
Implicit Alternative Splicing for Genetic Algorithms

Philipp Rohlfshagen and John A. Bullinaria

Abstract— In this paper we present a new nature-inspired
variation operator for binary encodings in genetic algorithms
(GAs). Our method, called implicit alternative splicing (iAS), is
repeatedly applied to the individual encodings in the algorithm’s
population and inverts randomly chosen segments of decreasing
size in a systematic fashion. Its goal is to determine the largest
possible segment the inversion of which yields no loss in the
encoding’s quality. The application of iAS potentially produces
a new encoding of equal or greater quality that is maximum
possible Hamming distance from its source. This allows iAS
to uphold the diversity of the population even if a minimal
population size is chosen. This significantly improves the per-
formance of an otherwise standard GA on a representative
set of three different optimisation problems. Empirical results
are compared and analysed and future work prospects are
considered.

I. INTRODUCTION

Genetic algorithms (GAs, see [12], [17]) are abstract

implementations of evolutionary systems inspired by the

field of population genetics: GAs maintain a population of

individuals representing potential solutions to the problem of

interest. Individuals of higher fitness are, on average, chosen

more frequently for reproduction. Offspring, generated by

means of crossover and mutation are placed back into

the population allowing the population’s average fitness to

increase from one generation to the next. In other words,

GAs evolve increasingly better solutions over time by means

of an artificial equivalent to natural selection. Evolutionary

algorithms have become a popular choice of algorithm for

a diverse set of different optimisation problems, especially

those where traditional methods tend to fail (e.g. highly

multi-modal search spaces). Numerous extensions have been

suggested over recent years that improve the GA’s general

performance in different domains. Lately, an increasing num-

ber of such extensions have been inspired by the field of

molecular genetics. The approach presented in this paper,

implicit alternative splicing (iAS), is an example of such

approach as it has been inspired by the post-transcriptional

process of alternative splicing that takes place in the majority

of human cells.

Alternative splicing is a major source of diversity in natural

systems allowing the production of numerous different pro-

teins from the same underlying strand of DNA. Interestingly,

diversity plays a major role in the success of GAs and

the premature loss of the population’s diversity is a major

factor preventing the algorithm from finding globally opti-

mum solutions. As the population’s average fitness increases

over time, the differences amongst the individuals in the
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population have a tendency to diminish. The total number

of individuals in the population (i.e. the population size) is

thus a crucial factor in the overall success of the algorithm.

If the population converges too quickly, the region of the

search space containing the global optimum may be missed.

This phenomena is known as premature convergence and is

discussed in further detail in section II.

Several different techniques have been presented in the

past to combat the phenomenon of premature convergence

and to encourage a more thorough exploration of the search

space. These techniques, for example, may alter fitness values

(see [6]), randomise encodings [19], dynamically adapt the

population size [8] or vary the selection pressure [1]. In

either case, such methods must ensure that the generation

of diversity does not interfere too much with the ongoing

search process. Randomising large parts of the population,

for example, certainly generates diversity, but it also limits

the algorithm’s ability to exploit promising regions of the

search space. The method presented in this paper, iAS,

generates a significant amount of diversity allowing the use

a minimal population and thereby reducing computational

overhead. Our results indicate that it is possible to use a

population of only 2 individuals without getting trapped

in local optima: iAS does not disrupt the ongoing search

process but instead significantly improves the algorithm’s

performance in almost all cases considered here.

The rest of this paper is structured as follows: Section II

discusses the issue of diversity in GAs. Section III briefly

reviews the existing approaches in the literature that are

related to the nature-inspired technique presented here. Sec-

tion IV describes in detail the workings and background

of iAS followed by an outline of the three test problems

considered in section V. The experimental setup is presented

in section VI followed by the results and analysis in sections

VII and VIII respectively. The paper is concluded in section

IX including a brief summary of potential future work.

II. DIVERSITY

In the field of computer science, the term “nature inspired

paradigm” essentially describes the abstraction of a natural

process that fits a particular computational framework. In

the case of evolutionary algorithms, inspiration is derived

from evolutionary systems that progress by means of natu-

ral selection. However, upon close inspection, evolutionary

algorithms often bear little resemblance to their natural

counterparts. Such restriction of detail is required to meet

the goals of evolutionary algorithms which are reliability and

efficiency in terms of problem solving. Unlike models or

simulations of natural processes, evolutionary algorithms are

not primarily concerned with being an accurate emulation



of a natural phenomena. Natural processes have evolved

over considerable periods of time, depend on numerous

accidents throughout their evolutionary history, and often

differ significantly in their design from the blueprint that an

external designer might develop when creating an equivalent

process from scratch (see [3]). In particular, many processes

in nature rely upon massive parallelism and require consid-

erable periods of time to make progress. Such luxuries are

usually unavailable to the computer scientist whose aim is

to solve difficult optimisation problems in the shortest time

possible using only limited resources.

