with a
simplified connection scheme set using the same probability
φ for each connection in the connectivity matrix C. For
a recurrent network with n nodes, the expected number of
connections would be n2φ − n, assuming there are no loops
from any node to itself. In the feedforward network case
studied here it is Nφ, where N is the maximum total number
of connections allowed (the upper-right part of the connectivity
matrix as shown in Fig. 3). The connectivity level φ set in the
initialization was maintained during evolution (as done in [1],
[6]), and different values of it were tested to determine how
it affected the performance of the algorithms. The numbers of
hidden nodes were initialized randomly between 50 and 100
nodes. The EPNet algorithm uses a partial training at each
generation, for which 50 epochs of training were used, with
BP learning rate fixed at 0.15, and no early stopping.

The data set shown in Fig. 5 may be learned well by
either pure modular or pure homogeneous networks, and that
can potentially make it problematic to use the classification
generalization error as the fitness. For that reason, two different
fitness measures were used to test the EPNet algorithms. The
first one was the standard error percentage [19] as previously
used in the EPNet algorithm [3]:

Ep =
100

Tn(Zmax − Zmin)2

T
∑

t=1

n
∑

i=1

(Yi(t) − Zi(t))
2 (6)

where T is the number of patterns, n the number of output
nodes, and Yi(t) and Zi(t) are the actual and desired outputs
of node i for pattern t. The second fitness function is a
modified version of the error percentage in which the network
is penalized according to the modularity measure M (arch.):

Eb = αEp + (1 − α)
1

M (arch.)
(7)
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Fig. 6. Evolved modularity values for both algorithms with different
connectivity values using the standard error Ep as fitness function

where α is a parameter controlling the relative importance
of the Ep and M (arch.) components. After some preliminary
experiments it was determined that α should be set to between
0.8 and 0.9, since lower values tend to result in no learning
at all, because the modularity has a bigger contribution to the
modified fitness than Ep, which causes an increment in the
modularity in the early generations regardless of whether the
networks improve their performance on the task.

V. EXPERIMENTAL RESULTS

Figure 6 presents the resulting evolved modularity values
M (arch.) for the EPNet and M-EPNet algorithms, using dif-
ferent connectivity values, with the standard percentage error
(eq. 6) as the fitness function. As hoped, the new modular al-
gorithm (M-EPNet) results in larger modularity values than the
classical algorithm (EPNet), which confirms the effectiveness
of the new mutation operators introduced for deleting shared
neural components between modules. Both algorithms tend
to evolve more modular networks when there are a smaller
number of connections in the networks.

It was discovered that the relatively low modularity values
for both algorithms were mainly due to two factors: a) there
are many more connections in GMLPs in comparison with
MLPs, and b) the data set may be classified correctly by
different networks with different degrees of modularity, thus
there is little pressure to select more modular individuals
because any individual in the population performs similarly
on the classification task and thus has similar fitness, i.e. the
task can be solved through evolution without increasing the
modularity more than that presented in Fig. 6.

That confirms the need for the modified fitness function
(eq. 7) to bias the evolution of modularity. The result of
repeating the above experiments using that fitness function
are presented in Fig. 7. In this case, both the EPNet and
M-EPNet algorithms produce, on average, individuals with
larger modularity values after 5000 generation of evolution
than when the standard Ep fitness function was used (Fig.
6). Interestingly, the EPNet algorithm continues to result in
architectures with lower modularity values than M-EPNet
in the majority of the cases. That again demonstrates the
advantage of the shared node and shared connection deletion
mutations not present in the conventional EPNet algorithm.
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Fig. 7. Evolved modularity values for both algorithms with different
connectivity values using the modified fitness function Eb

Moreover, it can also be seen in Fig. 7, for all connectivity
values, that the M-EPNet algorithm has almost pure modular
networks at the end of evolution. Another interesting finding
occurred in the experiment with connectivity level of 1.0 for
EPNet. As seen in Fig. 7, the algorithm could not then delete
shared architectural components due to the high connectivity,
which results in the evolution of pure homogeneous networks.
That is similar to the results from the EPNet algorithm for the
same connectivity value with standard fitness in Fig. 6.

In Fig. 8 is presented a comparison of the average modu-
larity M (arch.) throughout the evolution for both algorithms
and both fitness functions for connectivity 0.25. It is clear
that the modularity increases more rapidly when the M-EPNet
algorithm is used with either fitness measure, than with the
EPNet algorithm. When the standard error Ep is used as
the fitness, the modularity produced by M-EPNet is larger
throughout evolution than with the EPNet algorithm. However,
both algorithms are reaching similar levels of modularity at the
end of the evolution when the modified fitness Eb is used.

In both experiments, using Ep and Eb, it was found that the
M-EPNet algorithm resulted in architectures at the end of the
evolution with significantly fewer connections than the EPNet
algorithm, for almost all connectivity cases investigated. That
implies that the specific mutations designed with particular
knowledge of the network work more effectively here than
random mutations. Fig. 9 shows the evolution of the average
numbers of shared connection for the M-EPNet algorithm
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Fig. 8. Comparison of the evolving modularity values for EPNet and M-
EPNet for both fitness measures (Ep and Eb) and connectivity set at 0.25
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Fig. 9. Comparison of the evolving numbers of shared connections for M-
EPNet with both fitness measures (Ep and Eb) and connectivity set at 0.25

using both fitness measures with a connectivity of 0.25. It
is seen that the biased Eb reduces the shared connections
between modules faster than the normal fitness measure Ep.
The numbers of shared nodes follow a similar pattern.

The final important question to consider concerns how the
increased degrees of modularity affect the neural networks’
performances on the given task. Measuring performance in
terms of the percentage of correct classifications shows that
all four approaches (EPNet-Ep, EPNet-Eb, M-EPNet-Ep, M-
EPNet-Eb) learn the task well, with no significant differences
between their performance levels.

VI. CONCLUSIONS

This paper has explored how the evolutionary neural net-
work algorithm EPNet can be biased to produce more modular
networks that will facilitate module re-use across a range of
tasks, without compromising performance on those tasks.

It has been shown how a modularity measure can be used
to identify specific neural components for additional deletion
mutations, thus increasing the degree of modularity arising
through evolution. The same modularity measure was also
improved to work for networks with a single output unit, and
to allow a finer-grained analysis of the internal partitions of
nodes inside a network. Although this approach has assumed
prior knowledge about the task data partitions to measure the
modularity, there is scope for dynamically adjusting the output
partition into modules.

The information provided by the modularity measure al-
lowed the implementation of a new Modular EPNet algorithm
(M-EPNet) that biases the evolution of modularity compared to
the classical EPNet algorithm, and also enabled a modification
to the standard generalization error fitness that further biases
the evolution of modularity.

The general conclusion is that the rearrangement of nodes
into modules using the modularity measure enables the dis-
covery of shared neural components through modules, and that
information can be used to evolve almost pure modular neural
networks with the EPNet and M-EPNet algorithms using a
fitness function penalized by lower modularity values.

Both the biasing deletion mutations and biasing fitness func-
tion are not special to the EPNet algorithm - they can easily
be applied to bias towards modularity in other evolutionary

neural network approaches. Moreover, they are not restricted
in any way to the test task chosen for this paper, but can be
applied to any classification or regression task.

Clearly the next stages of this work are to run tests using a
wider range of tasks, to demonstrate explicitly how the evolved
modules facilitate neural re-use for new tasks, and to explore
what other advantages the more modular architectures have.
That will be reported in a future paper.
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