
Alternative Splicing in Evolutionary Computation:
Adaptation in Dynamic Environments

Philipp Rohlfshagen and John A. Bullinaria

Abstract— Natural organisms have to deal ef£ciently with
changing environments and are thus a great source of inspira-
tion to solve dynamic problems in arti£cial domains. Dynamic
optimisation has gained a lot of interest lately as many real
world problems are indeed dynamic. In this paper, we look
at post-transcriptional processes and alternative splicing in
particular: Although these biochemical processes are gaining
increasing attention from the genetics community, they remain
relatively unexplored in evolutionary computation. We suggest
a simple abstract encoding that allows one to construct multiple
expressions from the same template supporting quick adapta-
tion to changes in the cost surface. This encoding enables the
system to £nd, control and reuse groups of building blocks
that are being shared by different environments. Tests on a
modi£ed version of the dynamic knapsack problem show that
it signi£cantly outperforms the canonical genetic algorithm as
well as simple implementations of random immigrants and
hypermutations.

I. INTRODUCTION

Evolutionary computation (EC) has been successfully ap-
plied to many different classes of optimisation problems
where conventional methods tend to fail. There has been a
trend recently to extend the £eld of EC to cover problems that
are of a dynamic nature. Dynamic optimisation deals with
cost surfaces that change over time such that the algorithm
is required to constantly track the moving optima. Dynamic
optimisation has gained a lot of momentum recently as many
real-life problems are indeed dynamic: Resources may have
to be reallocated due to technical failures, traf£c congestion
may alter the cost per distance, or new jobs are added to
a schedule due to unforeseen events. In order to deal with
the dynamics of a problem, numerous techniques have been
developed to improve upon the canonical genetic algorithm
(GA). Interestingly, natural systems are inherently dynamic
and thus provide a valuable source of inspiration and it comes
as no surprise that many novel approaches have indeed been
inspired by nature (e.g. diploidy).

The approach presented here has been motivated by a
phenomena in genetics known as alternative splicing (AS).
AS is a biochemical process that allows the exploitation of
alternative pathways in eucaryotic genes to fabricate a multi-
tude of different proteins from a single template. It is a post-
transcriptional process that controls the expression of RNA
under the in¤uence of certain regulatory features such as cell
type: Each cell contains the same sequence of DNA yet the

This work was supported by a Paul and Yuanbi Ramsay scholarship.
Philipp Rohlfshagen is with the Department of Computer Science, Uni-

versity of Birmingham, UK (email: P.Rohlfshagen@cs.bham.ac.uk).
John A. Bullinaria is with the Department of Computer Science, Univer-

sity of Birmingham, UK (email: J.A.Bullinaria@cs.bham.ac.uk).

cell type may greatly affect the splicing pattern such that
different proteins are produced in different circumstances.
This is very much related to dynamic optimisation where
different conditions require quick adaptation to track the shift
in the search space. Post-transcriptional processes have not
yet received much attention in the EC community, although
some work has been carried out (see, for example, [16] for an
implementation of RNA editing). Here we present an abstract
implementation of AS to be tested on dynamic optimisation
problems. We will use the term ‘AS’ throughput this paper
to refer to both the biochemical process and the suggested
encoding.

The paper is structured as followed: Section II gives
a brief introduction to dynamic optimisation and reviews
previous work in this area. Closely related work is reviewed
in section III followed by an explanation of AS in natural
systems in section IV. The encoding is presented in section V
followed by the description of the benchmark problem. The
experimental setup is outlined in section VII followed by a
discussion and analysis of the results which are concluded
in section IX.

II. DYNAMIC OPTIMISATION

EC has predominantly been applied to classes of static
optimisation problems. Many problems are, however, dy-
namic in the real world: Noise, uncertainty and other factors
may often contribute to a cost surface that changes over
time. A problem of great complexity is either impossible
or very costly to solve and in a changing environment,
one should therefore attempt to utilise the best solution
found so far to guide adaption to the shifted optimum. This
should in general be more ef£cient than a complete restart
of the algorithm. Problems of interest are therefore those
whose states bear a degree of similarity before and after the
change. Otherwise, no technique can outperform a random
restart approach [2]. Classical implementations often fail to
track changes suf£ciently quickly due to convergence and
subsequent loss of diversity. To combat this shortcoming,
many different approaches have been suggested in the past.
These approaches either enhance diversity, use memory of
previous states or multiple populations to track different
areas of the search space concurrently. A brief overview of
different techniques may be found in [3]. The remainder of
this section outlines the main ideas.