One consequence of this dilemma is that the average

population size used in GAs is typically as small as 100

individuals1. Given the usually immense size of the problem

space being explored, the population’s sampling power is

necessarily restricted to a tiny fraction of the search space.

Choosing an appropriate population size is crucial and nu-

merous theoretical studies exist that attempt to determine

optimal population sizes (see, for example, [10], [21]). In

general, a large population samples a greater fraction of

the search space and subsequently delays premature conver-

gence. If the size of the population is too large, however,

convergence may be slowed down too much preventing the

algorithm to locate the global optimum given the allocated

resources. A small population size on the other hand is

computationally more efficient but very prone to get trapped

in local optima. It is therefore extremely important to main-

tain good levels of diversity when using small populations

to ensure an efficient exploration of the search space. The

ability of the crossover operator to explore novel parts of the

search space diminishes as the diversity in the population

decreases. In the simple GA, the mutation operator, which

is used to inflict spontaneous change upon newly generated

offspring, is the only source of diversity. Mutations alone are

often insufficient to maintain diversity in the face of selection

pressure, resulting in the loss of diversity in the algorithm’s

population. Such premature convergence is a very common

problem in the field of evolutionary computation and results

in the algorithm’s inability to escape local optima.

The importance of this problem is reflected in the number

of publications attempting to address it. The wealth of

different approaches also highlights the difficulty in main-

taining high levels of diversity without disrupting the ongoing

search process. Convergence, of course, is a vital part of

the algorithm’s success allowing the algorithm to focus on

the most promising regions in the search space. Without

any convergence, the search would be random. However,

given the usual lack of problem specific knowledge, it is

impossible to determine a priori which regions of the search

space are the most promising and the algorithm typically

converges to regions that seem the most promising but may

turn out to be misleading. This phenomena is highlighted by

fully deceptive problems that gradually lead the population

to a local optimum that is located the maximum possible

1An informal review of population sizes used in the literature suggests
that the most common value is approximately 100 individuals.

Hamming distance from the global optimum.

A good indicator of diversity is the distribution of alleles

at each locus across the population over time. A randomly

initialised population will have an even distribution of alleles

(1’s and 0’s) at each locus and the average numerical value

will thus be close to 0.5. The average distance to 0.5 across

all loci over time is being used as a measure of diversity.

The maximum possible degree of diversity is 1 meaning each

locus has a perfectly even distribution of alleles.

III. RELATED WORK

This section briefly reviews previous work related to the

concepts explored here. Approaches dealing with premature

convergence are too numerous to be fully reviewed in this

paper. This review restricts itself to techniques presented

elsewhere that draw inspiration from biological processes

identical or similar to alternative splicing.

Genetic algorithms (GAs) were originally inspired by

the field of population genetics and most notably Fisher’s

genetical theory of natural selection [9]. In recent years, how-

ever, advances in molecular genetics, including the genome

sequencing projects, have triggered an interest in abstrac-

tions that are more directly inspired by the biochemical

information processing architecture of eukaryotic cells. For

example, properties of the genetic code have been exploited

successfully by Karuptga and Gosh [14] and a simple im-

plementation of RNA editing, a post-transcriptional process

that selectively modifies individual nucleotides, has been

presented by Huang and Rocha [13].

It appears that there have been no direct implementations

of alternative splicing in the literature except for our own pre-

vious work on this subject (see below). There are, however,

some approaches that explore the phenomena of alternative

expression: One of the earliest of those being Levenick’s

Swappers [16]. Swappers are very simple encodings that

consist of two parts, one of which is expressive (active) at

any one time. This is somewhat similar to a dynamic exon-

intron structure and Levenick showed how such dynamic

expression may be useful in accelerating the algorithm’s

rate of adaptation. A similar approach that utilises the

alternative expression of individuals is due to Yang [22]:

Yang uses the concept of duals, encodings that are maximum

Hamming distance from their source. A clever triggering

machinisms stochastically creates duals of weak individuals

in the population to increase their fitness. Yang’s work,

however, has been inspired by the complementary nature

of chromosomes found in diploid organisms and not the

molecular process described in the next section. Indeed,

there is a whole body of research investigating the potential

benefits of diploid encodings in artificial evolution. Diploidy

is, however, conceptually very different to alternative splicing

and usually requires a dominance scheme that defines which

chromosome is active at any one time.

The Structured GA due to Dasgupta and McGregor [7]

is another example of an approach that is similar in intent,

but different in conception, to the approach presented here:

The Structured GA uses a control sequence to determine



which designated segment of the encoding is active. Only

one segment may be active at any one time, allowing

the remaining segments to accumulate neutral mutations.

The authors suggested this approach to deal with dynamic

environments. Dynamic environments have received special

attention when it comes to the issue of maintaining diversity

as it is highly important to maintain high levels of diversity

in the face of an ever changing fitness landscape, possibly

more so than in the static cases. Numerous approaches have

been suggested for this type of domain, but only one is

directly related to the phenomenon of alternative splicing:

We previously presented a modular encoding the phenotype

of which is determined by a series of control sequences. The

problem’s variables are stored as dynamic elements that may

move from one segment to another. The encoding allowed

the identification of linkages amongst a succession of finite

states. This implicit memory, in turn, allowed an accelerated

rate of adaptation [20]. As segments are predetermined, we

labelled that approach as explicit. The approach presented

here is implicit as segments are determined on-the-fly.

IV. IMPLICIT ALTERNATIVE SPLICING

The technique presented in this paper is called implicit

alternative splicing (iAS). It has been inspired by the post-

transcriptional process of alternative splicing that frequently

occurs in eukaryotic cells. DNA, the hereditary carrier of

information, contains well defined regions, called genes, that

consist of instructions to produce proteins. Genes are usually

composed of exons and introns in an alternating fashion. The

usual pathway of expression first transcribes DNA to RNA

and subsequently modifies the RNA strand in an event called

RNA processing. The typical scenario is to remove all introns

and to retain all exons. However, there are numerous excep-

tions to this and frequently introns are retained or exons are

skipped during RNA processing, allowing the production of

a wide range of different proteins from the same underlying

strand of DNA. Alternative splicing was thought to occur in

40-60% of all human genes [11] but it is now estimated that it

may affect a far larger proportion of genes. The significance

of this process is best highlighted by the case of drosophila

where the fly’s gender is determined by alternative splicing:

The sex-specific splicing pattern for females expresses exon 4

while the male one does not [4]. Alternative splicing, often

in conjunction with RNA editing, is thought to be highly

relevant to the vast proteomic diversity that is evident in

higher organisms. There are numerous additional benefits

of alternative splicing, including temporary suspension of

selection pressure on individual segments, which are highly

interesting but not explicitly considered within this paper.

Our implementation of alternative splicing is necessarily

highly abstract. A schematic view is shown in Figure 2:

The search of an alternative expression is essentially reduced

to a search for an ‘exon’. An exon in terms of the binary

encoding is any segment that may be expressed alternatively

without degrading the encoding’s quality. By an alternative

expression here we mean the inversion of a series of bits.

In order to find the largest possible segment suitable for

inversion we repeatedly apply our method in a top-down

fashion. Initially, we randomly divide the encoding into two

halves and invert either one of them and evaluate the resulting

encodings (that is, the inverted half together with the original

and unaltered half). We then proceed by taking the ‘path

of least resistance’ and reapply the method to the segment

that caused the lesser decline in fitness. In other words, we

divide the half that proved more successful and repeat the

evaluation (a quarter of the encoding is now being inverted).

At any stage, once we have found an inversion that produces

a fitness value greater to the original fitness, we terminate

the process. If the inversion is neutral in regard to fitness,

we terminate with some predetermined probability p. On exit,

we immediately apply the successful inversion to the original

encoding.

It is debatable whether our implementation of iAS bears

a significant relationship to its natural counterpart as there

are numerous important differences. For example, alternative

splicing in nature works by temporarily suspending selection

pressure for certain splice forms which are subsequently free

to accumulate mutations. This accelerated rate of change

may ultimately produce a new protein (see [18]). A purely

neutral approach is too costly for our purposes and we

instead uphold selection pressure while allowing a temporary

decrease in fitness. However, given the intrinsic differences

between natural and artificial evolution, we deem the lack of

biological plausibility of little significance in the light of the

utility afforded by iAS (see section VII). Although the field

of molecular genetics provides fruitful inspiration, biological

plausibility will often need to be traded for computational

efficiency.