Hypermutations [5] drastically increase the mutation rate
in response to environmental changes in order to randomise
the population. Random immigrants [11], on the other hand,
merge randomly generated individuals with existing ones to



prevent convergence at any one time. While this may help to
increase diversity, it also disrupts the current search process
and may subsequently prevent the algorithm from locating
the global optimum. Recently, more emphasis has been on
algorithms that use memory of previous states, either implic-
itly or explicitly. In the former case, the memory is embedded
in the encoding, usually in the form of diploidy (e.g. [10])
or polyploidy (e.g. [12]). This has been used successfully
for small numbers of distinct states. The structured GA [7]
differs in its approach to implicit memory and is discussed
in the next section. The interest in implicit memory has
decreased lately as implementations only dealt with a very
limited number of states, each of which is usually represented
in the genome in its entirety. This makes implicit memory
unsuitable for large problem instances.

Explicit memory approaches keep a register of individ-
uals and release them back into the population depending
on their current £tness. The memory is of £xed size and
different memory replacement schemes have been suggested
to maintain a diverse set of individuals. Explicit memory
schemes work well if states encountered are highly related
to the points stored in memory, but may also misguide the
current search process [2]. A hybrid approach is suggested by
Yang [21] where individuals from memory are hypermutated
before they are introduced into the population. Nevertheless,
choosing a suitable size and replacement scheme for the
memory may be dif£cult. Yet another class of techniques uses
multiple populations to keep track of optima encountered in
the past. Often, a central population keeps track of the overall
search while multiple smaller populations diverge to track
promising regions in the search space [4].

III. RELATED WORK

We know of no other work that explicitly addresses the
use of AS in arti£cial evolution. This may well be due to
the fact that AS has only recently gained attention due to a
better understanding. Nevertheless, there has been some work
that follows similar principles, yet under different names
and descriptions. Levenick’s swappers [18], for example, are
individuals that may switch on different parts of their genome
given environmental stress. Although swappers are extremely
simple encodings and use only 2 different segments, they
somewhat capture the essence of AS. Diploid encodings are
also related as they allow alternative use of implicitly stored
information. This expression is controlled by a dominance
scheme and a wealth of different approaches has shown this
choice to be dif£cult. In addition, it is impossible to divide
the genome into autonomous subsections without the use of
linkage information and thus the entire genome is expressed
alternatively in its entirety. Diploid approaches therefore fail
to work in dynamic environments exceeding two distinct
states [3].

Another related and slightly more sophisticated approach
is the structured GA [7] which uses an embedded control
region that switches groups of genes on and off: The number
of active control genes is £xed, as is the position of the
controlled segments. Mutations to the control sequence occur

by swapping one bit for another. This encoding has been
applied to a succession of two and three states, each of
which has to be represented in the genome in its entirety,
making this approach unsuitable for larger problem instances.
Furthermore, only a single control gene may be active at
any one time: Whenever a new environment is encountered,
the control sequence is expected to express the part of
the genome that implicitly stores that particular state. If
multiple mutations would be required to £nd the correct
control sequence, it is likely that an accumulation of neutral
mutations in the implicit memory would alter the information
content to such a degree that memory is lost.

Neutral mutations are a fundamental aspect of implicit
memory schemes. They maintain diversity and encourage ex-
ploration of novel parts of the search space, yet also degrade
memory of previous states. Any segment not currently being
expressed in the phenotype is subject to such degradation.
Reusing information, however, implies that larger proportions
of the genome are active at any one time. If, for example,
two different states are 95% similar and the encoding is able
to capture this similarity, only ≈10% of the entire genome is
subject to neutral mutations (95% shared, 5% for each state).
For this to occur, the algorithm has to identify building blocks
common to all states or subsets of states. This also reduces
the size of the encoding considerably as the implicit memory
is expressed through linkage rather than redundancy. This
forms the basis of the suggested encoding which is discussed
after a brief overview of AS in natural systems.