The probability of finding large segments that may be

inverted successfully diminishes as the encoding approaches

its globally optimum state. In order to increase the chance

of finding a large segment, we test q different divisions at

each stage of iAS and proceed with the most successful

one. In other words, when splitting the encoding in half,

we test several possible divisions and choose the one with

the least decline in quality. There are thus a total of two

parameters that control iAS: The probability p determines

whether iAS terminates as soon as a segment has been found

the inversion of which is at least neutral in terms of quality.

The parameter q, on the other hand, determines the number

of trials devoted to finding the best possible division at each

stage. The total number of possible divisions clearly depends

on the number of bits currently being considered and we

reduce q linearly, if possible, such that q is never greater than

the total possible number of unique divisions. If, for example,

we are considering 100 bits, there are 0.5×(100!/(50!×50!))
unique ways to create two mutually exclusive segments of

size 50. We test q randomly chosen division and proceed with

the most promising one at which stage q will be reduced by

a constant factor.

iAS obviously bears a significant cost in terms of function

evaluations, and we reduce this cost by potentially (depend-

ing on p) terminating the process as soon as an encoding
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Fig. 1. A schematic view of implicit alternative splicing: The original
encoding in this simple example is all zeros. The encoding is randomly
divided into two halves (one half highlighted by grey squares), each of which
is inverted in turn (bold numbers). At each stage, q different divisions are
tested and the inversion with the least loss of fitness (highlighted by arrow)
is used to repeatedly apply the technique. If at any stage, the fitness of the
modified encoding is better than the original one, the method terminates. If
the inversion is neutral, we terminate with some probability p. Otherwise,
execution proceeds until the length of the segment is 1 bit.

has been found that is at least as good as the original one.

This equality criterion is also essential for the generation of

diversity as it increases the chances of success in finding

a segment for inversion. The very small population size is

also crucial in limiting the number of function evaluations

consumed by iAS although depending on the total number

of function evaluations allowed, larger populations may be

used to address problems of increasing difficulty. Using a

population of size 2 is very uncommon for GAs for reasons

outlined in the previous section. However, other evolutionary

algorithms such as evolution strategies (ES) often use very

small populations. In fact, the approach presented here may

be compared to (1 + λ) ES where only a single individual

is kept at any one time: At each stage, λ offspring are

generated which then compete with their parent to be in the

next generation. This is somewhat similar to iAS which tries

numerous different encodings before competing to replace

one of its parents.

V. OPTIMISATION PROBLEMS

We tested iAS on three different optimisation problems.

The first one, an artifically created ‘toy’-problem allows us

to investigate the characteristics of iAS in different search

spaces. The second problem is Kauffman’s NK-fitness land-

scape which is designed to allow easy tuning of the degree of

ruggedness of the search space. The third and final problem

is the well known Boolean satisfiability problem. Each of

these problems is described in more detail below.

A. Problem 1

The first problem is artificially created to generate search

spaces with different attributes in a controllable manner. It

has been inspired by a very similar approach due to Yang

[23]: The function to be optimised is constructed as a series

of 4-bit segments. The value returned by each segment

depends upon the chosen cost matrix and the number of

ones within that segment. The cost matrix [4, 3, 2, 1, 0], for

example, returns a score of 4, 3, 2, 1 or 0 given 0, 1, 2, 3

or 4 ones within that segment (i. e. the number of ones is

used as an index). This problem enables efficient modelling

of different search spaces, some of which are known to be

difficult for GAs. We use a target function that consists of

25 segments (100 bits) and has an optimum value of (25×4)

100. The cost matrices used are as follows: [0, 1, 2, 3, 4]
(all ones), [0, 2, 2, 4, 4] (neutrality) and [3, 2, 1, 0, 4] (fully

deceptive). Each segment is distributed equally across the

encoding. In order to make the problem slightly more realis-

tic, we generate search spaces as a mixture of different cost

matrices. We denote the type of the search space as a series

of three values, indicating the percentage of the search space

each cost matrix occupies. The type 0.33 - 0.33 - 0.33, for

example, indicates that the search space is composed of 1/3

of each cost matrix and thus combines all three attributes. A

type 1 - 0 - 0 would be the classical all-ones (or max-ones)

problem.

B. Problem 2

The second problem is Kauffmann’s NK-fitness model

[15]. Kauffmann developed this problem to study the effects

of genetic interactions (epistasis): Each bit contributes to-

wards the encoding’s fitness. The contribution depends upon

the state of the bit itself and the state of all k bits that are

linked to it. The more the bits are dependant on one another,

the more rugged the search space is. The fitness values for

each bit are generated randomly in the range (0, 1) for each

possible state and are stored in a look-up table. The final

fitness is the average contribution of all bits. For random

neighbourhoods, this problem has been shown NP-complete

for values of k ≥ 2 (see [2]).

C. Problem 3

The third problem under consideration is the well-known

Boolean satisfiability problem, that underlies many impor-

tant applications, such as computer hardware design. The

instances used here are NP-complete [5]. Furthermore, this

problem is an ideal binary search problem highly suitable

for the technique presented here. In this paper we will use

benchmark problems found online2: These instances have

exactly three variables per clause (3-SAT) and range in size

from (n = 20, m = 91) to (n = 175, m = 645) where

n is the total number of variables and m is the number of

clauses. All instances are uniformly random and completely

satisfiable. There are numerous ways to represent this par-

ticular problem (e.g. path representation, graded fitness). We

use the probably simplest representation and assign a fitness

value to the encoding that is directly equivalent to the number

of clauses that are being satisfied.

VI. EXPERIMENTAL SETUP

The GA used to test iAS has a population size of 2: The

two individuals are crossed over using uniform crossover

2www.cs.ubc.ca/∼hoos/SATLIB/benchm.html



TABLE I

EMPIRICAL RESULTS FOR PROBLEM 1: FOR EACH DIFFERENT TYPE OF SEARCH SPACE, THE PERCENTAGE OF SOLVED TRIALS IS SHOWN (%) WITH

THE AVERAGE NUMBER OF FITNESS EVALUATIONS (FE AVG I) REQUIRED TO FIND THE GLOBAL OPTIMUM (EXCLUDING UNSUCCESSFUL TRIALS),

AND THE FINAL AVERAGE FITNESS AFTER 20,000 FUNCTION EVALUATIONS (FIT AVG) WITH THE AVERAGE NUMBER OF TOTAL FUNCTION

EVALUATIONS REQUIRED (FE AVG II). BOLD NUMBERS INDICATE THE SEEMINGLY BEST RESULTS WITH STATISTICAL SIGNIFICANCE BEING

INDICATED BY THE STAR SYMBOL.

SGA iAS S

Case Type % FE Avg I Fit Avg FE Avg II % FE Avg I Fit Avg FE Avg II

1 1.00 0.00 0.00 100 1648.27 100.00 1648.27 100 2689.27 100.00 2689.27 *

2 0.00 1.00 0.00 100 2797.00 100.00 2797 100 3064.60 100.00 3064.60

3 0.00 0.00 1.00 0 - 82.47 20000 0 - 87.10 20000 *

4 0.60 0.20 0.20 0 - 96.30 20000 20 11673.33 98.83 18334.67 *

5 0.20 0.60 0.20 0 - 96.40 20000 16.67 9763.60 98.57 18293.93 *

6 0.20 0.20 0.60 0 - 89.67 20000 0 - 93.07 20000 *

7 0.33 0.33 0.33 0 - 93.80 20000 0 - 96.13 20000 *

followed by single bit mutation. The resulting offspring then

compete with their parents for a place in the next generation

whereby the fitter offspring competes with the fitter parent.

The performance of iAS is compared to a standard steady

state GA (SGA) that uses parameter settings depending

on the problem (see below). The parameter settings were

established systematically for each type of problem in order

to maximise the performance of the SGA. For the purpose

of comparison, we also tried to use the standard GA with

a population size of 2. The results were significantly worse

than those produced by more traditional parameter settings

and are thus omitted from the results section. Results are

obtained by executing the algorithm multiple times on the

same problem using different seeds for the pseudo-random

number generator for each trial. Depending on the type and

complexity of the problem, we chose parameter settings as

follows:

A. Problem 1

The algorithms are executed 30 times for each problem

with a maximum of 20,000 function evaluations allowed for

each trial. Whenever the global optimum is found within

the limit allowed, the algorithm’s run is terminated and the

number of function evaluations required is noted. The SGA

uses a population size of 50, binary tournament selection

and binary tournament replacement (with a randomly chosen

individual). The probability of the uniform crossover operator

is 0.8 and the mutation probability is 1/n. iAS also uses a

crossover probability of 0.8 and a mutation probability of

1/n. Furthermore, the value for the parameters are: p = 0.5
and q = 14.