IV. ALTERNATIVE SPLICING IN NATURE

The carrier of information in almost all organisms is DNA
which is being passed on from generation to generation.
Information is interpreted in the context of the cell: Certain
regions of double-stranded DNA are transcribed to single-
stranded RNA and subsequently translated into a polypeptide
chain of amino acids (a protein). These regions are generally
known as genes. For long it was assumed that a single gene
produces a single protein, but recent advances in genetics
have shown that this is not the case. The latest data predicts
20,000-25,000 genes to be found in the human genome which
is signi£cantly lower than previous estimates of 150,000
[6]. These results stress the importance of the biochemical
processes that act upon RNA to produce multiple proteins
from a single gene. These post-transcriptional processes are
not yet very well understood, but recent studies reveal their
great importance in the generation of complexity. AS is
one of the processes that allows the selective recombination
of different regions of RNA to produce large numbers of
different proteins from the same sequence of nucleotides.
Typically, DNA is transcribed to RNA which subsequently
undergoes processing. RNA processing removes intervening
non-coding regions (introns) and brings together all coding
regions (exons) to produce a continuous strand of protein
coding RNA. For the majority of eucaryotic organisms, all
introns are spliced and all exons retained. Yet this is not
always the case and special regulatory elements may cause
introns to be retained and exons to be skipped or extended



a

b

c

d

Fig. 1. Examples of splicing patterns in eucaryotic genes (white=exons,
black=introns). (a) shows the normal splicing pathway exlcuding all introns
and retaining all exons. In (b), the second exon is skipped while in (c),
the £rst intron is retained. Finally, (d) shows 2 mutually exclusive exons.
Alternative 3’ and 5’ splice sites are not shown.

by using different splice sites. The proteins produced are
often related, yet there is no restriction and proteins may vary
greatly. Probably the best example is the splicing pattern in
Drosophila melanogaster where AS determines the gender:
The female splice variant includes exon 4 while the male
ones does not [1]. Herbert and Rich [15] describe eucaryotic
genes as ‘soft-wired’ as the expression of a gene depends
on its post-transcriptional processing. This is in contrast
to procaryotic or ‘hard-wired’ genes which always produce
identical protein products. Some common splice patterns are
shown in £gure 1.

The exon shuf¤ing theory [8] assumes exons to be sub-
domains of proteins that may be used in different contexts.
This effectively allows AS to recombine exons and introns
in different con£gurations to produce fully functional pro-
tein products. A well known example is the Dscam gene
in Drosophila which may produce up to 38,000 different
transcripts from a single template [19]. Comparing human
DNA to that of other animals stresses the importance of post-
transcriptional processes: It is now well established that an
organism’s complexity is not de£ned by its number of genes
but by the size of its proteome (number of different proteins
in an organism). The high frequency of alternative splicing
in the human genome, currently estimated at 40-60% (see
[14]), con£rms this reasoning. The regulation of alternative
splicing is not yet well understood but a recent summary of
results [17] shows small regulatory units contained within
introns and exons controlling the splicing pathway of nearby
splice sites. Luckily, not all biochemical details are required
to formulate a sound and useful abstraction. The important
attribute of AS may crudely be summarised as the ability to
reuse information in different con£gurations depending on
the environment. It is this view that inspired the encoding
described in the following section.

0000...0
0110...1
0101...0
1101...1

0110...0

0,0 12,0 5,3 1,410,34,2

6,0 9,1 13,3 11,3 14,4 3,5 7,5 2,6

8,5 15,6 16,6

Fig. 2. Each individual consists of two parts, a memory of splicing patterns
and an array of nucleotides. Only one splicing pattern is active at any one
time and controls which segments of the gene are transcribed. Nucleotides
(value, segment) are free to move along the gene and may thus either be
included or excluded from the phenotype depending on their corresponding
segment and the active splicing pattern.