B. Problem 2

The algorithm is executed 30 times for each problem of

size 100 bits with a maximum of 20,000 function eval-

uations each time. We explore levels of epistasis k ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The higher the value of k, the

higher the ruggedness of the search space. The parameter

settings for SGA and iAS are identical to problem 1.

C. Problem 3

The benchmark problems being used come in groups

of 100 to 1000 instances for each value of n ∈
{20, 50, 75, 100, 125, 150, 175}. In order to reduce the com-

putational costs of conducting the experiments, we execute

the algorithm 30 times on each of the first 20 instances of

each group and do not consider instances with values of

n ≥ 200. We execute the algorithms for n ∗ 250 and n ∗ 500
function evaluations. The SGA uses a population of size

100, random selection and binary tournament replacement.

For both approaches, the crossover probability is 0.8 and the

mutation probability is 1/n. For iAS, p = 0.5 and q = 1.

VII. RESULTS AND ANALYSIS

This section presents the results for each of the three

problems being investigated. The results are compared and

analysed with further discussion to be found in the next

section. Statistical significance has been established using

t-tests and a significance value of 0.005.

A. Results Problem 1

The results for the first problem are shown in Table I. The

SGA manages to solve 2 of the cases while iAS solves at

least some instances in 4 of the 7 cases. In the two cases

where all instances are solved (1 and 2), the performance of

either technique may be judged by the number of function

evaluations required to reach the global optimum. In the

other 5 cases, the final accuracy is used as the measure

for comparison. The table shows that iAS is significantly

better in 5 of the 7 cases and significantly worse in 1 case.

iAS requires more function evaluations for the simplest case

(all-ones problem) which seems to suggest that no advanced

techniques are required for such simple uni-modal search

space where conventional approaches fare better.

Figure 2 shows the average level of diversity across fixed

intervals for both the SGA and iAS algorithms for case 7.

As expected, the final average diversity for SGA approaches

zero quickly and remains in that state until the end of the

run. In other words, all individuals in the final population are



TABLE II

THE FREQUENCY OF SUCCESSFUL INVERSIONS BY SEGMENT SIZE FOR PROBLEM 1. ALL POSSIBLE SEGMENT SIZES ARE SHOWN IN THE LEFTMOST

COLUMN WITH THE DIFFERENT CASES ACROSS THE SECOND ROW FROM THE TOP. THE VALUE 0 DENOTES AN UNSUCCESSFUL ATTEMPT TO FIND A

SEGMENT.

Size Frequency

Case→ 1 2 3 4 5 6 7

50 4.87 4.60 5.73 5.33 5.43 5.90 5.07

25 9.03 7.37 3.47 7.73 8.37 5.23 6.87

12/13 10.97 12.17 8.27 12.17 11.50 10.90 11.80

6/7 12.93 13.03 12.77 12.57 16.17 15.63 14.30

3/4 7.10 8.83 16.00 13.00 13.13 14.90 13.67

1/2 1.30 2.83 14.40 9.07 9.43 12.63 10.33

0 0.00 0.30 139.27 129.17 125.70 137.97 141.50

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0I n t e r v a l00 . 20 . 40 . 60 . 8
Di versit y

i A SS G A

Fig. 2. The convergence over time of SGA and iAS: The SGA quickly loses
all its diversity and remains in that homologous state until the run terminates.
iAS, on the other hand, also loses diversity initially but retains a certain level
of diversity throughout the entire run despite having a population size of
only 2.

identical to one another and the variation operators are unable

to lift the population from the corresponding local optimum.

On the other hand, iAS maintains moderate levels of diversity

throughout the entire run and subsequently produces superior

results to the SGA. The behaviour of iAS is best highlighted

by looking at the kinds of inversions that occur throughout

the algorithm’s run: Table II shows the average frequency of

the various segment sizes successfully inverted using iAS.

The data is averaged over all 30 runs for the 0.33 - 0.33 -

0.33 problem instance. As the encoding consists of 100 bits,

the following segment sizes are possible: 50 - 25 - 12/13 -

6/7 - 3/4 - 1/2. All attempts that do not locate a segment

suitable for inversion are marked as 0. The table shows

that unsuccessful attempts do indeed constitute the majority

of cases. However, larger segment inversion do occur with

regular frequency allowing the algorithm to escape from local

optima and to generate diversity for the crossover operator

to act upon.

TABLE III

EMPIRICAL RESULTS FOR PROBLEM 2 AFTER 20,000 FUNCTION

EVALUATIONS FOR SGA AND IAS GIVEN DIFFERENT VALUES OF k. THE

SEEMINGLY BEST OUTCOMES ARE IN BOLD WITH STATISTICAL

SIGNIFICANCE INDICATED BY THE STAR SYMBOL.

k SGA iAS S

1 0.7119 0.7137
2 0.7352 0.7412

3 0.7459 0.7561

4 0.7499 0.7622 *
5 0.7489 0.7586 *
6 0.7410 0.7557 *
7 0.7399 0.7482

8 0.7294 0.7412 *
9 0.7235 0.7365 *

10 0.7202 0.7297

B. Results Problem 2

The NK-fitness landscape allows one to study the be-

haviour of algorithms on search spaces with varying degrees

of epistasis. The results from this experiment are shown in

Table III. As the value for k increases, iAS outperforms the

SGA and is significantly superior in 5 of the 10 cases. Again,

to understand the operation of the algorithm it is best to

look at the average frequencies of segment sizes that are

being inverted successfully, as shown in Table IV. Unlike

with Problem 1, there is a tendency towards segments of

size 1/2: Although larger inversions do occur at any value

of k, there is a clear tendency towards inversions of smaller

sizes as k increases. The number of unsuccessful attempts

increases also. This seems to indicate that, although higher

levels of epistasis prevent larger invertable segments from

being found, the inversion of only a few bits still yields

significant improvements.

C. Results Problem 3

Problem 3 is the only problem under consideration that has

real-world applications, and is therefore of special interest.

The results for this case are shown in Table V, and once

again iAS outperforms the SGA, both in terms of reliability

and accuracy. No statistical significance has been established

in this case as the differences in success rate between the



TABLE IV

THE FREQUENCIES OF SEGMENT-SIZES SUCCESSFULLY IDENTIFIED BY IAS AS SUITABLE FOR INVERSION IN THE CASE OF PROBLEM 2. ALL

POSSIBLE SEGMENT SIZES ARE SHOWN ON THE LEFTMOST COLUMN WITH THE DIFFERENT VALUES OF k ACROSS THE SECOND ROW FROM THE TOP.

THE VALUE 0 DENOTES AN UNSUCCESSFUL ATTEMPT TO FIND A SEGMENT.

Size Frequency

k→ 1 2 3 4 5 6 7 8 9 10

50 5.90 5.37 5.67 5.97 6.17 6.83 7.67 6.67 5.40 6.63

25 7.77 6.40 4.90 4.27 3.07 1.93 2.33 2.40 1.70 1.50

12/13 13.63 13.20 9.63 8.53 7.07 5.20 4.20 3.10 2.87 2.40

6/7 17.70 19.73 18.73 16.57 13.80 10.93 9.00 8.30 6.37 6.43

3/4 23.23 25.20 27.83 26.33 23.33 22.03 19.93 18.33 16.43 15.17

1/2 19.77 25.47 28.93 30.77 29.80 31.53 30.50 29.30 31.10 28.33

0 119.70 111.70 108.97 110.80 117.47 120.53 124.93 128.63 130.23 134.30

TABLE V

RESULTS FOR THE 3-SAT PROBLEM: THE AVERAGE PERFORMANCE OF EACH ALGORITHM IS SHOWN AS THE AVERAGE NUMBER OF SOLVED TRIALS

ACROSS THE 20 DIFFERENT INSTANCES TESTED FOR EACH VALUE OF n (%). THE FINAL AVERAGE VALUE IS SHOWN ALSO (AVG). THE TOP ROW

SHOWS THE NUMBER OF FUNCTION EVALUATIONS THE ALGORITHM WAS EXECUTED FOR. THE RIGHTMOST PAIR OF COLUMNS SHOW THE LEVEL OF

IMPROVEMENT DUE TO THE INCREASE IN THAT LIMIT.