V. AN ABSTRACT IMPLEMENTATION OF ALTERNATIVE

SPLICING

The encoding scheme we are proposing combines elements
of implicit and explicit memory to represent multiple states
concisely within a single non-redundant gene. The encoding
consists of two parts, a memory of splicing patterns and a
virtual gene which is divided into n segments. Nucleotides
are modelled as pairs of value and segment number. Clas-
sically, GAs model evolution from a population dynamics
point of view and not a biochemical one. Here, however,
each individual represents a single gene (as opposed to a
genome) and is thus composed of nucleotides (as opposed to
genes). This distinction is important from a biological point
of view but much less meaningful from a computational
perspective. The splicing patterns are binary and indicate
which segments contribute towards the phenotype (the bit’s
position references the segment while its value determines
the segment’s state). There are m splicing patterns, each of
length n, only one of which is active at any one time. Further,
inactive splicing patterns are shielded from mutation (explicit
memory). Nucleotides are able to move between segments by
an inversion operator that simply places a nucleotide from
one segment into a randomly chosen one. Mutation to the
active splicing pattern occurs by ¤ipping the bit. There is no
restriction on how many segments are active at any one time.
Whenever a change to the environment occurs, all splicing
patterns are evaluated and the currently best one (as judged
by the £tness of the resulting phenotype) is made active.
The encoding bears a strong similarity to the messy GA [9]
and linkage learning algorithms [13]. However, there is no
under- or over-speci£cation and no crossover. The latter is
partly substituted by the use of splicing patterns which have
a similar effect as they combine different segments of the
gene. Implementation is straightforward: The problem may
be represented as a vector of integers representing the seg-
ment number of the indexed object. Further, a binary vector
containing the splicing patterns is required. An example of
the encoding is depicted in £gure 2.

In its simplest form, the encoding is precisely equivalent
to the standard binary encoding: A single state requires two
segments and a single splice regulator which silences one of
the segments. The mutation operator thus moves items from



TABLE I

A DYNAMIC VERSION OF THE KNAPSACK PROBLEM: ALTERING 2 VALUES (ITEMS 3 AND 15), 4 STATES ARE BEING CREATED THAT ALL MOVE THE

GLOBAL OPTIMUM SOME DISTANCE AWAY (THE CAPACITY IS HELD CONSTANT AT c = 60). IN ORDER TO REACH THE OPTIMUM, CERTAIN ITEMS NEED

TO BE REMOVED FROM THE KNAPSACK FIRST TO MAKE SPACE FOR THE MODIFIED ITEM (I.E. THE ORDER OF CHANGES IS IMPORTANT). ALL

SUCCESSIVE OPTIMAL SOLUTIONS DIFFER BY 4 BITS. WE WILL REFER TO THE DIFFERENT STATES BY THEIR NUMBERS AS SHOWN IN THE TABLE.

optimum
item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

weights 12 5 20 1 5 3 10 6 8 7 4 12 3 3 20 1 2

values

1 2 3 9 2 4 4 2 7 8 10 3 6 5 5 7 8 6
2 2 3 9 2 4 4 2 7 8 10 3 6 5 5 25 8 6
3 2 3 21 2 4 4 2 7 8 10 3 6 5 5 25 8 6
4 2 3 21 2 4 4 2 7 8 10 3 6 5 5 7 8 6

states

1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 71
2 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 84
3 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 86
4 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 80

the active to the inactive segment and vice versa. This is
equivalent to inverting a single bit. The mutation operator
here, however, allows for items to be linked together by
assignment of identical segment numbers. The regulatory se-
quence in turn allows for tightly linked groups of nucleotides
to be combined. This allows the encoding to tightly link
elements found in certain subsets of states in a dynamic
optimisation problem. This implicit memory may then be
constantly reused. In order to successfully encode 2 states,
one would need 2 regulatory sequences1 and 4 segments: 1
segment for items contained in none of the states, 1 segment
for items contained in both states and 2 segments for items
speci£c to either state. It is simple to encode the knapsack
problem as each nucleotide points to a particular item. Binary
problems may be encoded by translating all nucleotides (the
value of which indicates its position in the binary array) in
active segments as ones and all others as zeros.

This approach effectively allows one to view dynamic
problems as static. There is one globally optimal solution
to solve the problem independent of its current state. Once
that solution is found, no further evolution is required to
take place unless noise and uncertainty is introduced into the
system. Each individual is initialised completely at random.
The number of segments theoretically required is

1 +
n∑

k=1

n!
k!(n − k)

.

This is the upper bound that accounts for all possible
combinations of states. In reality, however, the number of
segments required is likely to be much lower, as the problem
in this paper illustrates: There is, for example, no genetic
material exclusively shared between states 1 and 2. Instead
of the theoretical maximum of 1 +

∑4
k=1

4!
k!(4−k) = 19

combinations, only six actually occur. Rather than using the
theoretical maximum, it is often more useful to approximate

1The results show that fewer regulatory sequences may be needed than
there are states.

the number of segments required. Such approximations also
allow us to use the encoding even when the number of
different states is unknown a priori.

VI. THE DYNAMIC KNAPSACK PROBLEM

The dynamic knapsack problem, originally suggested by
Goldberg [10], has been used frequently to test novel ap-
proaches to dynamic optimisation. The knapsack problem is
NP-hard and is found in several real-life scenarios such as
cryptography or the industrial cutting stock problem. The
static knapsack problem is stated as follows: Fill a knapsack
of capacity c with any combination of n items such that the
total value of all items in the knapsack is maximised without
exceeding the knapsack’s capacity. More formally,

max

n∑

i=1

vixi subject to
n∑

i=1

wixi ≤ c where xi ∈ {0, 1}.

This problem is made dynamic by altering the knapsack’s
capacity over time. The capacities are usually drawn at £xed
intervals from a small predetermined set. This approach
has been criticised by Branke [2] because the change from
higher to lower capacities renders all top-quality solutions
invalid. A penalty function penalises any individual that
encodes an invalid solution (i.e. a solution that exceeds the
knapsack’s capacity) by reducing that individual’s £tness,
and the choice of penalty function thereby greatly affects
the overall performance of the algorithm. Any algorithm
that requires more generations to recover at this particular
stage (i.e. making illegal encodings legal) is disproportion-
ally penalised due to the usually huge penalty term. This
blurs the algorithm’s performance in subsequent generations
even if adaptation is comparatively quicker. Furthermore,
we found that knapsack problems with alternating weight
constraints are fairly simple to solve using the classical
genetic algorithm. The knapsack problem is, however, still a
good candidate for dynamic optimisation. Here we suggest
a new approach of making the knapsack problem dynamic



TABLE II

THE OPTIMAL SOLUTION FOR THE PROPOSED PROBLEM: 4 SPLICING

PATTERNS, ONE FOR EACH STATE, CONTROL THE ACTIVITY OF ANY OF 6

SEGMENTS CONTAINING ITEMS BELONGIN TO ANY OF THE IDENTIFIED

SUBSETS OF STATES.

Splicing Patterns Group Items State
0 0 0 0 0 0 6 none
1 1 1 1 1 3 5 9 12 13 15 16 all
1 0 0 0 2 1 10 11 1
1 1 0 1 3 4 7 8 1 2 4
0 1 1 0 4 14 2 3
0 0 1 1 5 2 3 4

overcoming the previously mentioned concerns. Rather than
changing the knapsack’s capacity, we selectively change an
item’s value. We therefore change the value/weight ratio and
possibly introducing a new global optimum without affecting
the validity of currently optimal solutions. Increasing the
value of an item not currently in the knapsack forces the
encoding to free some space £rst. This attribute is of a
deceptive nature as it forces the algorithm to move away from
the previous global optimum by decreasing its £tness. A local
hillclimber should not be able to track the change. Small and
well-chosen alterations to the capacity may further be utilised
to introduce some noise into the system. We constructed
a test-problem with 4 states (labelled state 1 to 4) using
the same 17 item knapsack problem previously used in the
literature (e.g. [10], [7]) including the same penalty function.
We use this problem as we deem it suf£ciently dif£cult to
solve, yet easy enough to fully analyse. The problem is
shown in table I and the optimal solution to the problem
encoded as AS is shown in table II.

VII. EXPERIMENTAL SETUP

Dynamic optimisation problems are usually controlled by
two independent variables, the magnitude p and frequency t
of change. The magnitude of change for this problem is £xed
at 4 bits, although other instances may easily be designed to
allow for an arbitrary distance between states. Although 4
bits may seem trivial, the ordering amongst bits makes the
problem dif£cult. The frequency of change is usually de£ned
by the number of generations allowed for the algorithm
to locate the new optimum. We de£ne a generation as ps
function evaluations where ps is the size of the population.
We tested for intervals of 10, 50 and 100 generations and a
total of 100 changes per run. These choices are consistent
with other experiments carried out elsewhere in the literature.
The AS encoding requires multiple function evaluations per
individual after a change and thus the frequency criteria is
adjusted to ensure the same number of function evaluations
between changes for each encoding (we reduce the number of
generations per interval by m−1). Each trial is averaged over
30 distinct runs using identical seeds across all experiments.
The performance is measured as the percentage of times the
global optimum has been found. The mutation rate is set to
1/17 for both encodings. The splicing patterns are mutated

with a much lower probability as multiple nucleotides are
affected simultaneously. We therefore lower the mutation rate
by a factor of 10. The AS encoding uses 4 splicing patterns
and 10 segments. The population size is set to 100 and a
steady state GA with binary tournament replacement has
been used (see [20]). In addition, a two-point crossover with
probability 1 has been used for the classical binary approach
(SGA).