n × 250 n × 500 Change

SGA iAS SGA iAS

n m % Avg % Avg % Avg % Avg SGA iAS

20 91 83.00 90.82 89.50 90.89 84.17 90.83 91.17 90.91 1.17 1.67

50 218 31.17 216.83 60.17 217.50 34.17 216.94 65.50 217.58 3.00 5.33

75 325 6.33 322.82 38.00 324.11 9.17 323.03 45.67 324.29 2.83 7.67

100 430 5.67 426.98 23.67 428.84 7.00 427.34 29.50 429.05 1.33 5.83

125 538 1.17 533.93 15.17 536.49 2.17 534.36 23.00 536.80 1.00 7.83

150 645 0.50 640.33 15.17 643.42 1.33 640.89 25.00 643.81 0.83 9.83

175 753 0.00 747.30 3.83 750.93 0.00 748.03 9.00 751.38 0 5.17

two approaches are very large. It is interesting to note that

once the limit on the number of function evaluations allowed

is doubled, iAS manages a considerable higher increase in

performance in almost all cases while the SGA improves its

performance only marginally. Again, this is due to the loss of

diversity: Once the SGA converges prematurely, the variation

operators alone are insufficient to escape the local optimum,

and further improvements are rarely possible.

VIII. DISCUSSION

We have tested our new diversifying technique, iAS,

on three different optimisation problems and found it to

increase significantly the algorithm’s performance in almost

all instances. The rise in performance is due to a constructive

increase in the population’s diversity despite a minimal

population size. By constructive we mean that not only does

the generated diversity not interfere with the ongoing search

process, but indeed speeds it up by increasing the fitness

values of the underlying encodings. As mentioned earlier,

the algorithm’s population is expected to converge towards

promising regions of the search space over time. If, however,

convergence happens too quickly, the algorithm may lose its

ability to escape from local optima. As it is sufficient that a

single individual in the final population encodes the global

optimum, it is important that the population as a whole is

partly converged towards promising regions of the search

space while maintaining sufficient diversity to escape from

that region in the event that it does not contain the global

optimum. This is what we seem to observe for iAS.

The design of the proposed GA is different from the

conventional approach as it uses a population of only 2

individuals. The reason for this is two-fold: iAS requires a

significant number of function evaluations and having a small

population allows to fully exploit the benefits of this method

without exceeding the number of function evaluations al-

lowed. A larger population would require a considerable

number of function evaluations given iAS is applied to

every single individual which would prevent a sufficient

number of generations to be processed prior termination of

the algorithm. If, however, further computational resources

are allocated to solve a certain problem, larger population

sizes should be investigated. Secondly, small populations are

generally computationally efficient as long as diversity may

be maintained: The ability of iAS to invert segments of large

size allow it to escape from local optima and to maintain a

constant level of diversity. This effect is subsequently utilised

by the crossover event allowing to combine superior sub-



solutions in a single individual. We also tested iAS with

a population of a single individual using only mutations

as additional source of variation. The performance was

significantly worse indicating the benefit afforded by the

crossover operator.

IX. CONCLUSION

In this paper we have presented a new technique, implicit

alternative splicing (iAS), that significantly increases the

population’s diversity in a genetic algorithm (GA). This

technique allows the use of a minimal population size and

thereby reducing computational overhead. iAS is inspired by

the post-transcriptional process of alternative splicing that is

commonly found in eukaryotic cells and is thought to play

a major role in the generation of proteomic diversity evident

in higher organisms. We have previously demonstrated how

an abstract interpretation of this biochemical process may

be utilised successfully in dynamic domains [20]. In this

paper, we have proposed a different implementation to deal

with with three different kinds of static optimisation problem.

Each of these problems has been chosen to identify different

characteristics of iAS. We have shown that iAS is able

to significantly increase the population’s diversity and to

enhance the overall quality of the solutions found. iAS is

a top-down technique that aims to invert the largest possible

segment of a binary encoding without loss of the encoding’s

fitness. Therefore, unlike local search, it is possible to escape

local optima by inverting multiple bits simultaneously.

The results presented in this paper are promising, and

future work will involve identifying further real-world do-

mains that may benefit from this technique. Furthermore,

our current form of iAS only works with binary encodings,

and it will be interesting to determine whether an equivalent

approach may be developed for permutation-type problems.

It might also prove interesting to investigate whether the use

of specialised variation operators could exploit the additional

diversity afforded by iAS to increase the algorithm’s perfor-

mance even further.

Finally, it is worth noting that an important feature demon-

strated by this study is the rich source of inspiration that

molecular genetics can be for the field of evolutionary

computation. Although iAS is highly abstract, and possibly

bears only minimal resemblance to its natural counterpart,

the inspiration was drawn from the study of the information

processing architecture of the cell, which has much more to

offer than the field of evolutionary computation currently ex-

ploits. This is an exciting prospect, and as our understanding

of molecular systems increases over time, we believe future

work in the field of evolutionary computation should attempt

to identify further potential benefits of such phenomena.
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