In order to test the different attributes of the encoding, the
algorithm is subjected to different scenarios. The simplest
case is the continuous succession of the 4 states. A slight
variation thereof randomly chooses the next state with re-
placement (i.e. the frequency of states changes also). A third
experiment tests each encoding on the £rst two states and
introduces the other two states after 50 changes. Random
immigrants (RI) and hypermutations (HM) have been tested
on the sequential succession of states also and are included
in the comparison. We set the rate of hypermutation to an av-
erage of 4 mutations per individual. The random immigrants
are introduced only after a change occurred which we found
much more ef£cient than introducing a small number of
random immigrants after each generation. The replacement
is random and set to 30%.

VIII. RESULTS AND ANALYSIS

The percentages of times the global optimum has been
found for the sequential succession of all 4 states are shown
in table III and are also depicted in £gure 3. The graphs show
the algorithm’s behaviour over time with each of the 4 states
indicated by a horizontal dotted line. A t-test has been used to
determine statistical signi£cance when comparing AS to any
of the other approaches (+ and − have been used to indicate
signi£cantly better and worse performance respectively at a
signi£cance level of 0.005). AS outperforms the three other
approaches except in one case where RI is better than AS
for intervals of 10/7 generations. As with the SGA (where
performance is identical for 10/7 generation intervals), this
is due to the ‘learning’ phase of AS as can be seen in £gure
3(a). Comparing only the second half of the run shows AS
to signi£cantly outperform both the SGA and RI. It can be
seen in the graph that the SGA fails to locate state 3 at
all. Furthermore, although states 2 and 4 are consistently
tracked, state 1 is lost again after several generations. AS
also encounters some degree of degradation with state 3,
but to a lesser degree. The degradation is, however, related
to the number of generations between changes. Although
most encoded information is being used all the time, inactive
segments may still accumulate some neutral mutations, the
effect of which is magni£ed by the length of the interval.

The second trial was executed to determine whether the
order of states or their frequency would affect the perfor-
mance of AS, and whether AS can learn additional states
after convergence to a subset of states. The results are
shown in table IV and £gure 4. AS again outperforms the
SGA in all cases as its performance is consistent across all
experiments. AS is also capable of learning states 3 and 4
after convergence to states 1 and 2. Interestingly, the SGA



1

4

2

3

1

4

2

3

(a) (b)

1

4

2

3

1

4

2

3

(c) (d)

1

4

2

3

1

4

2

3

(e) (f)

Fig. 3. Showing the algorithm’s behaviour over time: The left side (a,c,e) shows AS for 7, 47 and 97 generation intervals respectively. The right hand
side (b, d, f) shows SGA for 10, 50 and 100 generation intervals. AS exhibits a ‘learning’ phase for the short succession of states as it discovers common
factors to all states. Some degradation is noticeable for state 3, especially for the longer intervals. SGA on the other hand fails to discover state 3 at all
and degrades heavily on state 1 once the other states have been found.

seems to struggle with just two states as its performance is
worse than over the entire set of states. This may be due to
a lack of diversity. It may also hint at the dif£culty of the
problem, however: With just two states, there is exactly one
path to reach the next state (from state 1 to 2, remove items
{2, 11, 12} then add item {15}). With three states, however,
there are multiple paths from state 1 to state 3 if state 2
is not found. Also interesting to note is the degradation
of state 1 once states 3 and 4 are introduced which may

be explained by the same phenomena. The SGA fails to
discover state 3 at all. AS also shows some degradation as
before with state 3. The two state experiment also shows
that the choice of parameters may be ¤exible: 4 splicing
patterns and 10 segments have originally been chosen for 4
states, yet the algorithm performs equally well on 2 states
using the same settings. Choosing the right settings may
turn out to be dif£cult for large problem instances or simply
impractical depending on the size of the problem (m × n



1

4

2

3

1

4

2

3

(a) (b)

Fig. 4. Behaviour of AS (a) and SGA (b) over an entire run where states 3 and 4 are introduced only after half the run. Intervals in this example are
47/50 generations long. AS is able to locate both new states although degradation with state 3 is again evident. SGA on the other hand struggles with two
states and fails to locate state 3 at all while degrading heavily on state 1 once states 2 and 4 are found.

TABLE III

COMPARING THE PERFORMANCE OF ALTERNATIVE SPLICING (AS) TO

THE CANONICAL BINARY ENCODING (SGA) AND SGA IN COMBINATION

WITH RANDOM IMMIGRANTS (RI) OR HYPERMUTATIONS (HM) FOR

DIFFERENT INTERVAL SETTINGS t.

t AS SGA t-test RI t-test HM t-test

10/7 55 59 * 65 − * 6 +
50/47 85 63 + 68 + 60 +
100/97 82 58 + 63 + 74 +

* AS is + for second half of run

bits for the regulatory elements are required alongside the
integer vector). The second experiment did show, however,
that AS still performs well if the settings are not so well
chosen. Looking at the use of splicing patterns over time
(see £gure 5) shows that the algorithm predominantly uses
only two splicing patterns (1 and 3) in the £nal third of the
run.

In this work we explicitly use knowledge about changes
in the environment to trigger the evaluation of the explicit
memory. If such knowledge is not available, the constant
evaluation of a signi£cant number of splicing patterns would
be very costly unless true parallel processing is available.
This may pose a problem for some domains. A compromise
would be to trigger the evaluation of the explicit memory
at £xed, and possibly adaptive, intervals. If the intervals
are chosen suitably well, even slow continuous change may
be tracked ef£ciently. In some domains it is also possible
to trigger the evaluation of the explicit memory once the
population’s £tness degrades in response to environmental
change. Preliminary experiments using a single splicing
pattern showed that worthwhile improvement may still be

TABLE IV

COMPARING THE PERFORMANCE OF AS TO SGA FOR A RANDOM

SUCCESSION OF STATES (RANDOM) AND FOR THE CASE WHERE STATES

3 AND 4 ARE INTRODUCED AFTER 50 CHANGES OF STATES 1 AND 2

ONLY (2+2 STATES).

Experiment t AS SGA t-test

random
10/7 54 59 *
50/47 85 60 +
100/97 86 62 +

2+2 states
10/7 59 67 *
50/47 87 66 +
100/97 86 70 +

* AS is + for second half of run

achieved, but these results require further study. A more
detailed analysis on the effect of the number of splice sites
and segments will be carried out in the near future.

IX. CONCLUSION AND FUTURE WORK

Our abstracted formulation of alternative splicing (AS)
applied to evolutionary computation has been shown ex-
plicitly to be able to £nd sub-solutions common to sub-
sets of problem states and to reuse that information when
required. The encoding therefore provides a very compact
representation of entire dynamic landscapes. The dynamics
are effectively removed from the problem as there is now
a single static optimal solution. Our experimental results
showed AS to perform signi£cantly better than the standard
binary encoding, hypermutations or random immigrants. This
has been demonstrated for a variety of different experiments
across which AS exhibited a steady and robust performance
throughout. Although the reuse of information may imply a
fragility towards mutation (as each mutation affects all states



0

1

2

3

Fig. 5. The frequency distribution of active splicing patterns for a random
sample of the £rst experiment (7 generation cycle). All four splices are
used (with increasing regularity after the ‘learning’ phase) showing rhythmic
activity for about half the run. The remainder of the run only uses splicing
patterns 1 and 3 hinting at the possibility to reduce the number of splicing
patterns below the number of states.

the encoding refers to), it has been shown that this is not the
case: Some degradation was noticed but to a lesser degree
than the binary encoding. In order to prevent loss of memory,
a repair mechanism is suggested that allows the genome to
repair itself using a statistically generated template. This is
analogous with RNA editing and experiments will be carried
out in the near future to test this idea.

Interestingly, the results seem to imply that an explicit
memory scheme may not work for this particular kind of
problem: As the canonical binary encoding is unable to reach
the global optimum in several of the cases, a memory may
only recover suboptimal solutions. The ability of AS to locate
optima in the £rst place hints at its applicability for static
optimisation problems. We are currently investigating the
performance of AS on a set of multiple knapsack benchmark
problems: The alternative splice forms may generate diver-
sity using well-established optimal sub-solutions to produce
better solutions with high probability.

Our initial results are promising yet, much work remains
to be done. A question of particular interest is the scaling
capability of the encoding. Also of interest is the choice of
parameters and their effect on the overall performance. Nev-
ertheless, it is shown that once again, natural systems have
found a mechanism to deal effectively with the environments
they are exposed to.

REFERENCES

[1] B. S. Baker. Sex in ¤ies: The splice of life. Nature, 340:521–524,
1989.

[2] J. Branke. Memory enhanced evolutionary algorithms for changing
optimization problems. In Congress on Evolutionary Computation
CEC99, volume 3, pages 1875–1882. IEEE, 1999.

[3] J. Branke. Evolutionary approaches to dynamic optimization problems
- updated survey. In GECCO Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems, pages 27–30, 2001.

[4] J. Branke, T. Kauler, C Schmidt, and H Schmeck. A multi-population
approach to dynamic optimization problems. In I. C. Parmee, editor,

Adaptive Computing in Design and Manufacture (ACDM 2000), pages
299–308. Springer, 2000.

[5] H. G. Cobb. An investigation into the use of hypermutation as
an adaptive operator in genetic algorithms having continuous, time-
dependant nonstationary environments. Technical Report AIC-90-001,
Naval Research Laboratory, Washington, USA, 1990.

[6] International Human Genome Sequencing Consortium. Finishing the
euchromatic sequence of the human genome. Nature, 431:931 – 945,
2004.

[7] D. Dasgupta and D. R. McGregor. Nonstationary function optimization
using the structured genetic algorithm. In R. Männer and B. Mander-
ick, editors, Parallel Problem Solving from Nature 2, pages 145–154,
Amsterdam, 1992. Elsevier.

[8] W. Gilbert. Why genes in pieces? Nature, 271(501), 1978.
[9] D. E. Goldberg, D. E. Korb, and K. Deb. Messy genetic algorithms:

Motivation, analysis and £rst results. Complex Systems, 3:493–530,
1989.

[10] D. E. Goldberg and R. E. Smith. Nonstationary function optimization
using genetic algorithms with dominance and diploidy. In J. J. Grefen-
stette, editor, 2nd International Conference on Genetic Algorithms,
pages 59–68. Lawrence Erlbaum Associates, 1987.

[11] J. J. Grefenstette. Genetic algorithms for changing environments. In
R. Männer and B. Manderick, editors, Parallel Problem Solving from
Nature 2, pages 137–144, Amsterdam, 1992. Elsevier.

[12] B. S. Hadad and C. F. Eick. Supporting polyploidy in genetic algo-
rithms using dominance vectors. In 6th International Conference on
Evolutionary Programming, volume 1213, pages 223–234. Springer,
1997.

[13] G. Harik. Learning gene linkage to ef£ciently solve problems of
bounded dif£culty using genetic algorithms. PhD thesis, University
of Michigan, Ann Arbor, 1997.

[14] E. D. Harrington, S. Boue, J. Valcarcel, J. G. Reich, and P. Bork.
Estimating rates of alternative splicing in mammals and invertabrates.
Nature Genetics, 36(9):915–917, 2004.

[15] A. Herbet and A. Rich. RNA processing and the evolution of
eukaryotes. Nature Genetics, 21:265–269, 1999.

[16] C.-F. Huang and L. M. Rocha. Exploration of RNA editing and
design of robust genetic algorithms. In Proceedings of the 2003 IEEE
Congress on Evolutionary Computation. IEEE Press, 2003.

[17] A. N. Ladd and T. A. Cooper. Finding signals that regulate alternative
splicing in the post-genomic era. Genome Biology, 3(11):1–16, 2002.

[18] J. R. Levenick. Swappers; introns promote ¤exibility, diversity and
invention. In FL Orlando, W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. M. Honavar. Jakiela, and R.E. Smith, editors, GECCO-
99: Proceeding of Genetic and Evolutionary Computation Conference,
volume 1, pages 361–368, San Francisco, CA,, July 1999. Morgan
Kaufmann.

[19] D. Schmucker, J. C. Clemens, H. Shu, C. A. Worby, J. Xiao, M. Muda,
J. E. Dixon, and S. L. Zipursky. Drosophila dscam is an axon
guidance receptor exhibiting extraordinary molecular diversity. Cell,
101(6):671–684, 2000.

[20] F. Vavak and T. C. Fogarty. A comparative study of steady state and
generational genetic algorithms for use in nonstationary environments.
In T. C. Fogarty, editor, AISB Workshop on Evolutionary Computaing,
Lecture Notes in Computer Science, volume 1143, pages 297–304.
Springer, 1996.

[21] S. Yang. Memory-based immigrants for genetic algorithms in dynamic
environments. In Proceedings of the 2005 Genetic and Evolutionary
Computation Conference, volume 2, pages 1115–1122. ACM Press,
2005.


